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Abstract: In the early development of COVID-19, large-scale preventive measures, such as border 

control and air travel restrictions, were implemented to slow international and domestic transmissions. 

When these measures were in full effect, new cases of infection would be primarily induced by 

community spread, such as the human interaction within and between neighboring cities and towns, 

which is generally known as the meso-scale. Existing studies of COVID-19 using mathematical models are 

unable to accommodate the need for meso-scale modeling, because of the unavailability of COVID-19 

data at this scale and the different timings of local intervention policies. In this respect, we propose a 

meso-scale mathematical model of COVID-19 using town-level infection data in the state of Connecticut. 

We consider the spatial interaction in terms of the inter-town travel in the model. Based on the 

developed model, we evaluated how different strengths of social distancing policy enforcement may 

impact future epidemic curves based on two evaluative metrics: compliance and containment.  The 

developed model and the simulation results will establish the foundation for community-level 

assessment and better preparation for COVID-19. 
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The year 2020 was deemed to be unprecedented in human history because of the outbreak of 

the novel and infectious coronavirus (COVID-19). As of early May 2020, the virus has led to over 3.5 

million confirmed infections, over 250 thousand deaths, and echoes of economic depression around the 

globe (Dong, Du, and Gardner 2020). The United States has become the largest victim in this public 

health calamity. The effect of the virus latency, coupled with the lack of clinical interventions, was 

further amplified by the understatement of the disease severity in its early development in the country. 

After COVID-19 was declared by the presidential proclamation as a national emergency on March 1, 

2020 (White House 2020), many state and local governments started to enforce strict preventive 

measures to mitigate the community spread (Parmet and Sinha 2020). 

These preventive measures, known as social distancing (e.g., closure of non-essential 

businesses, stay-at-home order), aim to minimize interpersonal interactions (Gostin and Wiley 2020). It 

has been found that these measures have been effective in delaying the spread of the virus by flattening 

the epidemic curve (epi curve) through the observation of transmission (Anderson et al. 2020). While 

early discussion of social distancing revolved around social impacts such as the economic consequences 

(Atkeson 2020) and ethical paradoxes (Lewnard and Lo 2020), many recent studies have integrated 

social distancing into mathematical epidemic models, attempting to simulate and predict scenario-based 

future outbreaks (Chen et al. 2020; Kissler et al. 2020). These models, however, have been largely 

focused on the macro-scale using a relatively large geographic unit, such as country (Gilbert et al. 2020; 

Kissler et al. 2020), state (Chen et al. 2020), or county (Lai et al. 2020). To the authors’ knowledge, there 

have been no epidemic models investigating the COVID-19 development at the meso-scale with a 

smaller geographic unit, such as town or census tract.  

 

1. The scale issue in modeling COVID-19 
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The meso-scale, generally known as a study area of 1–1000 kilometers, is of critical importance 

in the effective containment of the epidemic growth. This significance can be justified by the mechanism 

of the preventive strategies over the different phases of epidemic development. In the early 

development of COVID-19, large-scale preventive measures, such as border control and air travel 

restrictions, were implemented to slow international and domestic transmissions. When these measures 

were in effect, new cases of infection would be primarily induced by community spread, such as the 

human interaction within and between neighboring cities, towns, and communities. Existing macro-scale 

studies using classical epidemic models, notably the Susceptible, Exposed, Infectious, Recovered (SEIR) 

model are unable to accommodate the need for meso-scale modeling, because of three existing 

limitations in COVID-19 research.  

First, in the United States, the timing of the COVID-19 outbreak differs by state and so do their 

regulatory countermeasures, such as the enforcement of the stay-at-home order. It is relatively 

intractable to model COVID-19 at a macro-scale while considering the heterogeneity in the timing of 

local policies and the strength of their enforcement. Second, when long-distance travel (e.g., flights) are 

restricted, the transmission will be dictated by short-distance travel, such as daily commuting trips by 

public transit or private automobiles. In this context, individual mobility and the likelihood of travel is 

largely driven by the compliance of social distancing rules. Therefore, modeling COVID-19 at the meso-

scale should articulate how social distancing affects people’s travel activities or the willingness to travel 

as parameters to model the process of transmission. This gap has not been fulfilled by the status quo 

macro-scale models. Third, while COVID-19 data (e.g., infection, death, and recovery) on a daily basis 

has become largely available in the public sector, data with finer spatial granularities, such as across 

townships or census tracts, are extremely lacking. These three tiers of research gaps fuel the need to 

develop a meso-scale epidemic model that simulates past COVID-19 cases while predicting the local, 

community-level spread in preparing for a highly likely resurgence in the near future. 
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In this paper, we propose a meso-scale epidemic model using town-level COVID-19 infection 

data in the state of Connecticut. Because the local infection is largely subject to effects of social 

distancing, the model development follows two evaluative metrics in social distancing: compliance, 

which represents the strength of the policy enforcement, and containment, which represents individual 

mobility. By incorporating these two metrics into the SEIR model, we have proposed a meso-scale SEIR 

model and have performed model fitting and sensitivity analysis under ten different social distancing 

scenarios. Using the developed model, we have evaluated how different social distancing strategies (i.e., 

minimal, moderate, and substantial) would shape the epi curve of COVID-19 for each town. This study, 

while among the first to simulate the COVID-19 development at the meso-scale, has the potential to 

inform both epidemiologists and stakeholders about the public health risks using different social 

distancing strategies. 

The paper is organized as follows. Following the background, Section 2 introduces the 

methodological development of the model based on the classical SEIR model and the guiding principle 

of social distancing. Section 3 applies the new model to a case study in Connecticut, performs the model 

fitting, and simulates epi curves and spatial patterns at the town level based on different social 

distancing scenarios. Section 4 discusses the major findings and insights shed by the modeling results. 

Lastly, Section 5 concludes the study with long-term impacts. 

 

2. A Meso-scale SEIR model (MSEIR) 

2.1 Introduction to SEIR model 

Our proposed model stems from the classical SEIR model, a deterministic mathematical model 

to simulate epidemiologic dynamics, as shown in Equations (1) through (4). The SEIR model is composed 

of four variables: S (susceptible population), E (exposed population), I (infectious population), and R 

(recovered population). It explicitly quantifies a four-stage cycle of the disease spreading among humans 
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in terms of differential equations. Each stage is formulated as a derivate of the population (i.e., S, E, I, R) 

with respect to time (t), representing the change of the stage-specific population.  
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In the equations, 𝑁 denotes the total population (N = S + E + I + R); β, σ, and γ are the daily 

transmission rate, daily incubation rate, and daily recovery rate, respectively. The basic reproduction 

rate can be derived as R0 = β/γ. This classic SEIR model, along with its many extensions, has been widely 

applied to epidemic modeling of COVID-19 (Chen et al. 2020, Kissler et al. 2020, Lai et al. 2020). 

 

2.2 A Conceptual model of social distancing 

Adapting the SEIR model to the meso-scale should emphasize the effectiveness of social 

distancing in communities. This evaluation follows the Centers for Disease Control and Prevention 

(CDC)’s social distancing guidelines for COVID-19 given in three aspects: operations of public facilities, 

restrictions on businesses, and restrictions on personal movement (Gostin and Wiley 2020). For the 

restrictions on personal movement, the guidelines impose limitations on people’s travel and social 

behaviors in terms of prohibiting mass gatherings, requiring physical distancing in face-to-face 

interaction, and enforcing stay-at-home orders (Gostin and Wiley 2020). The CDC also calls for legal and 

community efforts to enhance compliance with these social distancing measures. 

Under this guiding principle, we propose a conceptual model in measuring the effectiveness of 

social distancing with an emphasis on travel activities as part of the personal movement. The model 
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comprises two metrics, compliance and containment, that evaluate the effectiveness of the policy 

enforcement, as shown in Figure 1. Compliance evaluates the likelihood of the residents not following 

the social distancing rules. While there are various ways in which compliance can be articulated, one 

variable could be the percentage of residents engaging in travel activities as a surrogate for the metric. 

Containment evaluates the level of human mobility, and a variable for the evaluation could be the 

maximum distance that people are willing to travel under the social distancing regulation. These two 

metrics, resulting from the strengths of the policy enforcement, will likely affect the transmission risk of 

the epidemic. This conceptual model featuring the two evaluative metrics is integrated into the classical 

SEIR model to develop a meso-scale epidemic model for COVID-19.  

 

Figure 1. A conceptual model of the effects of social distancing policy on travel activities. The solid line 

represents the strength of policy enforcement; the dashed line represents the level of transmission risk. 

 

2.3 Model development 

We modify the SEIR structure with an emphasis on the impacts of travel activities at the meso-

scale, where the study area is a state and the unit of analysis is a town (formally known as county 

subdivision in the United States). Recent epidemic models have employed various forms of mobility 

data, such as smart-phone heat maps (Lai et al. 2020) and air traffic flow (Gilbert et al. 2020), to 
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estimate mobility in the SEIR model. Because of the lack of mobility data at the town level, we employ 

the Huff-model (Huff 1963) to estimate the potential for travel. The huff-model is traditionally used for 

analyzing the business potential based on the probability of customers’ visits to retail and service 

facilities. It has also been extended to forecasting the external trips between communities (Anderson 

1999; Anderson 2005). The classical Huff-model uses real-world survey data to calibrate the model 

parameters, including the attractiveness of facilities and the distance decay (Huff and McCallum 2008). 

In this paper, we choose the linear form to estimate the probability of travel between two towns, as 

shown in Equation (5). This linear form is seen as a better form to forecast inter-city trips and has been 

corroborated with field data (Anderson 1999). 

𝑇𝑖𝑗 =

𝑃𝑖
𝐷𝑖𝑗

∑
𝑃𝑖
𝐷𝑖𝑗𝑗

    (5) 

In Equation (5), Tij is the probability that a person traveling from town i to town j; Dij is the 

distance between i and j; and Pi is the population of town i. 

We have further added to the Huff model two other parameters: a compliance parameter Ci, 

meaning the percentage of the population of town i engaging in inter-town trips, and a containment 

parameter D0, meaning the maximum distance people are willing to travel under influences of social 

distancing. These two parameters extend the Huff-model to estimate Mij, the total population traveling 

from town i to town j, as shown in Equation (6). 

 

𝑀𝑖𝑗 = 𝑃𝑖𝐶𝑖𝑇𝑖𝑗  = 𝑃𝑖𝐶𝑖  

𝑃𝑖
𝐷𝑖𝑗

∑
𝑃𝑖
𝐷𝑖𝑗𝑗

    (6) 

s.t.    𝐷𝑖𝑗 ≤ 𝐷0     

Model (6) is a Huff-based trip distribution model where the compliance parameter Ci and the 

containment variable D0 can be determined by different social distancing scenarios. To further 

incorporate the trip distribution model to the SEIR model, we have made several necessary 
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assumptions: (1) both the susceptible and exposed populations conform to the mobility rule in Equation 

(6); (2) the infectious and recovered populations are isolated so that they cannot travel to other towns; 

(3) the susceptible population traveling to other towns can be affected by the infectious population in 

both their origin town and destination town; (4) the total population and the daily travel population of a 

town are stable during the modeling period; (5) daily travelers return to their origin town by the end of 

the day; and (6) the transmission rate gradually decreases due to non-pharmaceutical interventions 

during the social distancing period (Lai et al. 2020). Based on these assumptions, we have developed the 

meso-scale SEIR model (MSEIR), simulating the daily dynamics of susceptible (Si), exposed (Ei), infectious 

(Ii), and recovered populations (Ri) of the ith town, as shown in Equations (7) through (11). 
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where 

Ei: exposed population of town i;  

Ii: infectious population of town i;  

Mij: population (susceptible or exposed) traveling from town i to town j. The parameter is derived from 

Equation (6). 

Ni: total population of town i (Ni = Si + Ei + Ii + Ri);  

Ri: recovered population of town i (including hospitalized, self-recovered, and death);  

Si: susceptible population of town i;  
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t: time (daily); 

a: daily change rate of the transmission rate (0 < a < 1); 

β: transmission rate (conversion from the susceptible population to exposed population); 

γ: recovery rate; 

σ: daily incubation rate (reciprocal of the incubation period); 

In the MSEIR model, Equations (7) through (10) are a series of differential equations indicating 

the daily variation of the susceptible, exposed, infectious, and recovered population at each 

transmission stage. Equation (11) is the daily change of the transmission rate.  

 

2.4 Model initialization and parameter estimation 

To implement the model, five state variables at the initial stage must be derived: (1) the initial 

transmission rate β0 (estimated from our case study, see below); (2) the initial exposed population Ei0 

(estimated from our case study, see below); (3) the initial infectious population Ii0 , which equals to the 

cases of infection on March 23, 2020, the start date of the data. (4) the initial susceptible population 𝑆i0, 

which can be derived as Si0 = Ni – Ei0; and (5) the initial recovered population R0 = 0 under the 

assumption that no individuals are cured, hospitalized, or had died at the initial stage.  

σ and γ can be derived from historical data. σ is the daily incubation rate as the reciprocal of the 

incubation period. γ is the recovery rate, indicating the rate of reduction in the infectious population 

due to hospitalization, self-recovery, and death. This parameter assumes that once an infectious 

individual is hospitalized, self-recovered, or died, the person will be isolated from the transmission cycle. 

According to a recent study among the first 425 diagnosed patients (Li et al. 2020), the mean incubation 

period of COVID-19 was 5.2 days (at a 95% confidence interval [CI], 4.1 to 7.0 days), and the mean time 

duration from the illness onset to hospital admission was 9.1 days (95% CI, 8.6 to 9.7 days). Thus, we 
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assumed that our study had a similar incubation period and duration from illness onset to the first 

medical visit. In our model, σ = 1/5.2 and γ = 1/9.1. 

For parameters β0 and a, we estimated their optimal values for each town using the daily 

cumulative cases of infection derived from the Connecticut Department of Public Health (CDPH, 2020). 

We assumed that β0 and a were constant throughout the study area and under different social 

distancing scenarios. The exposed population at the initial stage Ei0 was an unknown parameter that 

varied by town. Because of this uncertainty, we treated Ei0 as another parameter to be estimated. Thus, 

each town i had an independent Ei0 given the difference in the onset of the outbreak, population, and 

other factors dictating the early exposed population. The Nelder-Mead algorithm (Nelder and Mead 

1965) was employed to estimate parameters by minimizing the negative normal log-likelihood between 

the simulated and the confirmed daily cumulative cases. 

 

3. Case study 

3.1 Study area and data 

 Our study was implemented in the state of Connecticut with the unit of analysis being county 

subdivision or town. Located in the New England region, Connecticut is the third smallest state by area 

in the United States with 169 towns and a total population of 3.5 million (Figure 2a). On March 8, the 

first COVID-19 case was reported in Wilton, a town neighboring New York (The New York Times, 2020). 

Because of the geographical proximity to New York City, the epicenter of the national outbreak, the 

state experienced an exponential rise of infections in the early outbreak. As of May 11, the total 

confirmed cases of infection were over 34,000, and the total deaths were over 3,000 (CDPH 2020). 

Figure 2b shows the COVID-19 infection rate per 10,000 people as of May 11, 2020 (Figure 2b). 
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Figure 2. Connecticut towns with (a) population density of 2018 and (b) COVID-19 infection rate as of 

May 11, 2020. Towns further discussed in the article are labeled. 
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 Modeling COVID-19 at the meso-scale is inseparable from state policy related to social 

distancing. In Connecticut, the first stage of the social distancing rules was implemented on March 23 by 

the governor’s executive order “Stay Safe, Stay Home,” requiring the closure of non-essential businesses 

and some non-profit organizations (Ct.gov 2020a). This policy was relieved by reopening certain non-

essential businesses effective on May 20 (Ct.gov 2020b). Based on this context, we retrieved the daily 

town-level COVID-19 infection data during this period, specifically the first 50 days since the first day of 

enforcing the state social distancing rules (i.e., March 23 through May 11, 2020). The dataset was 

solicited from the state government’s daily publications (CDPH 2020). 

 

3.2 Social distancing scenarios 

 We have designed three compliance levels and three containment levels to estimate Mij in the 

MSEIR model, forming a total of nine models representing different degrees of social distancing policy 

enforcement, as shown in Table 1. In this framework, Model 1 represents the substantial enforcement 

with only 10% of the population taking inter-town trips and a maximum travel distance of 20 miles; 

Model 9 represents the minimum enforcement with 50% of the population taking inter-town trips and a 

maximum travel distance of 140 miles. The 140-mile threshold is the road network distance between 

the two most remote towns in Connecticut (i.e., Thompson and Greenwich). 
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Table 1. Nine social distancing scenarios based on different compliance and containment levels. 

 Containment level (D0) 

Compliance level (Ci) 20 miles 60 miles 140 miles* 

10% Model 1 

(Substantial) 

Model 2 Model 3 

30% Model 4 Model 5 

(Moderate) 

Model 6 

50% Model 7 Model 8 Model 9 

(Minimum) 

 

These social distancing scenarios were incorporated into Equation (6) by Python scripting to 

derive Mij. In the implementation, Pi was derived from the 2018 census data; Dij was derived as the road 

network distance between the geographic centers of towns using the Network Analysis module in ESRI 

ArcMap 10.7 (i.e., OD cost matrix) in a refined road network. The results of Mij were imported to the 

MSEIR model (scripted in Python) for fitting the dynamics of COVID-19 infection in the 50-day period. 

We then employed the fitted models for predicting future trends. 

 

3.3 Results 

Using the town-level data, we implemented the MSERI model under all social distancing 

scenarios in Table 1. In addition to the model fitting, we extended the epi curves of the cumulative cases 

of infection (IC) to the future development with an end date of July 12, 2020. We also established the 

baseline scenario in the SEIR model where there is no travel or interaction between towns (Ci = 0%, D0 = 

0 miles). 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 2, 2020. ; https://doi.org/10.1101/2020.06.01.20119073doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.01.20119073


For the sake of clarity, we selected four scenarios for comparison and discussion: the SEIR model 

for no interaction, Model 1 for substantial social distancing, Model 3 for moderate social distancing, and 

Model 9 for minimum social distancing. Figure 3 shows the COVID-19 epic curves of the entire state. As 

shown in the figure, the SEIR model has considerably underestimated the epi curve, with the value of Ic 

converging to 26,000. When the three social distancing scenarios are introduced, the epic curves start to 

align with the confirmed cases, with the minimum social distancing scenario (Model 9) yielding the 

steepest curve. The simulation predicts that the total cumulative cases of infection will be in the range 

of 45,752–48,105 (Model 5 and Model 9) as of July 12, which is a rise by 34.2%–41.1% with respect to 

the reported cases (Ic = 34,070) as of May 11. 

 

Figure 3. Simulation results of the cumulative cases of infection (Ic) by the SEIR model and the MSEIR 

model (Models 1, 5, and 9) in Connecticut. 
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Figure 4. Simulation results of the cumulative cases of infection (Ic) by the SEIR model and the MSEIR 

model (Models 1, 5, and 9) for six Connecticut towns: (a) Bridgeport, (b) Hartford, (c) Mansfield, (d) New 

Britain, (e) Norwalk, and (f) Wilton. The geographical locations of these towns are shown in Figure 2. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 2, 2020. ; https://doi.org/10.1101/2020.06.01.20119073doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.01.20119073


Figure 4 shows the COVID-19 epic curves for six selected towns. As shown in Figure 2, Bridgeport 

(population: 144,900), Norwalk (population: 89,047), and Wilton (population: 18,397) are located in the 

center of outbreak in Southwest Connecticut; the capital city Hartford (population: 122,587) and its 

satellite city New Britain (population: 72,453) are located in another high-risk region; Mansfield 

(population: 70,981) is a relatively rural area comprised of mainly university employees and students. It 

can be seen from the results that the SEIR model with no spatial interaction generates the flattest curve 

for all six towns and underestimates the infection in Bridgeport, Hartford, New Britain, and Norwalk. 

However, the results under different social distancing scenarios are mixed, and all simulation results for 

Hartford are somewhat under-estimated. We feel these uncertainties could be a result of the 

discrepancies between the simulated travel activities and the real-world travel flow.  

Figure 5 is a comparison of the simulated infection rates across all towns as of July 12. The map 

data were derived from the SEIR model, Model 1, Model 5, and Model 9. Results for other models are 

given in the Appendix. As all the figure illustrates, towns with the highest infection rates are located in 

Southwest Connecticut, which is a pattern consistent with the existing outbreak. In addition, substantial 

social distancing measures (Model 1, Figure 5b) can largely curb the local spread, comparing to the 

moderate (Model 5, Figure 5c) and the minimum control scenarios (Model 9, Figure 5d). We then 

scrutinized the results by deriving the rate of increase per 10,000 people for each town between May 11 

and July 12 under each of the ten models. Then, we counted the frequency of the town appearing on 

the top 10 list. We found that the following towns appeared on the list at least five times: Westport (N = 

10), Bethlehem (N = 10), Stafford (N = 6), New Canaan (N = 6), Darien (N = 6), Ridgefield (N = 6), Wilton 

(N = 5), and Weston (N = 5). These towns, as labeled in Figure 5, have a higher likelihood of outbreak 

during May, June, and July. 
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Figure 5. Simulated COVID-19 infection rates (per 10000 people) as of July 12 based on (a) SEIR model, 

(b) Model 1, (c) Model 5, and (d) Model 9.  Towns with the highest rate of increase (appearing on the 

top 10 list for at least five times among all models) are labeled. 

 

3.4 Evaluation of model fitting 

 To evaluate the performance of the MSEIR model, we derived two statistical metrics for each of 

the ten models: r2 and root-mean-square error (RMSE). Specifically, we calculated r2 and RMSE for each 

of the 169 towns by comparing the simulation results with the confirmed cumulative cases in the 50-day 

period. r2 assesses whether the MSEIR model captures the trend of the historical data, while RMSE 

quantifies the absolute difference between the model output and the observation. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 2, 2020. ; https://doi.org/10.1101/2020.06.01.20119073doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.01.20119073


First, we performed the evaluations across all 169 towns and derived the respective average of 

the 169 values of r2 and RMSE. Then, the total number of towns with r2 greater than 0.95 were counted, 

as shown in Table 2. Overall, all models achieved satisfactory levels of fitting with the historical data in 

terms of trend monitoring (r2 > 0.9). The differences in RMSE were more evident. We identified that 

Model 7 had a better performance than other models in terms of a relatively high r2 and low RMSE.  

To further excavate the applicability of the MSEIR model, we further divided the towns into 

three categories based on the United States Census Bureau (USCB)’s urban-rural classification (USCB 

2010): urbanized areas (UAs), urban clusters (UCs), and rural areas (RAs). Then, we evaluated the model 

fitting for towns under each category, as shown in Table 3. We identified that while UAs and UCs 

achieved relatively satisfactory levels of model fitting (r2 > 0.9), RAs or towns with a small population 

could not be fitted well (r2 < 0.7). Thus, the MSEIR model is best suited for towns exceeding a certain size 

(i.e., urban clusters) and must be adjusted for applications for small towns.  
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Table 2. Model fitting with the historical data for all towns (n = 169). 

Model Average r2 Average RMSE N (r2>0.95) 

SEIR 0.919 67.869 104 

1 0.907 70.328 87 

2 0.909 72.113 92 

3 0.910 64.059 90 

4 0.910 52.171 91 

5 0.903 61.469 81 

6 0.907 46.957 86 

7 0.914 49.671 96 

8 0.913 60.710 94 

9 0.910 59.457 92 
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Table 3. Model fitting with the historical data for towns by category* 

Model 

UAs (n = 18) UCs (n = 135) RAs (n = 16) 

Average r2 
Average 

RMSE 
N (r2>0.95) Average r2 

Average 

RMSE 
N (r2>0.95) Average r2 

Average 

RMSE 
N (r2>0.95) 

SEIR 0.985 302.367 18 0.941 44.336 85 0.662 2.618 1 

1 0.972 307.222 14 0.925 46.854 72 0.678 1.885 1 

2 0.978 338.683 18 0.927 44.582 73 0.675 4.518 1 

3 0.979 303.672 16 0.928 39.367 73 0.683 2.830 1 

4 0.977 230.632 16 0.929 34.354 74 0.676 1.725 1 

5 0.973 272.269 15 0.919 40.350 65 0.684 2.509 1 

6 0.976 170.620 17 0.925 35.624 67 0.677 3.466 2 

7 0.981 211.781 18 0.933 33.716 77 0.679 1.918 1 

8 0.983 189.952 17 0.933 49.894 76 0.670 6.573 1 

9 0.980 200.609 18 0.929 47.030 73 0.679 5.517 1 

*The categories are given by USCB (2010) based on population: urbanized areas (UAs) of 50,000 or more people, urban clusters (UCs) between 
2,500 and 50,000 people, and rural areas (RAs) of less than 2,500 people. It should be noted that USCB uses a different areal unit for urban-rural 
classification and is not based on the county subdivision (i.e., town).  Thus, the category in this analysis does not suggest the actual urban-rural 
status of a town.
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4. Discussion 

 The proposed MSEIR model applied to meso-scale COVID-19 simulation is among the first to 

evaluate the development of the pandemic using an administrative unit smaller than a county. By 

downscaling the analysis to the town level and realizing the model under different social distancing 

scenarios, the study sheds important insights into COVID-19 studies. 

 First, meso-scale analysis is of critical importance for revealing the epidemic development after 

the initial wave of outbreak. When social distancing orders were placed for curbing the early infection, 

needs for domestic flights or interstate travel were largely suppressed (Gao et al. 2020). New cases of 

infection would be primarily caused by local spread through short-distance travel. Thus, efforts and 

policies to contain the COVID-19 development would be most effective by curbing inter- or intra-town 

travel activities. Incorporating the interaction across townships and deriving their epi curves can help 

the municipality to leverage resources for preparing for rising contingencies, such as the resurgence of 

an outbreak in the future. The classical SEIR model and its many extensions, however, lack the capability 

of simulating the epidemic spread at the meso-scale. This increased spatial granularity to model COVID-

19 is the major contribution of the work.  

Second, the proposed social distancing framework including the compliance and containment 

provides quantifiable metrics for COVID-19 studies that attempt to evaluate the effects of social 

distancing. Since the pandemic is growing at an alarming rate worldwide, existing studies have largely 

emphasized on the timing (Chinazzi et al. 2020), economic impacts (Atkeson 2020), and the ethical 

issues (Lewnard and Lo 2020) of social distancing, while the effects on human mobility at the community 

scale are not well scrutinized. This gap has likely resulted from the lack of detailed mobility data 

(especially the origin-destination trip data), coupled with the sensitivity of data collection due to the 

nature of the outbreak and the federal requirement (e.g., the Health Insurance Portability and 

Accountability Act) for privacy protection. The simulation of the travel activities using the Huff model 
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could help to estimate the regional human movement pattern; and further model calibration will 

increase the rigor of the estimation (Huff and McCallum 2008).  

 Lastly, we have found that there are discrepancies in the modeling results across different 

towns. While the SEIR model has underestimated the majority of the epi curves, it tends to align with 

towns with a sparse population or located in rural areas, such as Mansfield (Figure 4c) and Wilton 

(Figure 4f). This alignment is very likely due to the relatively low level of spatial interaction in terms of 

inter-town travel in these towns. The proposed MERI model works best for towns exceeding a certain 

size (Table 3) but does not well perform for towns with a complex mobility pattern, such as the city of 

Hartford (Figure 4b). This result justifies that although towns in a state are subject to the same timing of 

social distancing orders, the actual policy effects on the residents’ mobility pattern, and consequently, 

on curbing the epi curves of the pandemic are largely different. Due to this spatial heterogeneity in 

mobility pattern, which is internally driven by socioeconomic inequities (Bonaccorsi et al. 2020), it is 

impossible to establish a one-size-fits-all model for COVID-19 analysis for every town in a state. 

Therefore, we have two recommendations for improving and better understanding the MSEIR model: 

first, a field survey to solicit people’s daily travel activities (e.g., travel frequency, distance, mode, time, 

origin-destination) is a necessity to derive the actual mobility pattern between towns in lieu of the 

model estimation. To fulfill this goal, we have initiated a separate project to investigate people’s actual 

travel activities during the period of the state easing the lockdown; second, we suggest that local 

stakeholders employing the modeling results should adopt and prepare for the worst-case scenario 

(e.g., Model 9) and target towns that may experience the most rapid epidemic growth under all 

scenarios (e.g., labeled towns in Figure 5). This elevated caution in preparedness can guide the leverage 

of public health resources towards the most severe situation and the most vulnerable areas. 
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5. Conclusion 

The COVID-19 pandemic has posed an unprecedented challenge to the global economy and the 

health-care system. While modeling COVID-19 by simulating the epic curve has become a growing 

practice across all disciplines, existing models have not been able to examine the issue at the meso-

scale, using a small unit of analysis such as town or census tract, nor have quantified how social 

distancing may curb the transmission at this scale. The proposed MSEIR model introduces the effects of 

spatial interaction between towns on the epidemic development. The scenario-based analysis could 

help policy stakeholders to understand how the compliance with and the containment by social 

distancing rules regulate people’s travel activities and can help predict how different degrees of policy 

enforcement would shape the epic curve over different phases of policy implementation. These 

modeling results have the potential to assist stakeholders with strategical decisions about the timing 

and expected outcomes of relieving social distancing rules. It should also be noted that with the rapidly 

evolving epidemic situation and many emerging local policies as countermeasures, the actual epi curves 

would be very different from what the model predicts. Albeit the tiers of uncertainties, we believe the 

developed MSEIR model will establish the foundation for community-level assessment and better 

preparedness for COVID-19. 
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