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Abstract

Background: Social distancing is an important public health intervention to
reduce or interrupt the sustained community transmission of emerging infectious
pathogens, such as SARS-CoV-2 during the coronavirus disease 2019 (COVID-
19) pandemic. We aimed to explore the impact on the epidemic curve of fewer
contacts when individuals reduce the time they spend on selected daily activities.

Methods: We combined the large-scale empirical data of a social contact
survey and a time-use survey to estimate contact matrices by age group (0-15,
16-24, 25-44, 45-64, 65+) and daily activity (work, schooling, transportation, and
four leisure activities: social visits, bar/cafe/restaurant visits, park visits, and
non-essential shopping). We assumed that reductions in time are proportional
to reductions in contacts. The derived matrices were then applied in an age-
structured dynamic-transmission model of COVID-19 to explore the effects.

Findings: The relative reductions in the derived contact matrices were
highest when closing schools (in ages 0-14 years), workplaces (15-64 years), and
stopping social visits (65+ years). For COVID-19, the closure of workplaces,
schools, and stopping social visits had the largest impact on reducing the epidemic
curve and delaying its peak, while the predicted impact of fewer contacts in
parks, bars/cafes/restaurants, and non-essential shopping were minimal.

Interpretation: We successfully augmented contact matrices with time-use
data to predict the highest impact of social distancing measures from reduced
contacts when spending less time at work, school, and on social visits. Although
the predicted impact from other leisure activities with potential for close physical
contact were minimal, changes in mixing patterns and time-use immediately
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after re-allowing social activities may pose increased short-term transmission
risks, especially in potentially crowded environments indoors.

Research in context

Evidence before this study
We searched PubMed for mathematical models using social contact matrices

and time-use data to explore the impact of reduced social contacts as seen from
social distancing measures adopted during the coronavirus disease 2019 (COVID-
19) pandemic with the search string ((social OR physical) AND distancing) OR
(contact* OR (contact matri*)) AND (time-use) AND (model OR models OR
modeling OR modelling) from inception to May 06, 2020, with no language
restrictions. We found several studies that used time-use data to re-create contact
matrices based on time spent in similar locations or to calculate the length of
exposure. We identified no study that augmented social contact matrices with
time-use data to estimate the impact on transmission dynamics of reducing
selected social activities and lifting these restrictions again, as seen during the
COVID-19 pandemic.

Added value of this study
Our study combines the empirical data of two large-scale, representative

surveys to derive social contact matrices that enrich the frequency of contacts
with the duration of exposure for selected social activities, which allows for more
fine-grained mixing patterns and infectious disease modelling. We successfully
applied the resulting matrices to estimate reductions in contacts from social
distancing measures such as adopted during the COVID-19 pandemic, as well as
the effect on the epidemic curve from increased social contacts when lifting such
restrictions again.

Implications of all the available evidence
Social distancing measures are an important public health intervention to

limit the close-contact transmission of emerging infectious pathogens by reducing
the social mixing of individuals. Our model findings suggest a higher fraction of
close-contact transmission occurs at work, schools, and social visits than from
visits to parks, bars/cafes/restaurants, and non-essential shopping. The minimal
predicted impact is suggestive of lifting the restrictions on certain activities and
excluding them from the list of social distancing measures, unless required to
maintain sufficient healthcare capacity. However, potential replacement effects
of activities and in mixing patterns remain unclear, particularly immediately
after re-allowing social activities again.
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Introduction

Social contacts between individuals in close physical proximity drive the
transmission dynamics of many respiratory infections such as influenza virus and
coronavirus [1,2]. In community outbreaks of emerging infectious diseases, such
as with the coronavirus disease 2019 (COVID-19) pandemic, social distancing
measures are an important public health intervention. (Note that we use the
term “social distancing” in line with convention; however, it aims at avoiding
physical contacts only, while other non-physical interactions via information and
communication technologies are encouraged [3].) Measures of social distancing
aim to reduce or interrupt the spread between individuals of unknown infection
status by reducing the mixing of populations [3]. Individuals are requested
to make fewer and shorter contacts by changing their daily activities and the
locations at which they spend their time.

Contact matrices are typically used when evaluating such public health
interventions as they account for the heterogeneity in mixing of individuals
in a n × n matrix, with n equal to the number of different age groups [4].
Empirical contact matrices are derived from contact surveys, which collect data
on the frequency and location of social interactions between individuals by age,
with some collecting limited information on the duration too [5]. However,
these matrices often lack detailed information on the time individuals spend on
daily activities, and the COVID-19 pandemic highlighted the need for a more
fine-grained modelling of contact patterns [6]. In contrast to contact surveys,
time-use surveys collect information on how much time individuals spend per
day on a wide range of social activities, at what location, and with some limited
information on with whom [7]. Previous studies have used time use data to
re-create contact matrices based on time spent in similar locations [8,9] or used
time-use data to calculate the length of exposure [10]. This study combined
both data sets to estimate number of contacts per activity, and we applied
the resulting matrices to estimate reductions in contacts from social distancing
measures as adopted during the COVID-19 pandemic.

This study aimed to augment existing social contact matrices with time-
use data to estimate the effect of social distancing measures for the number
of contacts per day when reducing the time spend on selected daily activities
(some of which are considered to be non-essential). The derived contact matrices
were based on the empirical data of two large-scale population-wide surveys,
allowing for more fine-grained intervention modelling. Afterwards, we applied
the derived contact matrices in a dynamic-transmission model to explore the
impact on the COVID-19 pandemic, which was characterised by many countries
with sustained community transmission adopting wide scale social distancing
measures at population-level [3,11,12].
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Methods

Datasets
We used two large-scale datasets that included information on the age-

mixing patterns of individual contacts by location and daily activity. The
contact matrices were obtained from the POLYMOD study [13], which was
a nationally-representative social contact survey that collected data on the
frequency, duration, type (physical or non-physical) and location (home, work,
school, leisure, transport, or other) of social interactions in 7,290 individuals
for each of their 97,904 contacts in eight European countries in 2005-2006.
Participants filled out a diary for 24 hours on a randomly selected weekday or
weekend day, recording physical skin-to-skin contacts (e.g. a kiss or a handshake)
versus non-physical contacts (a two-way conversation of more than two words
without skin-to-skin contact). The age-mixing patterns were similar across
countries, and revealed a strong assortativeness, i.e. individuals spend more time
with others of their same age [13].

Individual time-use data were obtained from the United Kingdom Time
Use Survey (UKTUS) [14], which was a nationally-representative survey that
collected data on the frequency, duration, and location of a wide range of daily
activities in 16,550 diary entries of 9,388 individuals aged 8+ years from the UK
in 2014-2015, and whether activities were spent alone or with others. Participants
were asked to complete diaries for 24 hours on two randomly selected days (one on
a weekday, one on a weekend day), recording sequences of activities at intervals
of 10 minutes [14]. All activities in the time use survey were grouped according
to codes. These codes were then associated with certain POLYMOD locations
and activities using Table S1 in the supplementary materials.

Contact by location and activity
Contact studies such as POLYMOD measure the number of contacts (kil,j)

by age group (i) and location of the participant (l) and the contacts age group
(j). Time-use surveys such as the UKTUS measure the time (tial) spent by age
group (i), activity (a) and location (l). This makes it possible to estimate the
contact by activity and location as follows:

κial = wialtial∑A
b wibltibl

kial,j = κialkil,j

with κial the activity weight for age group i, activity a at location l, tial is the
average time spent by an individual, A is the set of activities and wial is an
activity specific weight, which reflects the relative number of people met during
this activity compared to other activities at the same location. Most weights
will be kept equal to 1 unless specified otherwise.

We considered five age groups (0-15, 16-24, 25-44, 45-64, 65+) as well as
the six locations used in POLYMOD (home, work, school, leisure, transport, or
other). The selected daily activities with potential for non-essential close physical
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contact were work, schools (i.e., educational settings of schools or universities,
hereafter just called schools), transportation, social visits (i.e., visiting other
people’s home and receiving visitors in one’s own home as part of celebrations and
social life), bar/cafe/restaurant visits, park visits, and non-essential shopping.
For a full list of the codes used to map activities to locations see Table S1 in the
supplementary materials.

When an individual changes the relative time spent on an activity (rial),
while everyone else’s behaviour stays the same, the weight changes relative to
the change in time (κ̂ial = rialκial). Of course, in reality the behaviour of
the contact will also have changed and this also influences the probability of a
contact during that activity and at that location. This is further complicated by
the fact that the activity and location of the contact can be distinct from the
activity and location of the participant. For example, in a restaurant the staff’s
location and activity would be work, while the patron’s location and activity
would be leisure and restaurant. The changes in the contact’s behaviour at the
participant’s activity (a) and location (l) (κ̂al,j), therefore, could be distinct
from changes in the participant’s behaviour (κ̂ial). Still, this behaviour is likely
to be proportional, e.g. if fewer people go to a restaurant then the restaurant
will also reduce its number of staff. Furthermore, for most contacts the activities
and locations will likely be the same. For this study we thus assume that the
contact’s change in behaviour is in line with changes of behaviour relevant for
that activity, location and the contact’s age group (i.e. κ̂al,j ≈ κ̂jal).

Under the assumptions above, when an encounter happens at random then
the probability of the encounter occurring is relative to the reduction of activity
by both individuals as follows: κ̂ialκ̂jal. If the encounter is initiated by either
individual, and we assume that either contact is 50 percent likely to be the
initiator, then the probability is: 1

2 (κ̂ial + κ̂jal). Therefore, we also need to know
the fraction of contacts that were initiated by one of the individuals compared
to being at random (qal). The new probability following changed activity is,
therefore, equal to

k̂ial,j =
(
qal

1
2(κ̂ial + κ̂jal) + (1 − qal)κ̂ialκ̂jal

)
kial,j

. Using the estimated change in the number of contacts the contact matrix can
then be calculated as follows: ci,j =

∑
a

∑
l k̂ial,j .

As less time is spent on certain activities, more time will be spent doing other
activities. For this study we assume that the replacement activities mostly do
not increase the number of contacts, partly because they would be spent alone
(exercise) or at home/with members of the household. While extra time spent
at home would increase the number of contact events, most of those encounters
will be with other members of the household and therefore the number of unique
contacts will not increase linearly. To reflect this distinction, we assumed the
number of contacts in the household is independent of the (extra) time spent
there.
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Epidemiological model
The potential effect of the reduced contacts following social distancing in-

terventions was explored by using the derived contact matrices as part of an
epidemiological dynamic-transmission model. Epidemiological disease dynamics
of COVID-19 were modelled using an age stratified SEEIIR model, which was
based on models used in influenza modelling [15,16] and the latent and infectious
periods were assumed to be 4.6 and 5 days long, respectively, in line with esti-
mates for SARS-CoV-2 [17]. The basic reproductive number (R0) was assumed
to be 2.8. This age-stratified model made it possible to estimate the effect of
changes in the incidence when the time spent performing certain activities is
being changed, and to explore the impact on specific at-risk individuals such as
the elderly aged 65+ years.

We present the results of two main scenarios. First, to examine the contri-
bution of different activities to transmission, we allowed all but one activity to
continue. Second, allowing individual activities to resume again while all other
activities continue to be reduced.

Results

Table 1 shows the relative contribution of each activity to the contacts at
the POLYMOD locations (calculated using wialtial∑

b
wibltibl

). Social visits were the
most important leisure activity regardless of age. Bars, cafes and restaurants
are the second most important leisure activity except in children, where indoors
exercise is more important. The results also showed that a large share of the
time spend on transport is linked to school and work activities. Therefore, if
school and work activities were reduced then this will also have a considerable
impact on the contact pattern during transport.

Using the results from Table 1 it was possible to calculate the difference in
the contact matrix if certain activities were reduced. Figure 1 highlights the
impact of stopping these activities on the contact matrix. Closing schools, clearly
had the highest relative effect on contacts in the young age groups (ages 0-24
years), but still had effect on the number of contacts in adults as well. Work had
by far the highest effect in adults aged 16-64 years. If we focus on the elderly age
group then reducing social visits had the highest impact on reduced contacts.

When using the derived contact matrices in the epidemiological model for
COVID-19, results were consistent in that the three activities that had the
largest impact on reducing the epidemic curve and delaying its peak were school,
work, and social visits (Figure 2 and Figure 3).

The exact impact of each activity depended on whether we used physical
contacts only (right columns) or all contacts (Figure 2 and Figure 3). For
physical contacts, social visits had a larger impact than work, especially in the
elderly population. In the elderly the reduction in peak height is similar between
stopping visits and closing schools, but closing schools would slow down the
epidemic more. Looking at all contacts, work had the largest impact on peak
height. This difference is probably because contacts at work were more likely
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Table 1: Relative weight of each activity on contacts by POLYMOD location and age group.
Home alone and bed were weighted as zero to reflect that no (new) contacts occur when alone
or in bed (for sleeping, not asleep, or sick).

Location Activity [0,16) [16,25) [25,45) [45,65) [65,+)
0.980 0.976 0.980 0.978 0.965

alone 0.000 0.000 0.000 0.000 0.000
sleep 0.000 0.000 0.000 0.000 0.000

home

visit 0.020 0.024 0.020 0.022 0.035
bars and restaurants 0.042 0.134 0.209 0.229 0.196
cultural 0.063 0.059 0.073 0.080 0.112
exercise 0.146 0.129 0.136 0.144 0.130
library 0.001 0.002 0.004 0.003 0.006
parks 0.092 0.024 0.063 0.057 0.031

leisure

visit 0.655 0.652 0.515 0.486 0.526
holiday 0.173 0.124 0.184 0.210 0.149
shopping 0.174 0.226 0.223 0.248 0.287
shopping essential 0.039 0.058 0.080 0.078 0.070
sleep 0.000 0.000 0.000 0.000 0.000

otherplace

unspecified 0.613 0.592 0.513 0.464 0.494
school school 1.000 1.000 1.000 1.000 1.000

cultural 0.083 0.052 0.074 0.053 0.060
exercise 0.071 0.046 0.029 0.020 0.026
holiday 0.031 0.031 0.019 0.030 0.031
parks 0.034 0.016 0.023 0.021 0.035
school 0.220 0.131 0.053 0.019 0.008
shopping 0.076 0.088 0.102 0.110 0.166
transport 0.288 0.252 0.292 0.357 0.440
visit 0.180 0.199 0.145 0.127 0.156

transport

work 0.017 0.184 0.265 0.263 0.077
work work 1.000 1.000 1.000 1.000 1.000
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Figure 1: Relative change in contacts when stopping different activities. Contact rates are
based on the POLYMOD contact study. Here qal is assumed to be 1.

8

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 5, 2020. ; https://doi.org/10.1101/2020.06.03.20067793doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.03.20067793
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2: The resulting transmission dynamics when disallowing one activitiy while allowing all
others to continue. Right column shows the results using physical contacts only in POLYMOD.
Both the result for the whole population (top) and the elderly (bottom) is shown.
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Figure 3: The resulting transmission dynamics when allowing one activitiy to continue
while disallowing all others. Right column shows the results using physical contacts only in
POLYMOD. Both the result for the whole population (top) and the elderly (bottom) is shown.
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to be conversational only, especially when compared to social visits and school
visits. Parks and non-essential shopping had the least impact, but the impact
was still significant as illustrated best when re-allowing only those activities
(Figure 3)

Discussion

Social distancing is an important public health intervention to reduce or
interrupt the sustained transmission of emerging infectious pathogens, for which
close contact and the social contact mixing patterns of communities drives the
spread [2,18,19]. The COVID-19 pandemic highlighted the need for a more
fine-grained modelling of contact patterns to capture the impact of reducing or
stopping selected daily activities possibly involving non-essential physical human
contact.

Our findings for the augmented contact matrices showed the highest relative
effect on reducing physical contacts for children and young adults aged 0-24
years when spending less time at schools/institutes of higher learning, which
also still reduces contacts in adults (who may take younger children to school).
For adults aged 25-64 years, closing workplaces has by far the highest effect on
reducing physical contacts. For the elderly aged 65+ years, reducing the number
of social visits has the highest impact on reduced contacts, with a comparable
reduction also in adolescents and young adults (aged 16-24 years). Reductions
of contacts were largely assortative by age, except for non-essential shopping
where reductions are slightly higher between ages 25-64 years and those aged
65+ years. These findings mirror in part the underlying contact matrices, which
were also highly assortative by age [13].

The dynamic-transmission model results suggest a higher fraction of close-
contact transmission at workplaces, schools, and social visits than from visits to
parks, bars/cafes/restaurants, and non-essential shopping. The largest impact
on reducing the epidemic curve and delaying its peak was achieved when imple-
menting all social distancing measures, followed by reducing work, schooling,
and social visits. When looking at the subset of physical contacts only, the
order changes to school, social visits, and working; possibly due to less physical
contact and shorter duration of contacts while working. These results do depend
on the assumption that the number of contacts in each activity is proportional
to the time spent on that activity. This assumption might well be violated for
certain activities, such as going to bars/cafes or restaurants, where the number
of contacts per time spent, could be significantly higher than in other leisure
activities. If more fine grained data was available then the method presented
here could accommodate such concerns, by changing the activity specific weight.

These findings are in line with the modelled benefits from workplace distancing
and school closures in the early stages of COVID-19 in Singapore and China
[6,20]. Studies of previous pandemics also found that e.g. the early, sustained and
layered application of school closures and cancellation of public gatherings during
the 1918-1919 influenza pandemic were significantly associated with reductions
in weekly excess deaths and delays in reaching peak mortality in the USA [21].

11

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 5, 2020. ; https://doi.org/10.1101/2020.06.03.20067793doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.03.20067793
http://creativecommons.org/licenses/by-nc-nd/4.0/


Obviously not all factors of influenza epidemics, particularly from over a century
ago, will be present or relevant in the currently ongoing coronavirus pandemic
(most notably a certain degree of pre-existing immunity in older adults and the
availability of anti-virals and vaccines [22,23]).

During the previous coronavirus (SARS-CoV) pandemic in 2003 extensive
measures of social distancing were also implemented in areas with widespread
(suspected) community transmission, including closing schools, theatres, and
public facilities as well as cancelling public mass gatherings. The combined
effect led to dramatic declines in new SARS-CoV cases [18]. Nonetheless,
the isolated impact of these measures remains unclear as they were adopted
simultaneously, and combined with other measures of enhanced contact tracing,
increased hygiene, and requiring face masks for individuals using public transport,
working in restaurants, or entering healthcare facilities [18]. Moreover, the 2003
SARS-CoV outbreak may differ epidemiologically from the 2019 SARS-CoV-2
pandemic due to e.g. no pre-symptomatic transmission having been observed
for the 2003 strain emergence [18], while a potential issue with SARS-CoV-2
[24]. Furthermore, transmission of the 2003 SARS-CoV strain was primarily in
healthcare or household settings [25], which are characterised by close person-to-
person contact [18], while the 2019 SARS-CoV-2 pandemic is characterised by
widespread community transmission in a growing number of countries [3]. Taken
together, the empirical evidence for the effectiveness in reducing transmission of
non-pharmaceutical interventions is heterogeneous [26–28].

Our findings that the predicted impact of fewer contacts in parks, bars/cafes/restaurants,
and non-essential shopping is small is suggestive of excluding these activities
from the list of social distancing measures. However, reducing these activities
may nonetheless be required if otherwise e.g. healthcare capacity is exceeded
[29], where every little impact helps ease the pressure on services. It may thus
be in the best interest of the public to not completely lift social distancing
measures too early as that may inadvertently initiate an immediate second
epidemic wave as seen e.g. in the 1957 influenza pandemic when schools in the
Northern Hemisphere were re-opened after the summer holidays [19].

Furthermore, we were unable to account for substitution effects in the time use
and activities of individuals when reducing or stopping one activity and turning
instead to another, which could possibly lead to increased numbers of contacts.
Previous studies on school closures found e.g. shifting mixing patterns of children
to other, non-school settings, and highlighted the need for physical distancing
as much as possible [30,31]. At high rates of compliance, however, the derived
matrices would not need to be adjusted further. Nonetheless, mixing patterns
and time-use may change immediately after re-allowing social activities for a
short time, which may pose increased transmission risks especially in crowded
environments indoors that may not be COVID-19-secure and if individuals chose
to spend longer durations than usual at leisure activities such as bar visits. A
related concern is the potentially impaired judgment of individuals following
alcohol consumption. One crucial aspect to achieving widespread compliance
with social distancing measures is the risk perception and the risk communication;
individuals who understand the relationship of the transmission risk from direct
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physical contact with infectious cases who may present asymptomatic seem more
likely to reduce unnecessary contacts [31–33].

Strengths and Limitations
Our analysis combined the empirical data of two large-scale, representative

surveys, and we successfully applied the resulting contact matrices in a dynamic-
transmission model to explore the impact of social distancing measures adopted
during the COVID-19 pandemic [3,11,12]. Augmenting the social contact matrices
with time-use data has enriched the frequency of contacts with the duration
of exposure in the derived matrices, which allows for more fine-grained mixing
patterns than conventionally used [6,13,34]. These findings from the augmented
contact matrices will be more broadly applicable to newly emerging infectious
pathogens whose spread is highly dependent on the social contact mixing patterns
of communities, including influenza pandemics. Our application to infections
with SARS-CoV-2 causing COVID-19 illustrated the impact of reducing social
contacts, and when lifting these restrictions again. Future pandemics, however,
will require suitably adapted models that are tailored to the epidemiology of
that pandemic pathogen and the disease it causes.

Although additional information is elicited in both surveys, we considered
them the most robust for their main purpose: social contacts and the time-
use per day. Furthermore, a significant amount of transport is linked in the
data to school and work activities, and reductions will thus likewise impact
transportation. We cannot rule out that some activities were misclassified,
however; for instance, the number of contacts in bars may relate just to the
group of individuals with whom someone went there instead of all individuals in
close physical proximity. Also, both datasets grouped data under unspecified
locations and activities that could not be used directly (about 16,000 contacts,
i.e. 16% of all contacts, occurred in other places in POLYMOD; while 0.6-0.8
hours per day were unspecified in UKTUS when using our list of coding; see
Table S1). Given the likely inverse relationship of the number and intensity
of contacts [35], however, the impact on results may be minimal. Moreover,
without knowing the amount of contacts a particular worker has, we cannot
account for some complicated interactions; e.g. if people go less often to the
shop then shop employees will also meet fewer people (for as long as the shops
stay open altogether). We also assumed a proportional reduction in the risk of
infection by number of contacts, which is a frequently made assumption but not
necessarily true [35]. Moreover, transmission risks may be reduced when contacts
keep a larger physical distance. All of these considerations point towards the
importance of conducting additional empirical research into how, where, and
with whom individuals spent their time during pandemics, and the behavioural
changes that may be expected in mixing patterns as a consequence of social
distancing measures (when adopted and after lifting restrictions again).

We also focused on contact matrices from empirical surveys as the pre-
dominant method emerging of parameterising social contacts in public health
intervention modelling in at least a decade [5]. Although empirical diary data may
suffer from recall bias and reporting inaccuracies, all other methods have their
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own limitations [2]. Similarly, using the data from POLYMOD and the UKTUS
is illustrative of using social contact matrices and time-use data in general,
which are widely used and available internationally, and largely harmonised [7],
allowing to repeat our methods in different settings. Furthermore, others have
successfully applied time-use data in epidemiological modelling [8–10], or reduced
contact matrices by scaling factors to simulate behavioural changes in mixing
[36]. Our study improves our understanding of how time-use data and mixing
patterns can be combined to understand when and where transmission occurs,
and which activities are to be targeted in response to social distancing measures
such as adopted in many countries for the COVID-19 pandemic [3,11,12].

Our study was concerned with social distancing measures adopted domesti-
cally in populations with widespread community transmission; hence, we ignored
measures such as increased hygiene and personal protective equipment, case find-
ings approaches, or international flight restrictions and border checks [34,37,38].
Furthermore, because of the underlying data we used were gathered from mem-
bers of the public in the community [13,14], we are unable to address the social
mixing with (and within) other, semi-enclosed settings such as healthcare and
social care settings (hospitals, care homes), military, or correctional facilities.
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