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Abstract 

This paper describes the methods underlying the development of an online COVID-19 Epidemic 
Calculator for tracking COVID-19 growth parameters. From publicly available infection case 
data, the calculator is used to estimate the effective reproduction number, doubling time, final 
epidemic size, and death toll. As a case study, we analyzed the results for Singapore during the 
“Circuit breaker” period from April 7, 2020 to the end of May 2020. The calculator shows that 
the stringent measures imposed have an immediate effect of rapidly slowing down the spread of 
the coronavirus. After about two weeks, the effective reproduction number reduced to 1.0. Since 
then, the number has been fluctuating around 1.0. 

The COVID-19 Epidemic Calculator is available in the form of an online Google Sheet and the 
results are presented as Tableau Public dashboards at www.cv19.one. By making the calculator 
readily accessible online, the public can have a tool to meaningfully assess the effectiveness of 
measures to control the pandemic. 
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1. Introduction 

As countries around the world take drastic measures to contain the COVID-19 pandemic, people 
need to understand the effectiveness of such interventions. Making sense of epidemiological data 
can be challenging given confusing and overlapping terminology. Raw data and statistics on 
infection numbers (e.g. Figure 1) do not directly help answer the following questions: (1) Are 
social distancing measures working? (2) How much longer does it take to flatten the curve? (3) 
What will be the final death toll? 
 

 

Figure 1. Total Confirmed Cases in Singapore [1]. 

This paper describes the methods underlying the online COVID-19 Epidemic Calculator for 
tracking and estimating COVID-19 growth parameters, including reproduction number, doubling 
time, final epidemic size, and death toll. These methods are illustrated using the case example of 
Singapore. We demonstrate how the calculator can reveal the effect of imposing strict social 
distancing measures (“Circuit breaker”) from April 7, 2020 that is not apparent from just looking 
at infection numbers. 

While our methodology is similar to several freely available software packages and 
programming codes for calculating the effective reproduction number (e.g. [21, 23, 24, 33]), we 
have implemented the calculations in the widely used Excel spreadsheet. The execution time is a 
matter of seconds, even for calculating a 4-month, 100-country data set. The calculator is also 
available as an online Google Sheet to facilitate sharing and collaboration. The input data are 
obtained from publicly available sources [2, 3, 31] and are updated daily. 
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The first section of this paper will introduce and define basic terminology for understanding 
infectious disease transmission given that publicly available data are related to these variables. 
As the reproduction number is used as an indicator of the effectiveness of interventions, we will 
demonstrate how to estimate this number using different methods. First, we use the SEIR model 
while accounting for changing reproduction number and undetected infections. Next, we 
estimate the effective reproduction number, a more accurate index, using a non-parametric 
approach and a Bayesian approach. We also show how to derive estimates of dates of actual 
symptom onset and dates of being exposed which are important for our estimation of the 
effective reproduction number. To answer the question about the time needed to flatten the 
curve, we will estimate the doubling time, defined as the time for the total number of infections 
to double at the current rate. Finally, we describe a method to forecast the final total number of 
cases and deaths. 
 

2. Introduction to terminology 
 

 

 

 

 

 

 

 

 

 

Figure 2. Timeline of infection stages with typical parameter estimates for COVID-19 in 
Singapore. 

Figure 2 clarifies the different overlapping terminology used in epidemiology and illustrates the 
timeline for the various stages of infection. Exposed is the state at which an individual first 
becomes infected but is not yet contagious. The latent period is the time from being infected 
(exposed) to becoming contagious. An infected person can be contagious even before the onset 
of symptoms. Data suggests that some people could have infected others 1 to 3 days before they 
developed symptoms [10,11].  

The incubation period is the time from exposed to the onset of symptoms. The mean incubation 
period for COVID-19 is estimated to be 5 days [4, 29]. The infectious period is the time between 
becoming contagious to the time of removal or recovery. Hence, it is the difference between the 
time of removal and the latent period (Tremoved – Tlatent).  
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In Singapore, the 14-day average time from the onset of symptoms to removal ranges from 1.5 to 
6 days after the start of the Circuit breaker on April 7, 2020 (Figure 3). 

The serial interval is the time when a secondary infection is generated. For COVID-19 in 
Singapore, the serial interval between transmission pairs ranges between 3 days and 8 days [5]. 
Other researchers have reported serial intervals within the same range [6,7,8, 29]. 

 

Figure 3. Average number of days from onset of symptoms to isolation for community unlinked 
cases in Singapore [1]. 

 

3. Method for estimating the basic reproduction number using the SEIR model 

One of the important numbers in epidemiology is the basic reproduction number, R0, defined as 
the expected number of infections directly generated by one case in a population in which all 
individuals are susceptible to infection [15, 28]. R0 can be estimated by fitting the data on 
reported infections to a Susceptible-Exposed-Infectious-Removed (SEIR) model. 

 

 

 

 

 

Figure 4. Susceptible-Exposed-Infectious-Removed (SEIR) model of infection. 
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Figure 4 is a graphical representation of the classic deterministic SEIR model which shows 
people passing through four infection states - Susceptible (S), Exposed (E), Infected (I), and 
Removed (R) [12, 13, 14, 27]. The model is governed by four differential equations. 

 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝛽𝛽
𝑆𝑆
𝑁𝑁
𝐼𝐼 

(1a) 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝛽𝛽
𝑆𝑆
𝑁𝑁
𝐼𝐼 − 𝜎𝜎𝜎𝜎 

(1b) 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜎𝜎𝜎𝜎 − 𝛾𝛾𝛾𝛾 
(1c) 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝛾𝛾𝛾𝛾 
(1d) 

 

Table 1. Parameters and initial conditions of the SEIR model 

Symbol Description Method 
N Size of population From data 
S Number of susceptible individuals Fitted 
E Number of latent individuals (infected but not infectious) Fitted 
I Number of infectious individuals Fitted 
R Number of removed or isolated individuals Fitted 
β Transmission rate per infectious individual (number of 

new infections generated per day) 
Fitted 

1/σ Mean latent period assuming an exponential distribution Assumed 
1/γ Mean infectious period assuming an exponential 

distribution 
Assumed 

 

Given a set of initial conditions, the progression from S, E, I, to R over time can be calculated. 
The differential equations can be solved numerically in Microsoft Excel by using the Runge-
Kutta 4th order method. Data on the daily number of reported cases [2, 31] can be compared with 
the calculated values of the Removed (R) class. R is defined as the number of removed or 
isolated individuals and it is calculated according to the SEIR model. 

To estimate the model parameters (S, E, I, R, and β), we use the maximum likelihood method 
[15]. We assume that the number of reported cases, xi, at time, ti, follows the Poisson distribution 
and has a mean of 𝜇𝜇𝑖𝑖, where 𝜇𝜇𝑖𝑖 is R, the calculated number of removed individuals at time, ti.  

𝑃𝑃(𝑋𝑋𝑖𝑖 = 𝑥𝑥𝑖𝑖) =
𝜇𝜇𝑖𝑖𝑥𝑥𝑒𝑒−𝜇𝜇𝑖𝑖
𝑥𝑥𝑖𝑖!

 
 

(2) 
 

Then, the log-likelihood function to be maximized is 
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�−𝜇𝜇𝑖𝑖 + 𝑥𝑥𝑖𝑖 ln𝜇𝜇𝑖𝑖

𝑛𝑛−1

𝑖𝑖=0

 
 

(3) 

 

We choose the parameter values for I(t = 0) and β that would maximize the log-likelihood 
function. This can be done by using the Solver function in Excel. From the SEIR model, the 
basic reproduction number can then be calculated according to the formula 𝑅𝑅0 = 𝛽𝛽 𝛾𝛾⁄ .  
 
Accounting for changing reproduction number 

With intervention, specifically social distancing measures, the transmission rate, β, and 
reproduction number will change over time. For a good fit and to obtain a moving average, 
parameter estimation is best done over a relatively short window of time, say between 7 and 14 
days. Figure 5 shows an example where the data is fitted over a 14-day period. 

 

Figure 5. A screenshot of the Excel spreadsheet for estimation of R0 
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Accounting for undetected infection 

It is often the case that not all infected cases are reported. To account for undetected infection, 
one strategy is to estimate the ratio of reported cases (R) to total cases (C), p, and compare this to 
known values of local case morbidity rate of the disease, ρ (adjusted for age distribution and 
clinical care) [16].  

𝑝𝑝 = 𝑅𝑅(𝑡𝑡)
𝐶𝐶(𝑡𝑡) ≤ 𝜌𝜌 �𝐷𝐷(𝑡𝑡)

𝑅𝑅(𝑡𝑡)�⁄ , (4) 

 

where D(t) is the reported number of cases that have required critical care or have died. R(t) is 
the reported number of cases in any period. Figure 6 provides a visual representation of this 
concept. If we can assume ρ to be constant across regions, then the smallest value of ρ across 
such different regional data may provide an upper bound for p. Data from studies have suggested 
about 5 per cent of COVID-19 patients require critical care [1]. 
 

 

 

 

 

 

 

 

 

 

 

Figure 6. A diagram to illustrate the proportion of different groups at various stages of infection 
 

In a test sample of the Singapore population, 39,000 preschool staff were screened and 13 tested 
positive using the polymerase chain reaction (PCR) test [1]. This represents about 0.035 per cent 
of those tested. Hence, the number of undetected infections in Singapore is currently considered 
small. 
 

4. Method for deriving symptom onset dates from confirmation dates 
 
The daily number of reported cases is partly dependent on the number of tests conducted, which 
may be variable due to factors such as testing capacity and the day of week. To account for this 
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variation, we perform a running 3-day average of test cases. Other methods of applying a 
smoothing filter to the time series may be used if appropriate.    
 

Another issue is the delay between the onset of symptoms and case confirmation (removal or 
isolation). Case onset dates can be derived if records of onset-to-confirmation dates are available 
for every individual (e.g. see Fig. 2). Otherwise, case onset dates can be estimated by using the 
following procedure. 

i) For each date, distribute case counts back in time according to a Poisson distribution 
with a mean of 3 days (symptom onset to removal) as illustrated in Figure 7.  

ii) Sum the back distributed case counts for each date to derive the onset curve as shown 
in Figure 8. 
 

 

Figure 7. Distributing case counts back in time. 

 

+⋯ 

+⋯ 

Poisson 
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Figure 8. The onset curve estimates the cases during the onset of symptoms. 

 
iii) Distributing reported cases back in time and recreating the onset curve result in a 

“right-censored” time series. This means that there are onset cases close to the present 
date that are yet to be reported. We correct this by estimating the percentage of onset 
cases on Day (t-a) that have not yet been reported by today (Day t). We can use the 
cumulative distribution function of the Poisson “onset-to-removed” distribution to 
adjust for the number of onset cases, thus removing right censoring.  
 

Adjusted onset = 
Onset

𝑃𝑃(Delay ≤ Days from present date)  
(5) 

 
Consider an example illustrated in Figure 9. Three days ago, there were 470 reported 
onset cases. This represents the fraction of the actual number reported over the next 3 
days. This fraction is equal to the value of the cumulative distribution function of our 
Poisson distribution at Day 3, which is 65%. Hence, the current count of onset on that 
day represents 65% of the actual total. After adjustment, the actual total is estimated 
to be (1/0.65) of 470, which is 723. Figure 10 shows the adjusted onset curve. 
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Figure 9. Adjusting for right-censoring. 

 

 

Figure 10. Onset numbers close to the present date are adjusted for right censoring. 
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5. Method for deriving infection (exposed) dates from onset dates 

A similar procedure as in Section 4 can be applied to the onset counts to derive the infection 
(exposed) time series. Figure 11 shows the adjusted exposed time series where the incubation 
period (from exposed to symptom onset) follows a Poisson distribution with a mean of 5 days. 

 

Figure 11. 
 
6. Method for estimating the effective reproduction number, R(t) 
 

The basic reproduction number, R0, is the expected number of infections directly generated by 
one case given that all individuals are equally susceptible. As the infection spreads, the 
susceptibility of the population decreases. The effective reproduction number, R(t), is related to 
the basic reproduction number, R0, by 𝑅𝑅(𝑡𝑡) = 𝑅𝑅0𝑆𝑆(𝑡𝑡), where S(t) is the average susceptibility of 
the population. R(t) is often used as an indicator of the effectiveness of interventions, such as 
social distancing measures, to contain the spread of a virus. If R(t) is greater than 1.0, the 
infection is growing at an exponential rate. If R(t) is at 1.0, the spread is sustained at a linear rate. 
If R(t) is less than 1.0, the infection is spreading at a slower pace and will eventually die out. 

Although R(t) cannot be measured directly, it can be estimated via two methods. We describe 
these two methods that can be implemented in a spreadsheet without any programming codes. 

6.1 Non-parametric approach 

Wallinga and Lipsitch [17, 18] have developed a non-parametric method to derive the 
reproduction number from the exponential growth rate,  

𝑅𝑅(𝑡𝑡) =
𝑐𝑐(𝑡𝑡)

∫ 𝑐𝑐(𝑡𝑡 − 𝑎𝑎)𝑤𝑤(𝑎𝑎)𝑑𝑑𝑑𝑑∞
0
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where c(t) is the rate of new infections at time t, and w(a) is the probability density function of 
the serial interval (see Figure 2).  
 
The serial interval is the time from being infected to generating a secondary infection. We 
assume a gamma distribution with a mean serial interval of 7 days and a peak (most infectious) 
at Day 4 (Figure 12). This accounts for a latent period where the exposed individual is not yet 
infectious.  

 

Figure 12. A gamma distribution calculated using the GAMMA.DIST function in Excel. 

Equation (6) can be evaluated in a spreadsheet using the infection data derived above and a 
numerical integration scheme. Figure 13 shows a plot of Rt against time for Singapore during the 
Circuit breaker period.  
 

 

Figure 13. Rt against time for Singapore during the Circuit breaker period 

The results clearly show that the Circuit breaker measures imposed from April 7, 2020 have an 
immediate effect of rapidly slowing down the spread of COVID-19. We can also see that Rt 
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settled to around 1.0 after about two weeks. Since then, the infection rate has remained sustained. 
Given that dormitory residents make up the majority of the infected individuals, it can be 
concluded that individuals continue to infect others with a reproductive ratio of approximately 1 
to 1 in that setting during that time period as depicted in Figure 13.   
 

To estimate the confidence intervals of the R(t) estimate, we first discretize equation (6), 

𝑐𝑐(𝑡𝑡) ≈ 𝑅𝑅(𝑡𝑡)�𝑐𝑐(𝑡𝑡 − 𝑎𝑎)𝑤𝑤(𝑎𝑎),     𝑎𝑎 = 1,2,⋯𝑁𝑁
𝑁𝑁

𝑎𝑎=1

 
 

(7) 

 
Note that the expected number of secondary infections generated on Day t by individuals 
infected on Day (t-a) is 
𝑅𝑅(𝑡𝑡)𝑐𝑐(𝑡𝑡 − 𝑎𝑎)𝑤𝑤(𝑎𝑎) (8) 

 
where c(t-a) is the number of new infections a days before the present day, and w(a) is the 
probability that the serial interval is a. Not all the c(t-a) cases will generate new infections on 
Day t. In general, the probability that k out of n cases will generate secondary infections with a 
serial interval of a is binomially distributed,  

Pr(𝑘𝑘;𝑛𝑛,𝑝𝑝) = �
𝑛𝑛
𝑘𝑘
� ∙ 𝑝𝑝𝑘𝑘 ∙ (1 − 𝑝𝑝)𝑛𝑛−𝑘𝑘  

(9) 

where �
𝑛𝑛
𝑘𝑘
� =

𝑛𝑛!
(𝑛𝑛 − 𝑘𝑘)!𝑘𝑘!

 and p = w(a). 
 

This is a binomial distribution with a mean of 𝑛𝑛𝑛𝑛(𝑎𝑎) and a variance of 𝑛𝑛𝑛𝑛(𝑎𝑎)�1− 𝑤𝑤(𝑎𝑎)�. Table 
2 shows the formulas for the probability distributions for N days before Day t (the present date). 
 

Table 2. Formulas for probability distributions for N days 

a Day  Probability 
that serial 
interval is a 

No. of infected 
individuals 
on Day (t-a) 

Probability of having k individuals with 
serial interval a 

1 t-1 w(1) c(t-1) 
�
𝑐𝑐(𝑡𝑡 − 1)

𝑘𝑘1
� ∙ 𝑤𝑤(1)𝑘𝑘1 ∙ �1 − 𝑤𝑤(1)�

𝑐𝑐(𝑡𝑡−1)−𝑘𝑘1 

2 t-2 w(2) c(t-2) 
�
𝑐𝑐(𝑡𝑡 − 2)

𝑘𝑘2
� ∙ 𝑤𝑤(2)𝑘𝑘2 ∙ �1 − 𝑤𝑤(2)�

𝑐𝑐(𝑡𝑡−2)−𝑘𝑘2 

⋮ ⋮ ⋮ ⋮ ⋮ 
N t-N w(N) c(t-N) 

�
𝑐𝑐(𝑡𝑡 − 𝑁𝑁)

𝑘𝑘𝑁𝑁
� ∙ 𝑤𝑤(𝑁𝑁)𝑘𝑘𝑁𝑁 ∙ �1 − 𝑤𝑤(𝑁𝑁)�

𝑐𝑐(𝑡𝑡−𝑁𝑁)−𝑘𝑘𝑁𝑁 

 

The probability for the total number of secondary infections on Day t, 𝑍𝑍 = ∑ 𝑘𝑘𝑎𝑎𝑁𝑁
𝑎𝑎=1 , is the sum 

of N binomial distributions. Thus, using the binomial sum variance inequality [19, 20], the upper 
bound of the variance of Z can be calculated. 
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𝑉𝑉𝑉𝑉𝑉𝑉(𝑍𝑍) ≤�𝑉𝑉𝑉𝑉𝑉𝑉(B(𝑐𝑐(𝑡𝑡 − 𝑎𝑎),𝑤𝑤(𝑎𝑎)))
𝑁𝑁

𝑎𝑎=1

 
 

≤�𝑐𝑐(𝑡𝑡 − 𝑎𝑎)𝑤𝑤(𝑎𝑎)�1 − 𝑤𝑤(𝑎𝑎)�
𝑁𝑁

𝑎𝑎=1

 
 

(10) 

 

Equation (10) allows us to estimate the confidence intervals of the R(t) estimates. 

 

6.2 Bayesian approach 

The Bayesian approach allows us to continuously update our estimate of a set of parameters, Θ, 
as more data becomes available.  

𝑃𝑃(Θ|𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) =
𝑃𝑃(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|Θ) ∙ 𝑃𝑃(Θ)

𝑃𝑃(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)  
 

(11) 
 

𝑃𝑃(Θ), the prior distribution, represents our prior estimates about the true value of Θ. 

𝑃𝑃(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|Θ) is the likelihood distribution. It is also often written as ℒ(Θ|𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) which means the 
probability of observing the data given Θ. For the method to work, it is necessary to calculate the 
likelihood distribution for all possible values of Θ. 

𝑃𝑃(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) is the model evidence and it is the same for all possible hypotheses (values of Θ) being 
considered. 

𝑃𝑃(Θ|𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) is the posterior distribution and represents our updated estimate of the value of Θ 
given the observed data.  

The main objective of Bayesian inference is to calculate the posterior distribution of our 
parameters using our prior beliefs updated with our likelihood. From the posterior distribution, 
we can determine the most likely values of Θ given the observed data. Since we are usually only 
interested in relative probabilities of different hypotheses, 𝑃𝑃(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) can be left out of the 
calculation and we write the model form of Bayes’ theorem as 

𝑃𝑃(Θ|𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) ∝ 𝑃𝑃(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|Θ) ∙ 𝑃𝑃(Θ) (12) 
 

where ∝ means “proportional to”. For estimating Rt, the Bayes’ theorem that we use is  

𝑃𝑃(𝑅𝑅𝑡𝑡|𝑘𝑘𝑡𝑡) ∝ 𝑃𝑃(𝑘𝑘𝑡𝑡|𝑅𝑅𝑡𝑡) ∙ 𝑃𝑃(𝑅𝑅𝑡𝑡) (13) 
 

where the data, kt, is the daily number of cases, and the parameter, Rt, is the effective 
reproduction number. 
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Equation (13) is updated every day by using yesterday's posterior, 𝑃𝑃(𝑅𝑅𝑡𝑡−1|𝑘𝑘𝑡𝑡−1), to be today's 
prior 𝑃𝑃(𝑅𝑅𝑡𝑡). On day two, the equation becomes 

𝑃𝑃(𝑅𝑅2|𝑘𝑘2) ∝ 𝑃𝑃(𝑘𝑘2|𝑅𝑅2) ∙ 𝑃𝑃(𝑘𝑘1|𝑅𝑅1) ∙ 𝑃𝑃(𝑅𝑅1) (14) 
 
So generally, 

𝑃𝑃(𝑅𝑅𝑇𝑇|𝑘𝑘𝑇𝑇) ∝ 𝑃𝑃(𝑅𝑅1) ∙�𝑃𝑃(𝑘𝑘𝑡𝑡|𝑅𝑅𝑡𝑡)
𝑇𝑇

𝑡𝑡=1

 
 

(15) 

Assuming a uniform starting prior 𝑃𝑃(𝑅𝑅1), this reduces to: 

𝑃𝑃(𝑅𝑅𝑇𝑇|𝑘𝑘𝑇𝑇) ∝�𝑃𝑃(𝑘𝑘𝑡𝑡|𝑅𝑅𝑡𝑡)
𝑇𝑇

𝑡𝑡=1

 
 

(16) 

 
Note that the posterior on any given day is equally influenced by the distant past as much as the 
recent day. This is fine if we are estimating a static parameter that does not change with time. 
However, the value of Rt is dynamic and is more closely related to recent values than older ones.  
To address this issue, we can adopt Systrom’s approach [21] of only incorporating the 
last m days of the likelihood function: 

𝑃𝑃(𝑅𝑅𝑇𝑇|𝑘𝑘𝑇𝑇) ∝ � 𝑃𝑃(𝑘𝑘𝑡𝑡|𝑅𝑅𝑡𝑡)
𝑇𝑇

𝑡𝑡=𝑇𝑇−𝑚𝑚

 
 

(17) 

 
Bettencourt & Ribeiro's likelihood function 

To calculate the likelihood function ℒ(𝑅𝑅𝑡𝑡|𝑘𝑘𝑡𝑡) = 𝑃𝑃(𝑘𝑘𝑡𝑡|𝑅𝑅𝑡𝑡), we first assume that the number of 
new infections on any given day can be described by a Poisson probability distribution with a 
mean of λ. The probability of seeing k new cases is 

𝑃𝑃(𝑘𝑘|𝜆𝜆) =
𝜆𝜆𝑘𝑘𝑒𝑒−𝜆𝜆

𝑘𝑘!
 

(18) 

 

Bettencourt & Ribeiro [22] has derived an equation relating Rt to λ. 

𝜆𝜆 = 𝑘𝑘𝑡𝑡−1𝑒𝑒𝛾𝛾(𝑅𝑅𝑡𝑡−1) (19) 
   

where γ is the reciprocal of the serial interval (see Figure 1). Figure 14 shows the variation of λ 
with Rt for some values of kt-1. 
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Figure 14. Variation of λ with Rt given kt-1. 

Equations (18) and (19) allow us to reformulate the likelihood function as a Poisson distribution, 
parameterized by fixing k and varying Rt. 

ℒ(𝑅𝑅𝑡𝑡|𝑘𝑘) = 𝑃𝑃(𝑘𝑘|𝑅𝑅𝑡𝑡) =
𝜆𝜆𝑘𝑘𝑒𝑒−𝜆𝜆

𝑘𝑘!
 

(20) 

 

Figure 15 shows that as k increases, the peak value of the likelihood function ℒ(𝑅𝑅𝑡𝑡|𝑘𝑘) increases 
and the distribution becomes less spread out about. This means that as the number of infections 
increases the confidence of our Rt estimate should improve. 

 

Figure 15. Variation of ℒ(𝑅𝑅𝑡𝑡|𝑘𝑘) with Rt given k. 
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In evaluating the posteriors, it is more convenient to use the logarithm of the likelihood function. 

ln�ℒ(𝑅𝑅𝑡𝑡|𝑘𝑘)� =  𝑘𝑘[ln(𝑘𝑘𝑡𝑡−1) + 𝛾𝛾(𝑅𝑅𝑡𝑡 − 1)] − 𝑘𝑘𝑡𝑡−1𝑒𝑒𝛾𝛾(𝑅𝑅𝑡𝑡−1) − ln(𝑘𝑘!) (21) 
 

To perform the Bayesian update, we can do a sum of the log-likelihoods over the last m days and 
then exponentiate to get the likelihood. From equations (17) and (21), 

ln�𝑃𝑃(𝑅𝑅𝑇𝑇|𝑘𝑘𝑇𝑇)� = � � ln�ℒ(𝑅𝑅𝑡𝑡|𝑘𝑘𝑡𝑡)�
𝑇𝑇

𝑡𝑡=𝑇𝑇−𝑚𝑚

� + constant 
 

=  � � 𝑘𝑘𝑡𝑡[ln(𝑘𝑘𝑡𝑡−1) + 𝛾𝛾(𝑅𝑅𝑡𝑡 − 1)] − 𝑘𝑘𝑡𝑡−1𝑒𝑒𝛾𝛾(𝑅𝑅𝑡𝑡−1)
𝑇𝑇

𝑡𝑡=𝑇𝑇−𝑚𝑚

� + constant 
 

(22) 

 

 

Figure 16. Variation of posterior 𝑃𝑃(𝑅𝑅𝑡𝑡|𝑘𝑘) with Rt. 

From the posterior distribution (Figure 16) we can also obtain the confidence interval for Rt. For 
example, Figure 17 shows the most likely values of Rt and the confidence interval over time for 
Singapore. We can see that Rt changes with time and the confidence interval narrows with more 
data.  

The results are in agreement with those calculated using the non-parametric approach (Figure 13) 
and the EpiEstim code (Figure 18) [23, 24]. 
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Figure 17. Effective reproduction number Rt. 

 

Figure 18. Results from EpiEstim. 
 

7. Method for estimating doubling time 
Another metric often used to measure infection rate in a population is the doubling time, defined 
as the time for cumulative cases to double based on the current growth rate [25].  

𝐶𝐶(𝑡𝑡) = 𝐶𝐶0𝑒𝑒𝑟𝑟𝑟𝑟 
𝐶𝐶(𝑡𝑡+𝑇𝑇𝑑𝑑) = 𝐶𝐶0𝑒𝑒𝑟𝑟(𝑡𝑡+𝑇𝑇𝑑𝑑) = 2𝐶𝐶0𝑒𝑒𝑟𝑟𝑟𝑟 

 
(23) 
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where 𝐶𝐶0 is the initial number of cases, Td is the doubling time, and r is the exponential growth 
rate. Taking the logarithm on both sides of the equation, 

ln�𝐶𝐶(𝑡𝑡)� = ln(𝐶𝐶0) + 𝑟𝑟𝑟𝑟 
ln�𝐶𝐶(𝑡𝑡 + 𝑇𝑇𝑑𝑑)� = ln(𝐶𝐶0) + 𝑟𝑟(𝑡𝑡 + 𝑇𝑇𝑑𝑑) = ln(2)+ln(𝐶𝐶0) + 𝑟𝑟𝑟𝑟 

𝑇𝑇𝑑𝑑 =
ln(2)
𝑟𝑟

 

 
 
 

(24) 
 
As the growth rate slows, the doubling time increases accordingly. Note that the gradient of the 
ln�𝐶𝐶(𝑡𝑡)� curve is equal to r. Time-varying estimates of the doubling time can be made with a 7-
day sliding window by iteratively fitting a linear regression model to ln�𝐶𝐶(𝑡𝑡)�. Figure 19 shows 
the log plot of the accumulated cases and the doubling time calculated using the Excel LINEST 
function.  
 
Again, we can directly see the positive effect of the Circuit breaker measures that started on 
April 7, 2020. From a low point of about 5 days the doubling time has increased to about 4 
weeks in slightly more than a month. 
 

   

Figure 19. It is easier to see the pronounced effect of the Singapore Circuit breaker on a plot of 
the doubling time (right) than the accumulated cases plot (left). 

8. Forecasting the final total number of cases and deaths 

When the growth rate is slowing down, we can project the final total cases and death counts by 
fitting publicly available data to the logistic model. The logistic model is often used to describe 
the shape of the cumulative epidemic curve (Figure 20) where the number of infected cases grow 
exponentially at first, then slows down, and finally flattens to a maximum limit. The final 
epidemic size can be estimated based on this slowing growth.  
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Figure 20. A logistic function. L = 1, k = 1, x0 = 5. 

For our application, the total number of cases at time t can be approximated by ([15]) 

𝐶𝐶(𝑡𝑡) =
𝐶𝐶𝐹𝐹𝐶𝐶0

𝐶𝐶0 + (𝐶𝐶𝐹𝐹 − 𝐶𝐶0)𝑒𝑒−
𝑟𝑟𝐶𝐶𝐹𝐹
𝐶𝐶𝐹𝐹−𝐶𝐶0

𝑡𝑡
 (25) 

 
where r is the exponential growth rate, 𝐶𝐶0 and 𝐶𝐶𝐹𝐹 are the initial and final numbers, respectively.  
To find the best fit, we use the maximum likelihood method to estimate 𝐶𝐶𝐹𝐹 (see equations (2) and 
(3)). The parameter is estimated over a relatively short rolling window of, say 14 days, to obtain 
a moving update. See Figure 21. 

 

Figure 21. A logistic function is used to fit a two-week data set to project the final total cases. 
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With an estimate of the final number of cases, we can combine it with the data on case fatality 
rate to further estimate the final death counts. The case fatality rate varies from region to region 
but in many countries with a high number of cases they tend to stabilize over time (Figure 22). 
For example, the case fatality rate for Singapore has remained quite stable at slightly below 1 per 
1000 infected cases. Therefore, the final death count is projected to be around 35, assuming a 
final case number of 43,000. According to the data on deaths per 100 cases in Table 3, Singapore 
has one of the lowest COVID-19 case fatality rates in the world.  

 

Table 3. The 20 countries with the lowest case fatality rate. 
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Figure 22. Deaths per 100 cases show a trend toward an equilibrium. 

 
Table 4. A comparison of the projected total deaths from the COVID-19 calculator and the 

Institute for Health Metrics and Evaluation (IHME). 

Country 𝑪𝑪𝑭𝑭 Case 
fatality rate 

Projected total deaths 
using COVID-19 

calculator 

IHME projection 
(as at 5-30-20) 

Singapore 43,000 0.08% 35 N/A 
USA 2,255,800 5.9% 133,000 135,109 

(123,344-157,715) 
UK 340,900 14.0% 47,700 44,389 

(42,284-47,610) 
Brazil 782,700 6.1% 47,700 125,833 

(68,311-221,078) 
 
Table 4 shows the forecasts for a few countries including Singapore and how they compare with 
the projections by the Institute for Health Metrics and Evaluation (IHME) [26] at University of 
Washington Medicine. The projections by the IHME are based on more complex analytics and 
take into account factors such as changes in social distancing measures, diagnostic capability, 
and hospital capacity. Given that we did not directly account for these factors, our forecasts of 
the total number of cases and deaths may be considered indicative only. On the other hand, our 
estimation of reproduction numbers and doubling times based on the current data can be 
considered reliable and valid. Assuming current prevailing conditions in the populations, results 
from the COVID-19 Epidemic Calculator are likely to be realistic estimates. 
 

9. Conclusions 
This paper describes the methods underlying the online COVID-19 Epidemic Calculator for 
tracking COVID-19 growth parameters. From publicly available data, the calculator is used to 
estimate the distributions at time of symptom-onset and infection, effective reproduction number, 
doubling time, final epidemic size, and death toll for Singapore and other countries.  

The calculator and the associated graphs clearly show that the Circuit breaker measures imposed 
from April 7, 2020 in Singapore had an immediate effect of rapidly slowing down the spread of 
the COVID-19. Additionally, the results also reveal that the effective reproduction number has 
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settled to around 1.0 after about two weeks. Since then, it has remained at that level. This 
indicates that the infection rate among the dormitory residents is sustained and not likely to be 
reduced until this group become less susceptible.   

The COVID-19 Epidemic Calculator is available in the form of an online Google Sheet [30] that 
imports daily infection data from the European Centre for Disease Prevention and Control [31]. 
The results are presented online as dashboards on Tableau Public [32] (Figure 23). It has the 
advantage of fast execution time without the need for any specialized software package or 
programming script. Users can also interact with the models by changing the parameters. 
Comparing with other similar work, our parameter estimates are found to be in good agreement 
with those estimated using different models and software. By making the COVID-19 Epidemic 
Calculator readily accessible online, it is hoped that the public and interested learners have the 
tool to meaningfully assess our effort in fighting COVID-19. 

 

 

Figure 23. A visualization of the effective reproduction number for countries on a map. The size 
of each circle is proportional to the total number of infections. The color of the rings within a 
circle varies over time from red (R > 0) to white (R = 0) to blue (R < 0), reflecting the rate of 

growth of the virus. 
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