1 Title: The upper respiratory tract microbiome of indigenous Orang Asli in north-

- 2 eastern Peninsular Malaysia
- 3
- 4 Authors: Cleary D. W.^{* 1,2}, Morris D. E.¹, Anderson R. A.¹, Jones J.¹, Alattraqchi A. G.³,
- 5 Rahman N. I. A.³, Ismail S., Razali M. S.³, Mohd Amin R.³, Abd Aziz A.³, Esa N. K.³,
- 6 Amiruddin S.³, Chew C. H.⁴, Amat Simin M. H.⁵, Abdullah R.⁵, Yeo C. C.³ and Clarke S.
- 7 C.^{1,2,6,7,8}
- 8

```
9 Affiliations:
```

- ¹⁰ ^{1.} Faculty of Medicine and Institute for Life Sciences, University of Southampton,
- 11 Southampton, UK
- 12 ^{2.} Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS
- 13 Trust, Southampton, UK
- ^{3.} Faculty of Medicine, Universiti Sultan Zainal Abidin, Medical Campus, 20400 Kuala
- 15 Terengganu, Terengganu, Malaysia
- ^{4.} Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Gong Badak Campus, 21300
- 17 Kuala Nerus, Terengganu, Malaysia
- ^{5.} Faculty of Applied Social Sciences, Universiti Sultan Zainal Abidin, Gong Badak Campus,
- 19 21300 Kuala Nerus, Terengganu, Malaysia.
- ^{6.} Global Health Research Institute, University of Southampton, Southampton, UK.
- ^{7.} School of Postgraduate Studies, International Medical University, Kuala Lumpur,
- 22 Malaysia.
- ^{8.} Centre for Translational Research, IMU Institute for Research, Development and
- 24 Innovation (IRDI), Kuala Lumpur, Malaysia.
- 25

26 *Corresponding author

27 Abstract (350 words max):

29	Background: Microbiome research has focused on populations that are predominantly of
30	European descent, and from narrow demographics that do not capture the socio-economic
31	and lifestyle differences which impact human health. This limits our understanding of
32	human-host microbiota interactions in their broadest sense. Here we examined the airway
33	microbiology of the Orang Asli, the indigenous peoples of Malaysia. In addition to exploring
34	the carriage and antimicrobial resistance of important respiratory pathobionts, we also present
35	the first investigation of the nasal microbiomes of these indigenous peoples, in addition to
36	their oral microbiomes.
37	
38	Results: A total of 130 participants were recruited to the study from Kampung Sungai
39	Pergam and Kampung Berua, both sites in the north-eastern state of Terengganu in
40	Peninsular Malaysia. High levels of Staphylococcus aureus carriage were observed,
41	particularly in the 18-65 age group (n=17/36; 47.2% 95%CI: 30.9-63.5). The highest carriage
42	of pneumococci was in the <5 and 5 to 17 year olds, with 57.1% (4/7) and 49.2% (30/61)
43	respectively. Sixteen pneumococcal serotypes were identified, the most common being the
44	non-vaccine type 23A (14.6%) and the vaccine type 6B (9.8%). The nasal microbiome was
45	significantly more diverse in those aged 5-17 years compared to 50+ years ($p = 0.023$). In
46	addition, samples clustered by age (PERMANOVA analysis of the Bray-Curtis distance, $p =$
47	0.001). Hierarchical clustering of Bray-Curtis dissimilarity scores revealed six microbiome
48	types. The largest cluster (n=28; 35.4%) had a marked abundance of Corynebacterium.
49	Others comprised Corynebacterium with Dolosigranulum, two clusters were definable by the
50	presence of Moraxella, one with and the other without Haemophilus, a small grouping of
51	Delftia/Ochrobactum profiles and one with Streptococcus. No Staphylococcus profiles were

- 53 Lower levels of Prevotella, Rothia, Porphyromonas, Veillonella and Aggregatibacter were
- 54 also among the eight most observed genera.
- 55
- 56 Conclusions: We present the first study of Orang Asli airway microbiomes and pathobiont
- 57 microbiology. Key findings include the prevalence of pneumococcal serotypes that would be
- 58 covered by pneumococcal conjugate vaccines if introduced into a Malaysian national
- 59 immunisation schedule, and the high level of *S. aureus* carriage. The dominance of
- 60 *Corynebacterium* in the airway microbiomes is particularly intriguing given its' consideration
- as a potentially protective commensal with respect to acute infection and respiratory health.

- 63 **Keywords:** 16S rRNA; microbiome; upper respiratory tract; antimicrobial resistance;
- 64 Malaysia; Streptococcus pneumoniae; Haemophilus influenzae; Staphylococcus aureus;
- 65 *Moraxella catarrhalis*; Orang Asli; indigenous people

66 Background:

67 Much microbiome research has, to-date, been focused on populations that are predominantly 68 of European descent, and from demographics that do not capture the socio-economic and 69 lifestyle challenges which impact human health [1]. The study of non-Western, 70 unindustrialised populations is therefore an important extension of microbiome research so 71 that we may understand human-host microbiota interactions in their broadest sense. Notable 72 endeavours here, which have principally focussed on gut microbiomes, include studies of the 73 Hadza hunter-gatherers of Tanzania [2], Amerindians of South America [3, 4], agriculturalist 74 communities in Burkina Faso [5] Malawi and Venezuela [6] and the Cheyenne and Arapaho 75 Tribes of North America [7]. Fewer studies have gone beyond gut microbiomes to sample 76 additional body sites, such as those of the airways. The analysis of salivary microbiota of the 77 Batwa Pygmies [8], and the Yanomami of the Venezuelan Amazon [3] have shown the 78 benefits of including these body sites where, respectively, previously undiscovered genera 79 have been identified and novel combinations of taxa described. However, there remains a 80 paucity of data regarding microbiomes of other anatomical sites of the upper respiratory tract 81 (URT). With respiratory infectious diseases continuing to be a significant component of 82 global morbidity and mortality [9], the interest in the microbiome of the upper airways stems 83 from its' importance in an individual's susceptibility to respiratory infection, in part through 84 the presence of resilient taxa which prevent colonisation and/or outgrowth of specific 85 pathobionts [10]. Understanding the variability in airway microbiomes is a key first step to 86 leveraging these interactions for health. To date no study has undertaken a comprehensive 87 analysis of the URT microbiome of the indigenous populations of Peninsular Malaysia, the 88 Orang Asli.

89

90	Although the name Orang Asli was only introduced around 1960 by the British, as an ethnic
91	group they are believed to be the first settlers of Peninsular Malaysia, moving from Northern
92	Thailand, Burma and Cambodia 3-8000 years ago. Orang Asli is in fact a catch-all term for
93	three tribal groups, the Senoi, Proto-Malays and Negrito, each of which in turn can be further
94	divided into six ethnic groups [11]. They number ~179 000, 0.6% of the population of
95	Malaysia but are disproportionately impacted by economic marginalisation and
96	discrimination [12]. As a consequence, nearly 80% of the Orang Asli population are beneath
97	the poverty line compared to 1.4% of the national population, and this hardship is reflected in
98	a 20-year lower average life expectancy of just 53 years [13]. Several studies have
99	highlighted the susceptibility of these populations to specific diseases [14, 15]. More recently
100	a study of 73 adults from the semi-urbanized Temiar, an Orang Asli tribe of Kampong Pos
101	Piah, in Perak, examined salivary microbiomes in the context of obesity – a growing concern
102	and evidence of the epidemiological shifts in disease burden as these communities leave their
103	more traditional existences [16].
104	
105	Here we examined the microbiology of the upper airway of two Orang Asli communities
106	located in Terengganu state, North-east of Peninsular Malaysia. The nasopharyngeal and
107	nasal (anterior nares) carriage of important pathobionts was determined by culture, and the
108	resistance of these isolates to clinically relevant antibiotics tested. We also present the first

- 109 investigation of the nasal microbiomes of these indigenous peoples, in addition to their oral
- 110 microbiomes.

111 **Results:**

112	A total of 130 participants were recruited to the study, with 68 from Kampung Sungai
113	Pergam (Site 1) and 62 from Kampung Berua (Site 2) (Figure 1). The age and gender
114	distribution are shown in Figure 1. Of those for whom age was accurately recorded, 49%
115	were female and 45% male. There were notable challenges in the recruitment of children
116	under five years old (accounting for only 11.5% of the total population sampled). All those
117	with missing age data were adults.
118	
119	The carriage prevalence of the four most commonly isolated pathobionts in the anterior nares
120	and nasopharynx are shown in Figure 2. Here carriage was defined as the isolation of a
121	pathobiont from either of the two nasal swabs and for visual clarity all adults were combined
122	into one age group (18-65). The most commonly isolated pathobionts were S. aureus and S.
123	pneumoniae both with a total of 39 individuals colonised. The highest carriage for S. aureus
124	was in the 18-65 age group at 47.2% (n=17/36; 95%CI: 30.9-63.5), followed by 30%
125	(n=18/60, 95%CI: 18.4-41.6) in the 5 to 17 year olds. In contrast, the highest carriage of
126	pneumococci was in the <5 and 5 to 17 year olds, with 57.1% (4/7) and 49.2% (30/61)
127	respectively. Looking at the latter cases in more detail shows that the average age of a
128	pneumococcal carrier in this age group was ~9 years old (range: 6-13). The next most carried
129	bacterium was H. influenzae, isolated from seventeen individuals, the majority of which
130	(88.2%) were in the 5 to 17 years old age group. In contrast, M. catarrhalis was rarely
131	isolated (n=6), as was <i>N. meningitidis</i> (2), <i>P. aeruginosa</i> (n=3), <i>K. pneumoniae</i> (n=6) and □-
132	haemolytic Streptococci (n=7). Carriage and co-carriage are summarised in Table 1. Carriage
133	of only S. aureus or S. pneumoniae accounted for 31.5% of the profiles observed. A limited
134	number of co-carriage incidents were found which included seven and five cases of
135	pneumococci isolation with <i>H. influenzae</i> or <i>S. aureus</i> respectively.

137	Serotyping of pneumococcal isolates revealed 16 different serotypes (Figure 3). To avoid
138	repeated sampling bias, if isolates recovered from nose and nasopharyngeal swabs in a single
139	individual were the same serotype this was only counted once. The most common serotypes
140	were the non-VT 23A (14.6%) and the VT 6B (9.8%). Overall, five of the 16 pneumococcal
141	serotypes would be covered by Prevenar 7® (Pfizer, PCV7) (4, 6B, 14, 19F and 23F) with
142	two additional serotypes covered by Prevenar 13® (Pfizer, PCV13) (3 and 6A). Only four of
143	the serotypes (4, 14, 19F and 23F) are included in Synflorix® (GSK, PCV10). Six isolates
144	were not serotypeable. All but one of the vaccine-type pneumococci (a single 23F) were
145	isolated from the site at Kampung Berua (Site 2).
146	
147	The extent of antimicrobial resistance for the key pathobionts is shown in Figure 4. Notable
148	levels of resistance were observed for S. aureus where 73.3% (n=44) of isolates were
149	resistant to penicillin, 33.0% (n=20) to tetracycline and 18.3% (n=11) to ciprofloxacin.
150	However, all isolates were sensitive to cefoxitin, and all but one to chloramphenicol. Three of
151	the <i>H. influenzae</i> isolates (15%) were resistant to penicillin, all of which were negative for β -
152	lactamase activity. Of the S. pneumoniae, 17.9% (n=12) were resistant to tetracycline. No
153	resistance was seen for M. catarrhalis against any antibiotic tested. A. baumannii were
154	sensitive to meropenem and ciprofloxacin (n=14). Similarly, all K. pneumoniae were
155	sensitive to all antibiotics tested including ceftazidime and meropenem.
156	
157	The microbiome of the nasal (anterior nares) and oral (whole mouth) was examined using
158	16S rRNA sequencing of the V4 hypervariable region. Here, the median number of
159	sequences per sample, including negative controls, was 11,431 with a maximum of
160	1,072,721. Eighteen nasal and two oral samples were excluded based on low numbers of

161	ASVs (<1000). Alpha diversity (Figure 5A and 5B) was similar between all ages apart from
162	nasal samples from those aged 5-17 and 50-65 where a significantly greater diversity was
163	observed in the younger group ($p = 0.0023$); although notably fewer samples were available
164	from the older participants. No clustering was observed using DPCoA for oral samples
165	(Figure 5C – right column). In contrast, groups are clearly visible for nasal samples (Figure
166	5C – left column), with stratification based on age. PERMANOVA analysis of the Bray-
167	Curtis distance showed that this was a significant difference ($p = 0.001$). Examining the most
168	abundant phyla (Figure 6) showed nasal samples were dominated, as expected, by Firmicutes,
169	Proteobacteria and Actinobacteria. For oral samples Bacteroidetes was a much more
170	prevalent phyla in addition to Fusobacteria, although those same three phyla which
171	dominated the nasal samples were also present at high levels here as well. Hierarchical
172	clustering of Bray-Curtis dissimilarity scores revealed six clusters that could be characterised
173	by the dominance of only one or two Genera (Figure 7). The largest cluster (n=28; 35.4%)
174	contained individuals with a marked abundance of Corynebacterium, accounting for an
175	average ASV relative abundance of 73.2% (range: $59.5 - 87.2\%$). The second largest cluster
176	(n=16; 20.3%) also had a substantial proportion of <i>Corynebacterium</i> , in this case with
177	Dolosigranulum as significant co-carried genus. Here, on average, Corynebacterium
178	accounted for 48.88% and <i>Dolosigranulum</i> 31.6% of the relative abundance; combined these
179	Genera accounted for between 71.5 and 89.4% of the ASV relative abundance of this profile.
180	Two groups were then definable by the presence of Moraxella, one with and the other
181	without Haemophilus. In the Moraxella-dominated profile, between 48.2 and 75.2% of the
182	ASV relative abundance could be attributed to this Genus. When combined with
183	Haemophilus this proportion dropped slightly from an average of 58.1% to 41.5% and here
184	Haemophilus accounted for 13.2 to 47.9% of the profile. A small grouping of
185	Delftia/Ochrobactum profiles were also found. The final cluster consisted of only two

186 profiles, where in one *Streptococcus* accounted for 63.8% and the second with

- 187 Streptococcus/Haemophilus at 25.9 and 52.6% respectively. Interestingly, no Staphylococcus
- 188 profiles were observed and none that were characterised by *Haemophilus* alone. No
- 189 correlation between profile (in terms of genus composition) and culture outcomes for *S*.
- 190 *aureus* or *S. pneumoniae* were seen (Figure 7). To determine if the abundance of either genus
- 191 was related to culture positivity, the relative abundance of each was compared between
- samples from which either S. aureus or S. pneumoniae was isolated (Supplementary Figure
- 193 1). The relative abundance of Staphylococcal ASVs was not significantly different between
- 194 groups, however those from whom *S. pneumoniae* were cultured did have a significantly
- higher relative abundance of Streptococci ASVs (p = 0.016); although this may be due to the
- 196 presence of two profiles characterised by a significant dominance of *Streptococcus*. To
- 197 explore the differences in microbiomes between the younger and older age groups,
- 198 differentially abundant ASVs were identified using DESeq2 (Figure 8). The 5-17 year age
- 199 group had ASVs classified as *Haemophilus* (including *H. influenzae*), *Moraxella* and
- 200 Streptococcus. In contrast, Propionibacterium, Peptoniphilus and Corynebacterium ASVs
- 201 were significantly increased in adults.
- 202

203 Streptococcus, Neisseria and Haemophilus dominated the oral microbiota (Figure 9). Lower

- 204 levels of Prevotella, Rothia, Porphyromonas, Veillonella and Aggregatibacter were also
- among the eight most observed genera. Streptococcal-dominated profiles were characterised
- 206 by 43.7% (±15.7%) relative abundance of ASVs belonging to this genus. Those with a
- 207 Streptococcus/Haemophilus profile still had 30.7% (±7.6%) Streptococci ASV relative
- abundance but with 15.0% (±10%) *Haemophilus*. The final profile, where clear dominance of
- 209 one particular genus was observed, were those where *Neisseria* accounted for 30.6% (± 12.5)
- 210 of the relative abundance of all ASVs.

211 **Discussion:**

212	As a site that can be colonised by commensals, as well as opportunistic pathogens such as the
213	pneumococcus [17], S. aureus [18] and H. influenzae [19], understanding the microbiology of
214	the upper respiratory tract is key in tackling respiratory disease. The Anna Karenina principle
215	of microbiomes, that "all healthy microbiomes are similar; each dysbiotic microbiome is
216	dysbiotic in its own way" is a useful maxim for examining microbiomes in the context of
217	disease [20]. However, from previous studies of communities that live unique, traditional
218	lifestyles a clear challenge to the paradigm of health mirroring health has been shown [3, 8].
219	Here we examined the respiratory microbiomes of Orang Asli communities living traditional
220	lifestyles in Terengganu, a rural state in the North-east of Peninsular Malaysia. These
221	communities are known to face specific health challenges to that of the broader population of
222	Malaysia, a country where respiratory disease is still a significant burden [21]. Our study
223	showed a high prevalence of S. aureus carriage but interestingly not the presence of
224	Staphylococci-dominated nasal microbiomes. Instead, Corynebacterium, with
225	Dolosigranulum and Moraxella dominated as commensal flora. We also showed the potential
226	impact that PCV introduction in Malaysia may have on circulating pneumococcal serotypes.
227	
228	Although pneumococcal carriage can vary globally between 10 and 90% [22-24], the highest
229	carriage prevalence is usually seen in young children, particularly those <5 years [24].
230	Although only a small number of this age group was sampled here (n=7), over half were
231	colonised suggesting high levels of carriage. Given that in the 5-17 year age group the mean
232	age was young at ~9 years old the high carriage (50%; 95%CI, 37.3 and 62.7%) seen in this
233	age group supports this observation, being higher than has been seen elsewhere in older
234	children [25] and similar to the 60.9% observed in Aboriginal children over 5 years old – a
235	demographic known to experience high rates of invasive pneumococcal disease (IPD) [26].

236	As expected, the carriage in adults was low at 8.3% (95%CI, 0% to 17.4%), which is similar
237	to the NP carriage prevalence of 11.1% (95%CI, 9.8 and 12.6%) that has been seen in the
238	USA [27], but higher than recent surveys in the UK which found a 2.8% (95%CI: 1.2–5.5)
239	prevalence in this age group [25]. As for serotypes, whilst there is growing epidemiological
240	data for the region [28], there is limited data for Malaysia. A study of 245 cases of paediatric
241	IPD between 2014 and 2017 showed that serotypes 14, 6B, 19A, 6A and 19F were the most
242	common, accounting for ~75% of disease [29]. This is concordant with this study where
243	serotypes 14 and 6B were also the most common in carriage with 6A and 19F being
244	identified. Of the non-VT serotypes isolated only 34, 35F and 18A did not feature in those
245	identified in the IPD study. The lack of 19A is intriguing but we suspect a consequence of the
246	relatively low sampling. Both PCV10 and PCV13 are available in Malaysia however only in
247	private practice and therefore the presence of VT serotypes is not unsurprising. These data do
248	suggest introduction of PCV into the national immunisation programme as planned may
249	prove efficacious.
250	
251	Only one of the children less than 5 years old was culture positive for <i>H. influenzae</i> but given
252	the low numbers in this age group this must be interpreted with caution. Whilst certainly
253	higher than in the UK where only 6.5% H. influenzae carriage was seen in older children

[30], the 25% (95%CI, 14.0 and 40.0%) found here is similar to that observed in other

developing countries such as Kenya [31], but lower than the 52.8% seen in Aboriginal

children aged between 5 and 15 years old [26]. Whether this increased carriage translates into

257 disease risk is difficult to determine; there is no data on the burden of otitis media among

258 Orang Asli, although the country wide incidence in children <12 year olds is low at 2.3% for

the Asia-Pacific region [32].

260

The prevalence of *M. catarrhalis* at 6.7% (95%CI, 0.35 and 13.0%) was very similar to that of our previous UK study where 5.7% of the same age group were colonised [30], a level also observed in other western countries [33]. This is a stark contrast to the 67% in Aboriginal children of a similar age [26], however this low level of carriage (6%) has been seen in Warao Amerindians in Venezuela [34] – arguably a similar demographic to the one being presented here.

267

S. aureus carriage is known to vary markedly, by age but also by geographic location [35].

Although the lowest prevalence observed here was in <5 year olds (28.6%; 95% CI: 0-62.0),

270 which is surprising as one would expect the highest carriage would be seen in this age group,

it could be either a feature of the low recruitment or that the average age of this group was

272 2.5 and carriage is known decline between 1 and 10 [18]. As for the carriage in adults, a

273 previous study in Malaysia of 384 adults (students with an average age of 25) found a

274 carriage prevalence of 23.4% [36] which is much lower than the 47.2% in our population of

275 Orang Asli. A similarly high level of adult carriage (41.7% and 57.8% at two separate

276 sampling timepoints) was observed in Wayampi Amerindians who, in terms of remote living,

are similar to the Orang Asli [37]. Our own research has previously shown adult carriage at

278 24.4% in a UK population [30] and thus the differences we observed are unlikely to be

279 methodological. More likely it is a consequence of greater co-habitation (the average

280 household size of our communities being 5.2 people) and reduced access to hygiene, both of

281 which have been highlighted as reasons why S. aureus carriage has declined in other parts of

282 the world [18].

283

284 Of the ESKAPE pathogens isolated and tested only *S. aureus* exhibited any substantial level 285 of resistance; importantly all isolates were sensitive to methicillin. Whilst there appears to be

286	limited resistance it is important to note that this represents the only data on the AMR in
287	these communities and is therefore merely a starting point for future studies. This is
288	particularly important given that AMR burden in indigenous populations has been seen to
289	increase elsewhere [38].
290	
291	URT microbiome research has shown that the composition and/or dominance of particular
292	bacterial taxa can be indicative of nasal community state types (CSTs). Previously, in a study
293	of adults in the USA, seven CSTs were identified that were characterised by S. aureus
294	(CST1), or other Staphylococci (CST3), a mix of Proteobacteria including Escherichia and
295	Enterobacteriaceae sp. (CST2), Corynebacterium either with Propionibacterium acnes
296	(CST4) or without (CST5), Moraxella (CST6) and Dolosigranulum (CST7) [39]. It is here
297	that we see the most startling contrasts to out Orang Asli population. Although we also
298	identified seven clusters based on what is/are the dominant taxa we did not see anything
299	resembling CST 1 or 3 (Staphylococci), and no CST2. The lack of a Staphylococcus
300	dominated profiled is an enigma given the high carriage rate we observed. We hypothesise
301	that the high prevalence of profiles similar to CST5, Corynebacterium dominated, along with
302	another that is defined by high abundance of both Corynebacterium and Dolosigranulum, a
303	composition that has been found in the nasopharynx [40], explains this absence and is based
304	on previous work showing that Corynebacterium reduces S. aureus carriage [41]. A similar
305	interaction may also explain the absence of Streptococci [42] – although we recognise in both
306	cases that our hypothesis requires further testing due to the identification of both S. aureus
307	and pneumococcal carriage among our participants. A Moraxella dominated profile similar to
308	CST6, is also present in the Orang Asli, a profile which has also been observed in healthy
309	adults in a European setting [43], although we also see a Moraxella-Haemophilus profile
310	which hasn't been described previously. The Streptococcus profiles are both from older

311	children (6 and 10 years old) and this not uncommon as a profile among this age group [44].
312	The significant proportion of individuals who harbour profiles that are being considered to be
313	potentially protective either in terms of acute respiratory infections [45] or chronic disease
314	such as asthma [46-48], is intriguing. Lastly, whilst Delftia is not uncommon as an oral
315	bacterium [49], given the common finding of Delftia and Ochrobactum as common
316	contaminants in microbiome research [50] we interpret these four samples with extreme
317	caution. The presence of these profiles is in spite of our efforts to control for such
318	contaminants through the collection and sequencing of control swabs. Epidemiologically, all
319	four samples come from adult females, but two each from Kampung Berua and Kampung
320	Sungai Pergam. The samples are below the 25% quantile for ASV number (n=3831). It is
321	possible that these reflect true profiles, but it is impossible to rule out process error during
322	sample handling, extraction and/or sequencing.
323	
324	The microbiota recovered from the oral cavity was substantially more diverse than the nasal
325	samples, as expected [49]. The top three genera were unremarkable in terms of what is
326	considered to be most commonly observed, mirroring exactly that found in a study of 447
327	datasets deposited as part of large-scale microbiome projects [51]. A previous study of
328	Temiar, Orang Asli in Perak found a significant difference in oral microbiota compositions
329	between males and females [16], however a PERMANOVA analysis of the data presented
330	here showed no such distinction ($p = 0.41$).
331	

332 Whilst this piece of research was highly novel as a first glimpse into the respiratory

333 microbiology of Orang Asli communities, it could nevertheless have been strengthened in a

number of ways. Firstly, it was only possible to visit two sites on a single occasion, and to

335 conduct a pragmatic survey of the communities. As a consequence, the study lacks follow-up

336	and longitudinal data. Whilst we were very successful at recruiting older children and adults,
337	future studies will have to identify how to recruit greater numbers of younger children in
338	particular. In terms of pathobiont carriage, serotyping of more than one pneumococcal isolate
339	from each individual would have enabled a determination of the prevalence of multiple
340	serotype carriage. Serotyping of H. influenzae would also have been informative, although
341	future work on exploring the genomics of all isolates will address this in more detail. This
342	additional insight could also be expanded to include all the pathogens/pathobionts isolated.
343	As with all microbiome research, longitudinal sampling taking into account an individual's
344	temporal variability, the seasonality and medical history would be desirable.

345	Conclusions: Here we present the first study of Orang Asli airway microbiomes and
346	pathobiont microbiology, including the antimicrobial resistance profiles of ESKAPE
347	pathogens. Important findings include the prevalence of pneumococcal serotypes that would
348	be covered by pneumococcal conjugate vaccines, supporting their introduction as part of a
349	national immunisation programme. The high prevalence of S. aureus carriage is noteworthy
350	and warrants further study. In terms of the airway microbiomes the dominance of
351	Corynebacterium, additionally with Dolosigranulum and Moraxella in nasal profiles is
352	particularly intriguing and future work should explore these commensals in the context of
353	burden and susceptibility to both acute and chronic respiratory conditions in these

354 communities.

355 Methods:

356	Study sites and participants: Two Orang Asli villages were visited in August 2017 -
357	Kampung Sungai Pergam in Kemaman district and Kampung Berua in Hulu Terengganu
358	district. Both sites are located in the state of Terengganu which lies in the north-east of
359	Peninsular Malaysia. Participant recruitment was with consent, across all ages with no
360	exclusion criteria. Questionnaires were used to capture participant metadata which included
361	gender, age, number of dwelling co-occupants and occupation in addition to health-related
362	questions including current or recent (within the last month and last three months) respiratory
363	symptoms, antibiotic use and vaccination status. Questionnaires were translated into Malay
364	by A.S.M.H., A.R., M.A.R., and C.C.Y., and conducted by research assistants from the
365	Faculty of Applied Social Sciences, Universiti Sultan Zainal Abidin, who were trained on
366	how to administer the questionnaires for the purpose of this study.
367	
368	Swab collection: A total of four swabs were taken from each participant. A nasal swab
369	(anterior nares) and a nasopharyngeal swab, using rayon tipped transport swabs containing
370	Amies media with charcoal (Medical Wire and Equipment, Corsham, UK), were used for
371	bacterial pathobiont isolation. A further nasal swab, taken from the un-swabbed nostril, and
372	an oral (whole mouth) swab, supplied by uBiome Inc. (San Francisco, USA), were taken for
373	microbiome analysis.
374	
375	Bacteriology: Isolation of the common respiratory pathobionts S. pneumoniae, H. influenzae,

376 M. catarrhalis, N. meningitidis, S. aureus, K. pneumoniae and P. aeruginosa was done by

- 377 culture. Swabs were plated onto CBA (Columbia blood agar with horse blood), CHOC
- 378 (Columbia blood agar with chocolated horse blood), CNA (Columbia Blood Agar with
- 379 Colisitin and Naladixic Acid), BACH (Columbia Agar with Chocolated Horse Blood and

380 Bacitracin). GC (Lysed GC Selective Agar) and, for <i>P. aeruginosa</i> , CFC (<i>Pseudomore</i>)	<i>ias</i> CFC
---	----------------

- 381 Selective agar) (all Oxoid, UK). Primary identification of all bacterial species was by colonial
- 382 morphology. Swabs were then vortexed in skim milk, tryptone, glucose and glycerine
- 383 (STGG), and 10μ L of the suspension was then
- 384
- 385 Serotyping of S. *pneumoniae*: Pneumococcal isolates were serotyped by slide agglutination
- 386 reactions using a Neufeld S. pneumoniae antisera kit following manufacturer's guidelines
- 387 (Statens Serum Institute, Copenhagen, Denmark).
- 388
- 389 Antimicrobial Resistance Testing: All bacteria were phenotypically tested for antibiotic
- 390 resistance using antibiotic discs and/or minimum inhibitory concentration (MIC) strips, in
- accordance with EUCAST. Firstly, 10µL (a suspension of cells in liquid STGG) of each
- isolate was plated onto CBA (Oxoid, UK) or CHOC agar (Oxoid, UK). M. catarrhalis, S.
- 393 pneumoniae, S. aureus and K. pneumoniae isolates were plated on CBA, whilst H. influenzae
- 394 and *N. meningitidis* isolates were plated onto CHOC agar. Plates were incubated for 24 hours
- at 37°C in 5% CO₂. Pure colonies were added to 1ml of saline to get an inoculum of 0.5
- 396 McFarland. For M. catarrhalis, S. pneumoniae, H. influenzae and N. meningitidis, a sterile
- 397 swab was used to spread this inoculum over Mueller-Hinton agar + 5% defibrinated horse
- blood and 20 mg⁻¹ β -NAD plates (MHF, Oxoid, UK). For *S. aureus* and *K. pneumoniae* a
- 399 sterile swab was used to spread the inoculum over Mueller-Hinton agar plates (MH, Oxoid,
- 400 UK). Antibiotic discs (Oxoid, UK) (four per plate) or MIC strips (E-tests; Oxoid, UK) (one
- 401 per plate) were added and plates were incubated at 37°C in 5% CO₂ for 18 hours (± 2 hours).
- 402 *M. catarrhalis* were tested with amoxicillin-clavulanic acid (2-1µg), cefotaxime (5µg),
- 403 ceftriaxone (30µg), erythromycin (15µg), tetracycline (30µg), chloramphenicol (30µg),
- 404 ciprofloxacin (5µg) and meropenem (10µg) antibiotic discs. S. pneumoniae were tested with

405	oxacillin (1µg), erythromycin (15µg), tetracycline (30µg) and chloramphenicol (30µg)
406	antibiotic discs. <i>H. influenzae</i> were tested with benzylpenicillin (1µg), tetracycline (30µg),
407	chloramphenicol (30µg) and ciprofloxacin (5µg) antibiotic discs as well as erythromycin
408	(15µg) MIC strips. S. aureus were tested with benzylpenicillin (1µg), erythromycin (15µg),
409	cefoxitin (30 μ g), tetracycline (30 μ g), chloramphenicol (30 μ g) and ciprofloxacin (5 μ g)
410	antibiotic discs. K. pneumoniae were tested with amoxicillin - clavulanic acid (20-10µg),
411	cefotaxime (5µg), ciprofloxacin (5µg), meropenem (10µg) and ceftazidime (10µg) antibiotic
412	discs. N. meningitidis were tested with amoxicillin, benzylpenicillin (1µg), cefotaxime (5µg),
413	ceftriaxone (30µg), chloramphenicol (30µg), ciprofloxacin (5µg) and meropenem (10µg)
414	MIC strips.
415	
416	16S rRNA Sequencing: The V4 region was amplified using primers 515F (5'-
417	GTGCCAGCMGCCGCGGTAA-3') and 806R (5'-GGACTACHVGGGTWTCTAAT-3') to
418	generate an amplicon of 460 bp [52] at uBiome Inc. (San Francisco, USA). Samples were
419	individually barcoded and sequenced on a NextSeq 500 (Illumina, San Diego, USA) to
420	generate 2×150 bp paired-end reads.
421	
422	Microbiome Analysis: Initial data handling was done using QIIME 2 2018.8 [53]. Only
423	forward reads were processed owing to low quality scores of reverse reads. Raw sequence
424	data were denoised with DADA2 [54]. Amplicon sequence variants (ASVs) were aligned
425	with mafft [55] (via q2 alignment) and a phylogeny constructed using fasttree2 [56].
426	Taxonomic classification was done using the q2 \square feature \square classifier [57] classify \square sklearn
427	naïve Bayes taxonomy classifier using the Greengenes 13_8 (99%) reference sequences [58].
428	The feature table, taxonomy, phylogenetic tree and sample metadata were then combined into
429	a Phyloseq object using qiime2R [59] via qza_to_phyloseq. All further analysis was done in

430	R v3.6.0 [60)] in RStudio and	figures were	produced using the	he package g	ggplot2 [6]	1. Phylosea
	11 101010 100	1 111 1 100 000 0010 00110		or o crow o cromp o	no partingo /		1

- 431 v1.29.0 [62] was used following a workflow previously described [63]. Potential
- 432 contaminants were identified by prevalence in the blank swab controls and removed using the
- 433 R package 'decontam' [64]. Samples with <1000 ASVs were excluded and taxa present in
- 434 less than 5% of samples were removed using the prune_taxa() phyloseq function. Alpha
- 435 diversity was calculated using the estimate_richness(). The R function stat_compare_means()
- 436 was used to compare age groups using the nonparametric Wilcoxon test. Beta diversity was
- 437 determined using Double Principle Co-ordinates Analysis and plot_ordination(). Hierarchical
- 438 clustering was done using Bray-Curtis Dissimilarity calculated using vegist() from the R
- 439 package vegan [65]. Differentially abundant ASVs were identified using the DESeq2 [66]
- 440 package using an adjusted p-value cut-off of 0.05 and a Log₂ fold change of 1.5.

441 **Abbreviations:**

- 442 AMR antimicrobial resistance; ASV amplicon sequencing variant; PCV pneumococcal
- 443 conjugate vaccine; VT vaccine type pneumococci; NVT- non-vaccine type pneumococci;
- 444 ESKAPE Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae,
- 445 Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.
- 446

447 Ethics Approval and Consent to Participate:

- 448 Ethical approval for this study was provided by Universiti Sultan Zainal Abidin (UniSZA)
- 449 Ethics Committee: approval no. UniSZA/C/1/UHREC/628-1(85) dated 27th June 2016, the
- 450 Department of Orang Asli Affairs and Development (JAKOA): approval no.
- 451 JAKOA/PP.30.052Jld11 (42), and by the University of Southampton Faculty of Medicine
- 452 Ethics Committee (Submission ID: 20831). Informed consent was taken for all participants,
- 453 with parents/guardians providing consent for those <17 years old. Participation in the study
- 454 involved reading (or being read) and understanding the translated participant information
- 455 sheet, and the completion of a consent from and questionnaire. This process was facilitated
- 456 by native speakers.

457

- 458 **Consent for Publication:**
- 459 Not applicable.
- 460

461 Availability of Data and Materials:

462 Sequence files and associated metadata have been deposited in the European Nucleotide

463 Archive (ENA) in project PRJEB38610 under experiment accessions ERX4147052 to

464 ERX4147288.

466 **Competing Interests:**

467	SCC acts as principal investigator on studies conducted on behalf of University Hospital
468	Southampton NHS Foundation Trust/University of Southampton that are sponsored by
469	vaccine manufacturers but receives no personal payments from them. SCC has participated in
470	advisory boards for vaccine manufacturers but receives no personal payments for this work.
471	SCC has received financial assistance from vaccine manufacturers to attend conferences.
472	DWC was a post-doctoral researcher on projects funded by Pfizer and GSK between April
473	2014 and October 2017. All grants and honoraria are paid into accounts within the respective
474	NHS Trusts or Universities, or to independent charities. All other authors have no conflicts of
475	interest.
476	
477	Funding:
477 478	Funding: The laboratory microbiology work was funded by a grant from the Higher Education Funding
477 478 479	Funding: The laboratory microbiology work was funded by a grant from the Higher Education Funding Council for England (HEFCE) Newton Fund Official Development Assistance (ODA) fund.
477 478 479 480	Funding: The laboratory microbiology work was funded by a grant from the Higher Education Funding Council for England (HEFCE) Newton Fund Official Development Assistance (ODA) fund. The microbiome sequencing was funded through a uBiome Inc. Microbiome Grants Initiative
477 478 479 480 481	Funding: The laboratory microbiology work was funded by a grant from the Higher Education Funding Council for England (HEFCE) Newton Fund Official Development Assistance (ODA) fund. The microbiome sequencing was funded through a uBiome Inc. Microbiome Grants Initiative award.
477 478 479 480 481 482	Funding: The laboratory microbiology work was funded by a grant from the Higher Education Funding Council for England (HEFCE) Newton Fund Official Development Assistance (ODA) fund. The microbiome sequencing was funded through a uBiome Inc. Microbiome Grants Initiative award.
477 478 479 480 481 482 483	Funding: The laboratory microbiology work was funded by a grant from the Higher Education Funding Council for England (HEFCE) Newton Fund Official Development Assistance (ODA) fund. The microbiome sequencing was funded through a uBiome Inc. Microbiome Grants Initiative award.
477 478 479 480 481 482 483 484	Funding: The laboratory microbiology work was funded by a grant from the Higher Education Funding Council for England (HEFCE) Newton Fund Official Development Assistance (ODA) fund. The microbiome sequencing was funded through a uBiome Inc. Microbiome Grants Initiative award. Authors Contributions: DWC and SCC conceived the project with YCC. DE, RAA and HM were the UoS contingent
477 478 479 480 481 482 483 484 485	Funding: The laboratory microbiology work was funded by a grant from the Higher Education Funding Council for England (HEFCE) Newton Fund Official Development Assistance (ODA) fund. The microbiome sequencing was funded through a uBiome Inc. Microbiome Grants Initiative award. Authors Contributions: DWC and SCC conceived the project with YCC. DE, RAA and HM were the UoS contingent who undertook the sampling and helped with study planning and design. AGA, NIAR, SI,
477 478 479 480 481 482 483 484 485 486	Funding: The laboratory microbiology work was funded by a grant from the Higher Education Funding Council for England (HEFCE) Newton Fund Official Development Assistance (ODA) fund. The microbiome sequencing was funded through a uBiome Inc. Microbiome Grants Initiative award. Authors Contributions: DWC and SCC conceived the project with YCC. DE, RAA and HM were the UoS contingent who undertook the sampling and helped with study planning and design. AGA, NIAR, SI, MSR, RMA, AAA, NKE, SA, CHC MHAS and RA helped with study design.

487 sampling visits to Orang Asli settlements, liaised with those communities and assisted with

488 sampling and questionnaires. AGA did the microbiological culture and antibiotic testing with

489 RAA and DE. DWC carried out the data analysis and wrote the paper. All authors provided

490 critical feedback and helped shape the manuscript.

491

492 Acknowledgments:

- 493 We would like to thank the Department of Orang Asli Affairs and Development (JAKOA),
- 494 Additionally, the authors would especially like to thank the communities of Kampung Sungai
- 495 Pergam and Kampung Berua for their support and participation in this study.

496

497 **Figure Legends:**

- 498 Figure 1: Location of Orang asli sites with age and gender demographics. The location of
- 499 Orang Asli settlements were in the north-east of Peninsula Malaysia (A) to the south of the
- 500 Terengganu state's capital city, Kuala Terengganu (B). An even gender split was achieved
- 501 (C) but with disproportionate recruitment in older children >5 years of age and adults less

502 than <65 (D).

503

504 Figure 2: Carriage Prevalence of S. pneumoniae, H. influenzae, S. aureus and M.

505 *catarrhalis*. Point estimates for percentage carriage prevalence of four key upper respiratory

tract pathobionts are shown across three age groups <5, 5 to 17 and 18 to 65. Those aged 65+

507 are not shown due to limited numbers. All 'Unknowns" were of adult age. Carriage was

508 estimated overall i.e. a positive swab culture from either nasal or nasopharyngeal swab (dark

509 blue), and also separately for each swab type (nasal – black; NP – grey). Error bars show

510 95% CI intervals.

511

512 Figure 3: Prevalence of PCV7, PCV13 and non-vaccine pneumococcal serotypes. Bar

- 513 plot with 95% CI showing prevalence of serotypes that are included in PCV7 (black),
- additional types covered by PCV13 (grey) or non-vaccine serotypes (white).

516 Figure 4: Antibiotic resistance of S. pneumoniae (Spn), S. aureus (Sa) and H. influenzae

- 517 (Hi). Columns represent the proportion of isolates that were resistant to tetracycline,
- 518 chloramphenicol, erythromycin, ciprofloxacin and penicillin.
- 519

520 Figure 5: Alpha and Beta Diversity of Nasal (left column) and Oral (right column)

- 521 Samples. Observed richness and Simpsons 1-D (a measure of diversity) are shown in rows A
- and B respectively. Only a significant difference (**) was observed for nasal samples for
- 523 those aged 5-17 when compared against 50-65 (p = 0.0023). Beta diversity is shown using
- 524 Double Principle Coordinates Analysis (DPCoA) (row C). Here, clusters are observed for
- nasal samples (left) with grouping based on age-group. No clusters were observed for oral
- 526 samples (right).
- 527

528 Figure 6: Log Transformed Abundances of Phylum-level ASV Classifications in Nasal

- 529 (top) and Oral (bottom) Samples. Bars are coloured by site of location. Firmicutes,
- 530 Actinobacteria and Proteobacteria were the most abundant phyla in Nasal samples with
- 531 Bacteroidetes, Firmicutes and Proteobacteria the most common in Oral samples. A clear

532 increase in Firmicutes in nasal samples from Site 2 (Kampung Berua) can be seen.

533

534 Figure 7: Hierarchical Clustering of Nasal Samples with Bray-Curtis Dissimilarity

535 using Genus-level Relative Abundances. The dendrogram (top) shows clustering of

- samples with the below bar chart showing the relative abundance of the eight most
- 537 commonly observed Genera. Six clear clusters were observed including a Corynebacterium
- 538 dominant profile (n=28; 35.4%), a *Corynebacterium/Dolosigranulum* profile (n=16; 20.3%),
- 539 a Moraxella profile (n=10; 12.7%) a Moraxella/Haemophilus profile (n=10; 12.7%), a
- 540 *Delftia/Orchobactum* profile (n=4; 5.1%) and a final group of two samples characterised by

541	high Streptococcus, in one case with Haemophilus. Culture results for S. aureus (dark blue)
542	and S. pneumoniae (pink) are shown as coloured circles at the tips of the dendrogram. There
543	is no clear distribution of individuals who were culture positive for either bacterium.
544	
545	Figure 8: Differentially Abundant ASVs Between Older Children (5-17 years) and
546	Adults (18-49). Volcano plot showing the ASVs that were differentially abundant in
547	comparisons between the two age groups. Here a p-value cut-off of 0.05 and a Log_2 fold
548	change of 1.5 was applied. Those ASVs that pass both these thresholds are labelled where a
549	genus and/or species taxonomic assignment was available.
550	
551	Figure 9: Hierarchical Clustering of Oral Samples with Bray-Curtis Dissimilarity using
552	Genus-level Relative Abundances. The dendrogram (top) shows clustering of samples with
553	the below bar chart showing the relative abundance of the six most commonly observed
554	Genera. Three genera are seen to be responsible for the majority of ASVs – Streptococcus
555	(brown), Haemophilus (orange) and Neisseria (purple). Profiles characterised by an
556	overabundance of Streptococcus or Neisseria are seen, as too are those containing both
557	Streptococcus and Haemophilus.
558	
559	Supplementary Figure 1: Comparison of the relative abundance of Streptococcal and
560	Staphylococcus ASVs between those that were culture positive or negative for
561	Streptococcus pneumoniae or Staphylococcus aureus. P values were calculated using the
562	nonparametric Wilcoxon test.

563 **References:**

564	1.	Rogers, G.B., et al., Inclusivity and equity in human microbiome research. The
565		Lancet, 2019. 393 (10173): p. 728-729.
566	2.	Schnorr, S.L., et al., Gut microbiome of the Hadza hunter-gatherers. Nature
567		Communications, 2014. 5 (1): p. 3654.
568	3.	Clemente, J.C., et al., The microbiome of uncontacted Amerindians. Science
569		Advances, 2015. 1.
570	4.	Obregon-Tito, A.J., et al., Subsistence strategies in traditional societies distinguish
571		gut microbiomes. Nature Communications, 2015. 6(1): p. 6505.
572	5.	Filippo, C., et al., Impact of diet in shaping gut microbiota revealed by a comparative
573		study in children from Europe and rural Africa. Proc Natl Acad Sci U S A, 2010. 107.
574	6.	Yatsunenko, T., et al., Human gut microbiome viewed across age and geography.
575		Nature, 2012. 486 .
576	7.	Sankaranarayanan, K., et al., Gut Microbiome Diversity among Cheyenne and
577		Arapaho Individuals from Western Oklahoma. Current Biology, 2015. 25(24): p.
578		3161-3169.
579	8.	Nasidze, I., et al., High Diversity of the Saliva Microbiome in Batwa Pygmies. PLOS
580		ONE, 2011. 6 (8): p. e23352.
581	9.	Lozano, R., et al., Global and regional mortality from 235 causes of death for 20 age
582		groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease
583		<i>Study 2010.</i> The Lancet, 2012. 380 (9859): p. 2095-2128.
584	10.	Man, W.H., W.A.A. de Steenhuijsen Piters, and D. Bogaert, The microbiota of the
585		respiratory tract: gatekeeper to respiratory health. Nat Rev Micro, 2017. 15(5): p.
586		259-270.
587	11.	SyedHussain, T., Krishnasamy, DS., Hassan, AAG., Distribution and demography of
588		the Orang Asli in Malaysia. International Journal of Humanities and Social Science
589		Invention, 2017. 6 (1): p. 40–45.
590	12.	Masron T., M.F., Ismail N., Orang Asli in Peninsular Malaysia: Population, Spatial
591		Distribution and Socio-Economic Condition. J Ritsumeikan Soc Sci Humanit, 2013.
592		6 : p. 75–115.
593	13.	Mohd Asri, M.N., Advancing the Orang Asli through Malaysia Clusters of Excellence
594		<i>Policy</i> . Journal of International and Comparative Education, 2012. 1 (2).
595	14.	Al-Mekhlafi, H.M., et al., Prevalence and risk factors of Strongyloides stercoralis
596		infection among Orang Asli schoolchildren: new insights into the epidemiology,
597		transmission and diagnosis of strongyloidiasis in Malaysia. Parasitology, 2019.
598		146 (12): p. 1602-1614.
599	15.	Al-Mekhlafi, H.M., et al., Protein-energy malnutrition and soil-transmitted
600		helminthiases among Orang Asli children in Selangor, Malaysia. Asia Pac J Clin
601		Nutr, 2005. 14 (2): p. 188-94.
602	16.	Yeo, LF., et al., <i>Health and saliva microbiomes of a semi-urbanized indigenous</i>
603		tribe in Peninsular Malaysia. F1000Research, 2019. 8: p. 175-175.
604	17.	Bogaert, D., R. de Groot, and P.W.M. Hermans, <i>Streptococcus pneumoniae</i>
605		colonisation: the key to pneumococcal disease. The Lancet Infectious Diseases, 2004.
606		4 (3): p. 144-154.
607	18.	Wertheim, H.F.L., et al., The role of nasal carriage in Staphylococcus aureus
608		<i>infections</i> . The Lancet Infectious Diseases, 2005. 5 (12): p. 751-762.
609	19.	Slack, M.P.E., A review of the role of Haemophilus influenzae in community-acquired
610		pneumonia. Pneumonia, 2015. 6.

611 612 613	20.	Zaneveld, J.R., R. McMinds, and R. Vega Thurber, <i>Stress and stability: applying the Anna Karenina principle to animal microbiomes</i> . Nature Microbiology, 2017. 2 (9): p. 17121.
614	21.	Statistics on Causes of Death, Malaysia, D.o.S. Malaysia, Editor, 2018.
615	22.	Hill, P.C., et al., Nasopharyngeal Carriage of Streptococcus pneumoniae in Gambian
616		Infants: A Longitudinal Study. Clinical Infectious Diseases, 2008. 46(6): p. 807-814.
617	23.	Regev-Yochay, G., et al., Nasopharyngeal Carriage of Streptococcus pneumoniae by
618		Adults and Children in Community and Family Settings. Clinical Infectious Diseases,
619		2004. 38 (5): p. 632-639.
620	24.	Bogaert, D., et al., Colonisation by Streptococcus pneumoniae and Staphylococcus
621	~ ~	aureus in healthy children. Lancet, 2004. 363 .
622	25.	Southern, J., et al., <i>Pneumococcal carriage in children and their household contacts</i>
623		six years after introduction of the 13-valent pneumococcal conjugate vaccine in
624		<i>England</i> . PLOS ONE, 2018. 13 (5): p. e0195799.
625	26.	Mackenzie, G.A., et al., <i>Epidemiology of nasopharyngeal carriage of respiratory</i>
626		bacterial pathogens in children and adults: cross-sectional surveys in a population
627		with high rates of pneumococcal disease. BMC Infectious Diseases, 2010. 10(1): p.
628		304.
629	27.	Watt, J.P., et al., Nasopharyngeal versus Oropharyngeal Sampling for Detection of
630		Pneumococcal Carriage in Adults. Journal of Clinical Microbiology, 2004. 42: p.
631		4974-4976.
632	28.	Jauneikaite, E., et al., Prevalence of Streptococcus pneumoniae serotypes causing
633		invasive and non-invasive disease in South East Asia: A review. Vaccine, 2012.
634		30 (24): p. 3503-3514.
635	29.	Arushothy, R., et al., <i>Pneumococcal serotype distribution and antibiotic susceptibility</i>
636		in Malaysia: A four-year study (2014–2017) on invasive paediatric isolates.
637		International Journal of Infectious Diseases, 2019. 80: p. 129-133.
638	30.	Coughtrie, A.L., et al., <i>Ecology and diversity in upper respiratory tract microbial</i>
639		population structures from a cross-sectional community swabbing study. Journal of
640		Medical Microbiology, 2018. 67 (8): p. 1096-1108.
641	31.	Abdullahi, O., et al., The descriptive epidemiology of Streptococcus pneumoniae and
642		Haemophilus influenzae nasopharyngeal carriage in children and adults in Kilifi
643		district, Kenya. The Pediatric infectious disease journal, 2008. 27(1): p. 59-64.
644	32.	Mahadevan, M., et al., A review of the burden of disease due to otifis media in the
645		Asia-Pacific. International Journal of Pediatric Otorhinolaryngology, 2012. 76(5): p.
646	22	
647	33.	Kovács, E., et al., Co-carriage of Staphylococcus aureus, Streptococcus pneumoniae,
648		Haemophilus influenzae and Moraxella catarrhalis among three different age
649	24	categories of children in Hungary. PLOS ONE, 2020. 15(2): p. e0229021.
650	34.	Verhagen, L.M., et al., Nasopharyngeal carriage of respiratory pathogens in Wardo
651		Amerinalans: significant relationship with stunting. Tropical Medicine &
652	25	International Health, 2017 . $22(4)$: p. $407-414$.
033 (54	35.	Solid, J.U.E., et al., <i>Staphylococcus aureus: Determinants of numan carriage</i> .
034 655	26	The choir of the stand of the s
033	30.	Choi, C.S., et al., <i>Ivasai carriage of staphylococcus aureus among nealthy adults</i> . J Migrobiol Immunol Infont, 2006, 20 (6): p. 459–64
657	27	Puimy D at al. Ana host consting the production of determinant of persistent established
659	57.	Stanbylococcus aurous carriage in humans? The Journal of Infactious Discoscos
650		2010 202 (6): p. 024.024
039		2010. 202 (0). μ. 924-934.

660	38.	Tong, S.Y.C., et al., <i>Progressive increase in community-associated methicillin-</i>
662		1003 to 2012 Epidemiology and Infaction 2015 143(7): p. 1510 1522
662	20	1995 to 2012. Epidemiology and intection, 2015. 145 (7). p. 1519-1525.
005 664	39.	Liu, C.M., et al., <i>Staphylococcus aureus and the ecology of the hasal microbiome</i> .
004 665	40	Science Advances, 2015. 1(5).
666	40.	cremers, A.J., et al., The addit hasopharyngedi microbiome as a determinant of
000 667	41	<i>pneumococcai acquisition.</i> Microbiome, 2014. 2(1): p. 1-10.
669	41.	rail, M., et al., Nasai microenvironmenis and interspecific interactions influence
660		14(6): p. 631.640
670	12	14 (0). p. 051-040. Bomar I ot al Commendatorium accolons Palages Antiprodumococcal Free Fatty
671	42.	Acids from Human Nostril and Skin Surface Triacylabycerols mBio 2016 7(1)
672	13	De Boeck I et al. Comparing the Healthy Nose and Nasonharyny Microbiota
673	чэ.	Reveals Continuity As Well As Niche-Specificity Frontiers in microbiology 2017 8:
674		n 2372-2372
675	44.	Biesbroek, G., et al., Early respiratory microbiota composition determines bacterial
676		succession patterns and respiratory health in children. Am J Respir Crit Care Med.
677		2014. 190 .
678	45.	Laufer, A.S., et al., Microbial Communities of the Upper Respiratory Tract and Otitis
679		Media in Children. mBio, 2011. 2(1).
680	46.	Teo Shu, M., et al., The infant nasopharyngeal microbiome impacts severity of lower
681		respiratory infection and risk of asthma development. Cell Host Microbe, 2015. 17.
682	47.	Durack, J., H.A. Boushey, and S.V. Lynch, Airway Microbiota and the Implications
683		of Dysbiosis in Asthma. Current Allergy and Asthma Reports, 2016. 16(8): p. 52.
684	48.	Ege, M.J., et al., <i>Exposure to environmental microorganisms and childhood asthma</i> .
685		New Engl J Med, 2011. 364 .
686	49.	Verma, D., P.K. Garg, and A.K. Dubey, Insights into the human oral microbiome.
687		Archives of Microbiology, 2018. 200(4): p. 525-540.
688	50.	Salter, S.J., et al., Reagent and laboratory contamination can critically impact
689		sequence-based microbiome analyses. BMC Biol, 2014. 12.
690	51.	Wang, J., et al., Human oral microbiome characterization and its association with
691		environmental microbiome revealed by the Earth Microbiome Project. bioRxiv, 2019:
692		p. 732123.
693	52.	Almonacid, D.E., et al., 16S rRNA gene sequencing and healthy reference ranges for
694		28 clinically relevant microbial taxa from the human gut microbiome. PLOS ONE,
695	50	2017. 12 (5): p. e0176555.
696	53.	Bolyen, E., et al., <i>Reproducible, interactive, scalable and extensible microbiome data</i>
697	~ .	science using QIIME 2. Nature Biotechnology, 2019. 37(8): p. 852-857.
698	54.	Callahan, B.J., et al., DADA2: High-resolution sample inference from Illumina
099 700	55	amplicon data. Nat Methods, 2016. 13.
700	55.	Katon, K., et al., <i>MAFF1: a novel method for rapid multiple sequence alignment</i>
701	56	Dused on just Fourier transform. Nucleic acids teseatcil, 2002. 30 (14): p. 5059-5000.
702	50.	likelihood trees for large alignments DLoS One 2010 5
703	57	Relation NA at al. Ontimizing taxonomic classification of marker gene amplicon
704	57.	sequences with OIIME 2's a2 feature classifier plugin Microbiome 2018 6(1): p
706		90
707	58	McDonald D et al An improved Greengenes taxonomy with explicit ranks for
708	50.	ecological and evolutionary analyses of bacteria and archaea The ISMF journal
709		2012 6 (3) n 610-618

710	59.	Bisanz, J.E. qiime2R: Importing QIIME2 artifacts and associated data into R
711		sessions. 2018; Available from: https://github.com/jbisanz/qiime2R.
712	60.	Team, R.C., R: a language and environment for statistical computing. 2014, Vienna,
713		Austria: R Foundation for Statistical Computing.
714	61.	Wickham, H., ggplot2: Elegant Graphics for Data Analysis. 2016: Springer-Verlag
715		New York.
716	62.	McMurdie, P.J.H., S., <i>phyloseq: an R package for reproducible interactive analysis</i>
717		and graphics of microbiome census data PLoS One, 2013. 8(4).
718	63.	Callahan, B., et al., Bioconductor Workflow for Microbiome Data Analysis: from raw
719		reads to community analyses [version 2; peer review: 3 approved]. F1000Research,
720		2016. 5(1492).
721	64.	Davis, N.M., et al., Simple statistical identification and removal of contaminant
722		sequences in marker-gene and metagenomics data. Microbiome, 2018. 6(1): p. 226.
723	65.	Oksanen, J., et al., Vegan: Community ecology package. R Packag. 2.3-3. 2016.
724	66.	Love, M.I., Huber, W., Anders, S., Moderated estimation of fold change and
725		dispersion for RNA-seq data with DESeq2 Genome Biology, 2014. 15(12).
726		

S. pneumoniae

S. aureus

Carriage Prevalence (%)

M. catarrhalis

H. influenzae

Combined -- Nose -- NP

Table 1: Multi- versus single-species carriage of *Streptococcus pneumoniae* (Spn), *Staphylococcus aureus* (Sa), *Haemophilus influenzae* (Hi) and *Moraxella catarrhalis* (Mc). Forty-seven individuals were culture negative. Seven had single-species profiles involving *Klebsiella pneumoniae* (n=3), α -haemolytic *Streptococci* (n=2) or *Pseudomonas aeruginosa* (n=2). A final thirteen had different multi-species profiles to those listed below.

Bacterial Species	N	%
Sa	25	19.23
Spn	16	12.31
Spn-Hi	7	5.38
Spn-Sa	5	3.85
Hi	2	1.54
Mc	1	0.77
Spn-Mc	1	0.77
Hi-Sa	1	0.77
Hi-Mc	1	0.77
Spn-Hi-Sa	1	0.77
Spn-Hi-Mc	1	0.77
Sa-Mc	0	0.00
Hi-Sa-Mc	0	0.00
Sa-Mc-Spn	0	0.00
Sa-Mc-Spn-Hi	0	0.00

Observed

Age Group Comparison 5-17 vs.18-49 EnhancedVolcano 5 Haemophilus 4 -Log₁₀ adjusted P Propionibacterium NS 3 Log₂ FC Moraxella p-value Streptococcus 2 Peptoniphilus $p - value and log_2 FC$ Corynebacterium Haemophilus influenzae 1 0 -3 3 6 Log₂ fold change

Total = 205 variables

