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Abstract 

Background—The novel coronavirus SARS-Cov2 uses the angiotensin-converting enzyme 2 

(ACE2) receptor as an entry point to the cell. Cardiovascular disease (CVD) is a risk factor for 

the novel coronavirus disease (Covid-19) with poor outcomes. We hypothesized that the rate of 

ACE inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) use is associated with the rate 

of Covid-19 confirmed cases and deaths.  

Methods—We conducted a geospatial study using publicly available county-level data. The 

Medicare ACEIs and ARBs prescription rate was exposure. The Covid-19 confirmed case and 

death rates were outcomes. Spatial autoregression models were adjusted for the percentage of 

Black residents, children, residents with at least some college degree, median household income, 

air quality index, CVD hospitalization rate in Medicare beneficiaries, and CVD death rate in a 

total county population.  

Results—The ACEI use had no effect on Covid-19 confirmed case rate. An average ACEIs use 

(compared to no-use) was associated with a higher Covid-19 death rate by 1.1 (95%CI 0.4-

1.8)%. If the use of ACEIs increases by 0.5% for all counties, the Covid-19 death rate will drop 

by 0.4% to 0.7(95%CI 0.3-1.1)%; P<0.0001. An average ARBs use (compared to no-use) was 

associated with a higher Covid-19 confirmed case rate (by 4.2; 95%CI 4.1-4.3 %) and death rate 

(by 1.1; 95%CI 0.7-1.5 %). Each percent increase in ARBs use was associated with an increase 

in confirmed case rate by 0.2(0.03-0.4)% and death rate by 0.14(0.08-0.21)%.  

Conclusions—ARBs, but not ACEIs use rate, is associated with Covid-19 confirmed case rate.  
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Introduction 

The novel coronavirus disease 2019 (Covid-19) caused by SARS-Cov2 virus was named 

a pandemic officially by the World Health Organization on March 11th, 2020.1,2 It has been 

shown that SARS-Cov2 uses the angiotensin-converting enzyme 2 (ACE2) receptor as an entry 

point into a cell2-4. 

With the ACE2 receptor acting as a binding site for SARS-Cov2, the Renin-Angiotensin-

Aldosterone System (RAAS), and the medications affecting it become important points of 

discussion.1,5-8Angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor 

blockers (ARBs) are two common classes of medications widely used in patients with 

hypertension, diabetes, and cardiovascular disease (CVD), a latent or manifest left ventricular 

dysfunction. Hypertension, diabetes, and CVD emerged as risk factors for severe Covid-19 cases 

and deaths.9-11 Previous experiments showed that ACE2 expression is associated with 

susceptibility to SARS-Cov infection.12  

Notably, available clinical studies consider ACEIs and ARBs together5, 8. However, the 

effects of ACEI and ARBs on ACE2 levels and activity are different.8 Experimental studies 

showed that there is no direct effect of ACEIs on ACE2 activity.13 While there is strong evidence 

that ARBs increase ACE2 expression14-19 and augment ACE2 activity20,21-23, only Ferrario et al24 

showed that ACEIs increase ACE2 expression, whereas other studies showed that ACEIs 

decrease25 or did not change levels and activity of ACE2 in tissue.20, 26 

The consensus is reached by all international cardiac societies about the importance of 

the continuation of ACEIs and ARBs use in Covid-19 pandemic.5 However, it remains unknown 

whether clinically indicated use of ACEIs and ARBs improve or worsen infectivity or the course 

of Covid-19, and whether there are differences between ACEIs and ARBs. 
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In this rapidly growing pandemic, time is of an essence. To address an urgent need5, we 

conducted the geospatial study. We hypothesized that in the geospatial analysis, the rate of 

ACEIs and ARBs use associated with the number of confirmed Covid-19 cases and deaths in the 

United States (US).  

Methods  

We conducted a geospatial disease mapping study using publicly available county-level data. 

The study was reviewed by the Oregon Health & Science University Institutional Review Board 

and assigned a determination of Not Human Research. We provided the study dataset and 

STATA (StataCorp, College Station, Texas) code at 

https://github.com/Tereshchenkolab/geospatial, allowing future replication and update of the 

study results as COVID-19 pandemic is unfolding.  

Geographical framework 

An individual county in the US was an observation unit in this study. We used a Federal 

Information Processing Standard (FIPS) county code to link the data. Data with missing FIPS 

codes were excluded from the study. Geographic information about each county was obtained 

from the cartographic boundary files (shapefiles) provided by the US Census Bureau’s 

MAF/TIGER geographic database.27 

Exposure: rate of ACEIs and ARBs use by the Medicare Part D beneficiaries 

We used the 2017 Centers for Medicare & Medicaid Services (CMS) public dataset, the 

Medicare Provider Utilization and Payment Data: Part D Prescriber Public Use File, with 

information on prescription drugs prescribed by individual physicians and other health care 

providers and paid for under the Medicare Part D Prescription Drug Program in 2017.28 The 
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dataset included the total number of prescriptions that were dispensed (total day supply), which 

include original prescriptions and any refills, and, therefore, reflects ACEIs and ARBs usage.  

The Medicare dataset only includes city and state information and not county information. In 

order to map the Medicare prescription data to their corresponding FIPS Code, we used the 

Google Geocoding API.29 We then loaded the Medicare data and geocoded data into the SQLite 

database to produce the final datasets with prescription counts per county. Prescriptions from 

county-equivalents (independent cities) were manually matched with their corresponding FIPS 

code. Medicare prescriptions with misspelled cities or prescriptions that lacked valid city and 

state descriptions, if unable to be assigned, were excluded. Excluded prescriptions accounted for 

<0.01% of the data. 

We calculated a drug class use rate as a sum of total day supply in a county for all drugs 

comprising a particular class (Table 1), normalized by the total county population estimate. We 

used the US Census Annual Resident Population Estimates for July 1st, 2019.  

Outcomes: COVID-19 confirmed cases and deaths 

We imported the raw COVID-19 data from the Johns Hopkins GitHub repository.30 The 

number of confirmed COVID-19 cases and deaths in each county as reported for May 12th, 2020 

was divided by the total population in each county (2019 county population estimate) and 

multiplied by 100,000 to convert to cases and deaths per 100,000 population. The primary 

outcome was the total number of confirmed Covid-19 cases in each county per 100,000 

population, as reported for May 12th, 2020. The secondary outcome was the total number of 

Covid-19 deaths in each county per 100,000 population, as reported for May 12th, 2020. 
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Covariates: Population characteristics 

Demographic and socioeconomic characteristics 

We used the US Census County Population Estimates, released in March 2020, and included 

reported deaths and births in period July 1st, 2018 to June 30th, 2019.31 Due to known negative 

impact of Covid-19 on the population of nursing homes and prisons/jails, we included July 1st, 

2019 Group Quarters total population estimate. Group Quarters Facilities include correctional 

facilities for adults, nursing homes, college/university student housing, military quarters, and 

group homes. Group Quarters data was gathered from an estimated 20,000 randomly selected 

facilities. Data was then collected through resident interviews of these selected facilities using 

the American Community Survey conducted by the US Census Bureau.32 The total 2019 county 

population estimate31 normalized all demographic characteristics.  

To characterize socioeconomic characteristics, we used the 2018 median household income 

expressed as a percent of the state total, and percent of the total population in poverty, as 

reported by the Economic Research Service of the US Department of Agriculture.33 Besides, we 

used the data compiled by the County Health Rankings & Roadmaps program, which is a 

collaboration between the Robert Wood Johnson Foundation and the University of Wisconsin 

Population Health Institute.34 

Cardiovascular disease prevalence and severity 

To characterize CVD prevalence and severity, we used the Centers for Disease Control and 

Prevention (CDC) estimates35 of total CVD death rate per 100,000 population (2016-18), total 

CVD hospitalizations (2015-17) per 1,000 Medicare beneficiaries, heart failure (HF) death rate 

per 100,000 population (2016-18), HF hospitalization rate per 1,000 Medicare beneficiaries 

(2015-17), coronary heart disease (CHD) death rate per 100,000 population (2016-18), CHD 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 1, 2020. ; https://doi.org/10.1101/2020.05.31.20118802doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.31.20118802


7 

hospitalization rate per 1,000 Medicare beneficiaries (2015-17), and age-adjusted diabetes 

percentage in adults (age > 20y). This data was obtained from the Interactive Atlas of Heart 

Disease and Stroke, published by the CDC. Within this atlas, death rates were gathered from the 

Deaths National Vital Statistics Program, hospitalization rates were gathered from the Centers 

for Medicare and Medicaid Services Medicare Provider Analysis and Review file Part A, and 

diabetes percentages were collected from the Division of Diabetes Translation.35  

To characterize the use of cardiovascular medications, we calculated the rate of 

cardiovascular medications use, which included original prescriptions and any refills (total day 

supply), as reported in the 2017 CMS Part D Medicare Prescriber Public Use File.28 We 

considered the total day supply data for 20 medication groups (Table 1): ACEI, ARB, beta-

blockers, alpha-and-beta-blockers, alpha-blockers, class I, III, and V antiarrhythmic medications, 

dihydropyridine, and non-dihydropyridine calcium channel blockers, aldosterone antagonists, 

central acting antihypertensive medications, vasodilators, diuretics, lipid-lowering drugs, 

insulins, and oral hypoglycemic agents, anticoagulants and antiplatelet medications. We 

normalized the cardiovascular medications day supply for each county by the 2019 county 

population estimate.31  

Statistical analyses 

Data are summarized as mean ± standard deviation or as the median and interquartile range 

(IQR) if non-normally distributed. A paired t-test was used to compare an average rate of ACEIs 

and ARBs use. 

As Covid-19 is a contagious disease, incidence and mortality in neighboring counties are 

spatially correlated. Therefore, we used spatial autoregression model36 that allows modeling the 

spatial dependence among the outcomes, covariates, and among unobserved errors.37 The spatial 
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autoregression model used the generalized spatial two-stage (method-of-moment), least-squares 

estimator.38 The model included spatial lags of the outcome variable, spatial lags of covariates, 

and spatially autoregressive errors. The lag operator was a spatial weighting (inverse-distance) 

matrix, which summarized spatial relationships between counties, based on the distance between 

county centroids. Weighting matrix was scaled so that its largest eigenvalue is 1, which 

guarantees nonsingularity in the model estimation. We constructed cross-sectional spatial 

autoregressive models. The estimator treated the errors as heteroskedastic, thus relaxing the 

assumption that errors represent identically distributed disturbance.  

We conducted the Moran test to determine whether exposure, outcome and covariate 

variables are spatially dependent. 

First, we constructed unadjusted spatial autoregression models, to investigate a geospatial 

association of the county population characteristics with the ACEIs and ARBs use rate, 

calculated as follows:  

ACEIs use rate = ln (total ACEIs day supply/county population). 

ARBs use rate = ln (total ARBs day supply/county population). 

Each model included spatial lags of the outcome variable (ACEIs or ARBs use rate, one-by-

one), spatial lags of the testes predictor variable (demographic, socioeconomic, and CVD 

prevalence characteristics, one-by-one), and spatially autoregressive errors (reflecting 

unobserved factors). 

Next, we constructed unadjusted spatial autoregression models, to evaluate a geospatial 

association of the county population characteristics with the rate of Covid-19 confirmed cases 

and deaths. To normalize the distribution of the outcome variables, and to improve the 

interpretability of models, we transformed outcome variables as follows: 
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Covid-19 confirmed case rate = ln (1+ confirmed Covid-19 cases/100,000 population); 

Covid-19 death rate = ln (1+ confirmed Covid-19 deaths/100,000 population). 

Each model included spatial lags of the outcome variable (Covid-19 confirmed case rate and 

death rate, one-by-one), spatial lags of the tested predictor variable (demographic and 

socioeconomic characteristics, cardiovascular risk factors and CVD prevalence, and the rate of 

ACEIs or ARBs use, one-by-one), and spatially autoregressive errors (unobserved impacts). 

Finally, we constructed adjusted spatial autoregression models to answer the main study 

question: whether there is an independent association of ACEIs and ARBs use rate with Covid-

19 confirmed case and death rate. The selection of covariates for adjustment was guided by 

observed in this study confounders (covariates that statistically significantly associated with both 

predictor and outcomes variables) and model fit. We were striving to obtain the highest R2 value 

and χ2 statistic (Wald test of spatial terms). Our final models explained at least 30% of the 

variability in each outcome (R2 value >0.3). We adjusted for demographic and socioeconomic 

characteristics of a county population (percentage of Black non-Hispanic county residents, 

percentage of a county residents younger than 18 years of age, percentage of residents with at 

least some college degree, median household income as a percent of state total), air quality 

index, as well as CDC-reported CVD hospitalization rate in Medicare beneficiaries, and CVD 

death rate in a total county population. Each model included spatial lags of the outcome variable 

(Covid-19 incidence and mortality, one-by-one), spatial lags of the tested predictor variable (rate 

of ACEIs or ARBs usage, one-by-one), spatial lags of the selected (listed above) 7 covariates 

(altogether) and spatially autoregressive errors (unobserved influences).  
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Sensitivity analyses 

Cross-sectional geospatial analysis is susceptible to reverse causality bias. It is well-

documented that patients with CVD and cardiovascular risk factors (hypertension, diabetes) have 

a higher rate of Covid-19 confirmed cases and deaths.5 The rate of ACEIs and ARBs use 

indirectly indicates CVD prevalence and severity. While we adjusted our models for the broad 

range of confounders, including CVD mortality in a total county population, and CVD 

hospitalization rate among Medicare beneficiaries, reverse causality remained of concern. To 

assess the possibility and extend of reverse causality bias, we constructed described above spatial 

autoregression models for the rate of use of other cardiovascular medications, for each class of 

drugs separately, one-by-one.  

Results 

Rate of ACEI and ARB use, and their association with population characteristics 

We analyzed the data of 3,141 counties and county-equivalents in the 50 states and the 

District of Columbia. ACEIs were the most ubiquitous medications, surpassed only by lipid-

lowering drug use (Table 1). Average county characteristics are reported in Table 2. Figure 1 

shows the ACEIs and ARBs total day supply rates across the US. On average, the total day 

supply rate was higher for ACEIs than for ARBs (10.3±6.5 vs. 6.0±4.6 days; P<0.0001), as 

shown in Figure 1C. The Moran test indicated that the rates of ACEIs and ARBs use were 

spatially dependent (P<0.0001).  

In unadjusted spatial autoregression analysis (Table 3), as expected, CVD prevalence, 

general demographic characteristics, uninsured rate, and air quality were associated with the use 

of both ACEIs and ARBs. A higher percentage of adults above 65 y of age was associated with 
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higher use of ACEIs, but not ARBs. A higher percentage of Asians was associated with the use 

of ARBs, but not ACEIs.  

Covid-19 confirmed case and death rate 

Covid-19 confirmed case and death rate (Figure 2) had similar geographic distribution. As of 

May 12th, 2020, in an average county, there were median 84.8 (IQR 34.4 – 208.6) confirmed 

cases and median 0.35 (IQR 0 – 7.6) deaths per 100,000 population.  

In unadjusted spatial autoregression analysis (Table 4), higher CVD and HF hospitalization 

rate among Medicare beneficiaries, a higher percentage of Blacks, Hispanics, Asians, and Pacific 

Islanders, a greater proportion of children (age < 18y) and residents admitting excessive 

drinking, a higher percentage of households with high housing costs, and worse air quality were 

associated with a higher rate of confirmed Covid-19 cases. In contrast, a larger proportion of 

county residents admitting physical inactivity, a greater percentage of adults above 65 years of 

age and non-Hispanic Whites, greater uninsured rate, and higher CVD mortality across all ages 

were associated with a lower rate of confirmed Covid-19 cases (Table 4). The same factors that 

affected Covid-19 confirmed case rate also affected Covid-19 death rate, but the strength of the 

impact on mortality was lesser. As expected, we observed significant indirect (spillover) effects 

of socioeconomic factors coming from neighboring counties on confirmed Covid-19 case and 

death rate to a given county. 

Association of ACEI and ARB use rate with confirmed Covid-19 case and death rate  

In unadjusted analysis, as expected, both ACEI and ARB use rate had a direct and indirect 

impact on confirmed Covid-19 case and death rate (Table 5).  

However, the association of ACEI use with Covid-19 was fully explained by confounders 

(Table 5). In adjusted analyses, the ACEI use rate had no effect on Covid-19 confirmed case rate, 
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as demonstrated by the marginsplot (Figure 3A). There was no significant observed averaged 

effect (the observed averaged marginal effect was +4.4%; 95%CI from -16.5 to 41.6%), and no 

effect from a change of ACEIs use rate in all counties on Covid-19 confirmed case rate, as 

illustrated by the perfectly flat line (Figure 3A). There was a significant observed marginal effect 

on Covid-19 mortality (1.08%; 95%CI 0.35-1.81%), which suggested that an average ACEIs use 

rate (as compared to no ACEI use) was associated with higher Covid-19 mortality, by 1.1%. If 

the use of ACEIs increases by 0.5% for all counties, Covid-19 mortality will drop by 0.36%, 

from 1.08(95%CI 0.35-1.81)% to 0.72(95%CI 0.34-1.10)%; P<0.0001 (Figure 3B).  

Nevertheless, after adjustment for demographic and socioeconomic characteristics, air 

quality index, and CVD prevalence and mortality, the rate of ARBs use remained significantly 

associated with Covid-19 outcomes (Table 5). On average, an increase in ARB use rate in a 

given county by 1% was associated with a 0.20 % increase in Covid-19 confirmed cases and a 

0.14% increase in Covid-19 deaths in that county (direct, county-own effect). There was a 

significant observed effect of ARBs use. The observed averaged marginal effect was 4.21 

(95%CI 4.13-4.29) % on Covid-19 confirmed case rate, which suggested that an average ARBs 

use (as compared to no use) was associated with a significantly higher number of confirmed 

Covid-19 cases (Figure 3C). There was a non-significant trend towards a lower rate of confirmed 

cases with a higher rate of ARBs use. If the use of ARBs increases by 0.5% for all counties, 

Covid-19 confirmed cases nonsignificantly decline by 0.68% (Figure 3C). There was also a 

significant observed marginal effect on Covid-19 mortality, which suggested that an average 

ARBs use (as compared to no ARB use) was associated with higher Covid-19 mortality by 

1.06% (95%CI 0.68-1.45%). If the use of ARBs increases by 0.5% for all counties, Covid-19 
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mortality will nonsignificantly decrease by 0.24% from 1.06(95%CI 0.68-1.45)% to 0.82(95%CI 

-0.04 to 1.67)%; P=0.062 (Figure 3D). 

Of note, adjustment fully explained the indirect (spillover) effect of ACEIs and ARBs use 

rate coming from all neighboring counties on Covid-19 confirmed case and death rate to a given 

county, while all models confirmed strong spatial dependence (Wald test of spatial terms for all 

models P<0.00001).  

Sensitivity analysis 

In unadjusted analysis, the use of cardiovascular medications reflects CVD prevalence. As 

expected, the use of nearly all types of cardiovascular medications was associated with Covid-19 

confirmed case rate (Supplemental Table 1), with few exceptions. The use of antiarrhythmic 

drugs (class I. III, and V), and vasodilators was associated with a lower rate of confirmed Covid-

19 cases. The use of vasodilators was also associated with a lower Covid-19 death rate. Overall, 

an association of medications use rate with Covid-19 death rate was similar to the association of 

medications use rate with Covid-19 confirmed case rate but had a smaller effect size.  

In adjusted analysis (Supplemental Table 2), the rate of use of the vast majority of 

cardiovascular medications had no association with Covid-19 confirmed case and death rate. 

This finding supports the validity of the primary study analyses.   

Discussion 

There are two main findings in this study. First, we confirmed that the rate of ACEIs use 

does not impact Covid-19 confirmed case rate. Moreover, an increase in the ACEIs use rate is 

associated with a nearly equal (~ 1:1) drop in the Covid-19 death rate. Our results highlight the 

safety and indicate possible benefits of ACEIs use for patients with clinical indications for ACEI 
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in the Covid-19 era. Our results are consistent with several other studies of ACEIs in Covid-

19.39, 40 

Second, we observed that ARBs use associated with a slightly higher rate of Covid-19 

confirmed case and death rate. After adjustment for demographic and socioeconomic 

confounders and CVD prevalence, an increase in ARBs use by 1% was associated with a 0.20 % 

increase in Covid-19 confirmed cases and a 0.14% increase in Covid-19 deaths. This finding 

suggests that long-term use of ARBs, due to known ACE2 upregulation, may facilitate SARS-

CoV-2 entry and increase infectivity. ACEIs and ARBs are frequently prescribed 

interchangeably for the same clinical indications. Cluster-randomized controlled trial is 

warranted to answer the question of whether the replacement of ARBs by ACEIs may reduce 

Covid-19 confirmed case rate. Importantly, in this observational geospatial study, residual 

confounding and reverse causality bias cannot be completely ruled out. The use of ARBs may 

indicate a subgroup of CVD patients who are especially vulnerable to the virus. In such a case, 

the use of ARBs is not a cause, but a marker of risk. Therefore, it is essential to reinforce 

effective Covid-19 prevention strategies in patients taking ARBs, to avoid virus exposure. 

SARS-CoV-2 virus may preferentially infect individuals taking ARBs, but not ACEIs 

There is strong evidence that the entry of the SARS-CoV-2 virus into the host cell depends 

on the SARS-CoV receptor ACE2.41 ACE2 is a type I integral membrane glycoprotein expressed 

mainly in the respiratory tract, heart, kidneys, and gastrointestinal tract.42 ACE2 tissue 

expression facilitates the virus entry in target cells.12  

Clinical indications for ACEIs and ARBs are similar, and in many clinical studies, these two 

classes of drugs considered together under the common name “RAAS inhibitors.“ However, the 

effects of ACEI and ARBs on ACE2 levels and activity are different.8 Experimental studies 
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showed that there is no direct effect of ACEIs on ACE2 activity.13 In most experimental studies, 

ACEIs decrease25 or did not change levels and activity of ACE2 in tissue.20, 26 Only Ferrario et 

al24 showed that ACEIs increase ACE2 expression. In contrast, numerous studies showed that 

ARBs increased ACE2 expression14-19 and augmented ACE2 activity.20,21-23 

Our findings support the hypothesis that long-term use of ARBs, but not ACEIs may 

facilitate SARS-CoV-2 entry and increase infectivity. Several recent studies39, 40 reported 

findings pointed to the same direction.  

As in any observational study, we have to emphasize that reverse causality bias should be 

considered. Several unmeasured confounders could be responsible for our findings. First, ARBs 

are indicated to patients who are intolerant to ACEIs, usually because of bradykinin-mediated 

cough. Second, both ACEIs and ARBs can be used together in patients with advanced HF, and 

thus indicate a high-risk patient population. For those patient categories, switching from ARBs to 

ACEIs is not an option. Nevertheless, regardless of whether ARBs indeed increase infectivity or 

simply indicate a high-risk patient population, it would be wise to reinforce effective Covid-19 

prevention strategies, to minimize the risks of exposure to the virus.  

There is no evidence that the use of ACEI and ARBs in Covid-19 impact the disease severity 

Our findings support the notion of ACEIs and ARBs playing a “double-edged sword”6, 7, 43 

role. The impact of ARBs on Covid-19 death rate was smaller than on Covid-19 confirmed case 

rate, suggesting no adverse effect on Covid-19 disease severity. Moreover, we observed a non-

significant decrease in Covid-19 death rate associated with an increase in ARBs use rate. 

Notably, we showed that if ACEIs use rate increases by 1% for all counties, Covid-19 death rate 

will drop by ~0.8%, demonstrating nearly 1:1 relationships.  
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By degrading angiotensin II, ACE2 reduces its effect on the RAAS system.1 It has been 

shown44 that ARBs may have a greater potential45 to block the RAAS system46 than ACEIs, and 

the proposed mechanism is due to the fact that about 40% of the angiotensin II is formed via 

non-ACE pathways. ARBs also block the excessive angiotensin-mediated AT1R activation47 

caused by the viral infection and exert anti-inflammatory effects.48 Our findings support current 

recommendations of continued use of ACEIs and ARBs in Covid-19 patients.5  

Limitations 

Although the Medicare Part D Prescriber Public Use File has a wealth of information, the 

dataset has several limitations. The data may not be representative of a physician’s entire 

practice or all of Medicare as it only includes information on beneficiaries enrolled in the 

Medicare Part D prescription drug program (approximately two-thirds of all Medicare 

beneficiaries). Besides, available data were for the year 2017 and did not reflect the most recent 

use of medications in 2020. Nevertheless, we measured exposure before the outcome, which is 

essential for the interpretation of the study findings. Furthermore, we did not adjust for 

adherence to medications. Nevertheless, a recent geospatial study of ACEI/ARB adherence49 

showed a relatively consistent geographic distribution of ACEI/ARB adherence across the US. 

An observational cross-sectional geospatial study is susceptible to reverse causality bias. To 

address this limitation, we performed a rigorous analysis of all other classes of cardiovascular 

medications. The results of sensitivity analyses were logically coherent and consistent with the 

main study results. Finally, unobserved confounding was likely present in this observational 

study. The most apparent missing data included the rate of Covid-19 testing. Therefore, observed 

effect sizes have to be interpreted with caution. However, unobserved confounding would not 

affect a relative comparison of ACEIs and ARBs.  
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Table 1. List of studied medications and average yearly total day supply per 1 county resident 

Group Medications Total day supply per 1 county 
resident(median, IQR) 

ACEI Benazepril 
Captopril 
Enalapril 
Fosinopril 
Lisinopril 

Moexipril 
Perindopril 
Quinapril 
Ramipril 
Trandolapril 

9.9(6.6-13.2) 

ARB Azilsartan 
Candesartan 
Eprosartan 
Ibesartan 
Telmisartan 

Valsartan 
Losartan 
Olmesartan 
Sacubitril/Valsartan 
Nebivolol/Valsartan 

5.5(3.4-7.9) 

Beta-blockers Acebutolol 
Atenolol 
Betaxolol 
Bisoprolol 
Esmolol 

Metoprolol 
Nadolol 
Pindolol 
Propranolol 

8.2(4.9-12.0) 

Alpha- and beta-
blockers (beta-
blockers with 
vasodilation effect) 

carvedilol 
Labetolol 

Nebivolol 2.0(1.2-3.2) 

Alpha-blockers Alfuzosin 
Doxazosin 
Prazosin 

Tamsulosin 
Terazosin 
Silodosin 

2.6(1.6-3.8) 

Central acting Clonidine  0.4(0.2-0.8) 
Aldosterone 
Antagonists 

Aldactone 
Spironolactone 

Eplerenone 0.7(0.4-1.1) 

Dihydropyridine 
Calcium Channel 
Blockers 

Nimodipine 
Isradipine 
Nicardipine 
Nifedipine 
Felodipine 

Amlodipine 
Nisoldipine 
Clevidipine 
Levamlodipine 

6.3(4.2-8.8) 

Non-Dihydropyridine 
Calcium Channel 
Blockers 

Verapamil Diltiazem 1.0(0.5-1.5) 

Antiarrhythmic 
medications class I 

Quinidine 
Ajmaline 

Tocainide 
Encainide 

0.10(0.03-0.23) 
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Procainamide 
Disopyramide 
Lidocaine 
Mexiletine 

Flecainide 
Propafenone 
Moricizine 

Antiarrhythmic 
medications class III 

Amiodarone 
Sotalol 
Ibutilide 

Dofetilide 
Dronedarone 
Vernakalant 

0.2(0.1-0.5) 

Antiarrhythmic 
medications class V 

Digoxin  0.3(0.1-0.5) 

Loop diuretics Bumetanide 
Ethacrynic Acid 

Furosemide 
Torsemide 

3.9(2.4-5.7) 

Thiazides and Other 
Diuretics 

Chlorothiazide 
Bendroflumethiazide 
Hydrochlorothiazide 
Methyclothiazide 

Metolazone 
Indapamide 
Chlorthalidone 
 

6.6(4.3-9.0) 

Vasodilators Nitroglycerin, Nitrates 
Hydralizine 

Nesiritide 
Nitroprusside 

0.07(0.02-0.15) 

Lipid-lowering drugs Fluvastatin 
Lovastatin 
Rosuvastatin 
Pitavastatin 
Simvastatin 
Atorvastatin 
Pravastatin 
Alirocumab 
Evolocumab 

Ezetimibe 
Cholestyramine 
Colestipol 
Colesevelam 
Gemfibrozil 
Fenofibrate 
Clofibrate 
Fenofibric Acid 
Niacin 

14.9(9.5-20.3) 

Anticoagulants Warfarin 
Apixaban 
Edoxaban 
Fondaparinux 
Rivaroxaban 
Dabigatran 

Dalteparin 
Enoxaparin 
Argatroban 
Bivalirudin 
Desirudin 

2.5(1.4-3.8) 

Antiplatelet 
medications 

Abciximab 
Eptifibatide 
Tirofiban 
Aspirin 
Cangrelor 
Cilostazol 

Dipyridamole 
Prasugrel 
Ticlopidine 
Ticagrelor 
Caplacizumab 
Vorapaxar 

1.8(1.1-2.9) 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 1, 2020. ; https://doi.org/10.1101/2020.05.31.20118802doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.31.20118802


29 

Clopidogrel 
Insulins Glargine 

Detemir 
NPH 
Regular 

Lispro 
Aspart 
Glulisine 

2.0(1.2-2.9) 

Oral hypoglycemic agents Sulfonylureas 
Chlorpropamide 
Glimepiride 
Glyburide 
Glipizide 
Tolazamide 
Tolbutamide 

Meglitinides 
Repaglinide 
Nateglinide 

Thiazolidinediones 
Rosiglitazone 
Pioglitazone 
Dipeptidyl Peptidase 4 

Inhibitors 
Sitagliptin 
Saxagliptin 
Linagliptin 
Alogliptin 

Biguanides 
Metformin 

Sodium-Glucose 
Cotransporter-2 

Inhibitors 
Canagliflozin 
Dapagliflozin 
Empagliflozin 
Ertugliflozin 
Incretin Mimetics 

Exenatide 
Liraglutide 
Dulaglutide 
Semaglutide 
Albiglutide 
Lixisenatide 
Amylin Analogues 
Pramlintide 

Alpha-
Glucosidase 
Inhibitors 

Miglitol 
Acarbose 

9.0(5.9-12.1) 
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Table 2. Average characteristics of counties 

Characteristic Mean±Standard Deviation 
Population in 2019 104,502±333,504 
Births in 2019 per 100,000 population 1098.7±240.5 
Deaths in 2019 per 100,000 population 1041.3±269.8 
Group Quarters population in 2019 per 100,000 population 3375.5±4411.8 
% Poverty 15.2±6.1 
Median household income as % of state total 89.4±20.1 
% Adults with self-reported poor or fair health 17.9±4.7 
% Adult smoking 17.5±3.6 
% Adult obesity 32.9±5.4 
% Physical inactivity 27.4±5.7 
% Excessive drinking 17.5±3.1 
% Uninsured(all) 11.5±5.1 
% with some college education 57.9±11.8 
Air pollution index 8.98±2.01 
% of households with high housing costs 11.1±3.7 
% Food insecurity 13.2±4.0 
% Insufficient Sleep 33.0±4.2 
% Population age<18y 22.1±3.5 
% Population age>65y 19.3±4.7 
% Non-Hispanic Black 9.0±14.3 
% Native Americans 2.3±7.7 
% Asians 1.6±3.0 
% Pacific Islanders 0.1±0.4 
% Hispanics 9.7±13.8 
% Non-Hispanic White  76.0±20.2 
% Female  49.9±2.2 
CVD hospitalization rate per 1000 Medicare Beneficiaries 59.5±16.7 
CVD death rate per 100,000 population 239.9±51.5 
Heart failure hospitalization rate per 1000 Medicare Beneficiaries 15.2±6.5 
Heart Failure death rate per 100,000 population 107.9±25.8 
CHD hospitalization rate per 1000 Medicare Beneficiaries 13.1±4.0 
CHD death rate per 100,000 population 102.7±32.1 
Diabetes age-adjusted percentage (age > 20y) 10.4±3.8 
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Table 3. Unadjusted impact on geospatial distribution of ACEI and ARB use 

 ACEI use rate ARB use rate 
Impact factor Direct (county-own) effect Indirect (spillover) effect Direct (county-own) effect Indirect (spillover) effect 
Per 1% rate increase Marginal effect (95%CI) P-value Marginal effect (95%CI) P-value Marginal effect (95%CI) P-value Marginal effect (95%CI) P-value 
Births in 2019 +0.24(0.07-0.42) 0.006 -1.91(-10.01-6.2) 0.645 +0.33(0.16-0.51) <0.0001 -2.5(-8.7-3.9) 0.417 
Deaths in 2019 +0.41(0.17-0.65) 0.001 -1.56(-2.85 to -0.26) 0.018 +0.32(0.14-0.50) <0.0001 -1.24(-1.91 to -0.56) <0.0001 
GQ population 2019 -0.003(-0.039-0.033) 0.867 -0.38(-0.50 to -0.26) <0.0001 +0.014(-0.021-0.050) 0.426 -2.75(-13.99-8.49) 0.632 
Poverty +0.01(0.004-0.02) 0.001 -0.27(-0.82-0.29) 0.348 +0.004(-0.005-0.01) 0.383 -0.03(-0.14-0.08) 0.625 
Median HH income -0.005(-0.006 to -0.003) <0.0001 +0.009(-0.01-0.03) 0.372 -0.001(-0.003-0.0004) 0.176 -0.05(-0.28-0.19) 0.687 
Poor/Fair Health +1.26(-10.8-13.7) 0.816 +743(-34444-35931) 0.967 +0.30(-0.80-1.39) 0.594 -17.8(-93.4-57.7) 0.644 
Smoking -0.09(-1.47) 0.900 -4.08(-37.1-28.9) 0.808 -1.68(-3.11 to -0.26) 0.021 -51.9(-711-607) 0.877 
Obesity +0.30(-0.44-1.03) 0.425 +86(-1679-1851) 0.924 -0.13(-0.72-0.46) 0.667 +11.9(-0.90-24.65) 0.068 
Physical Inactivity +0.70(0.16-1.25) 0.012 +10.5(-2.3-23.3) 0.106 +0.12(-0.44-0.68) 0.685 +13.46(-0.38-27.31) 0.685 
Drinking -1.60(-2.76 to -0.45) 0.007 +4.4(-2.2-10.9) 0.189 +0.42(-0.68-1.53) 0.452 -51.8(-482-379) 0.814 
Uninsured(all) -2.85(-3.78 to -1.92) <0.0001 +0.87(-5.02-6.76) 0.772 -3.73(-4.72 to -2.74) <0.0001 +5.16(1.52-8.80) 0.005 
Some college +0.36(0.09-0.62) 0.009 -26(-261-208) 0.826 +1.08(0.81-1.35) <0.0001 +3.83(1.17-6.48) 0.005 
Air pollution index +0.09(0.06-0.11) <0.0001 +0.27(-0.16-0.70) 0.212 +0.12(0.10-0.13) <0.0001 +0.06(0.02-0.11) 0.010 
HH with high cost +4.4(3.5-5.3) <0.0001 -44(-207-124) 0.598 +5.49(4.56-6.41) <0.0001 +3.39(-2.87-9.66) 0.288 
Food insecurity +2.72(1.78-3.67) <0.0001 +159(-783-1101) 0.741 +2.7(-49.4-54.8) 0.920 +1338(-14340-14608) 0.986 
Insufficient Sleep +0.79(-0.20-1.78) 0.120 -10.8(-83.8-62.2) 0.771 +0.97(0.01-1.93) 0.047 -6.32(-173-160) 0.941 
Population age<18 -0.78(-1.88-0.32) 0.162 +25.2(3.0-46.3) 0.020 -0.67(-1.90-0.56) 0.285 +25.5(-1.10-52.1) 0.060 
Population age>65 +1.09(0.42-1.75) 0.001 +7.38(5.90-8.85) <0.0001 +0.42(-0.28-1.13) 0.240 -2.09(-14.4-10.2) 0.739 
Non-Hispanic Black +0.47(0.14-0.79) 0.005 -7.0(-12.2 to -1.8) 0.008 +1.09(0.73-1.45) <0.0001 -5.06(-10.2-0.06) 0.053 
Native Americans -1.1(-1.6  to -0.6) <0.0001 -19.7(-38.5 to-1.0) 0.039 -1.68(-2.26 to -1.09) <0.0001 -49.8(-162.3-62.7) 0.386 
Asians -0.41(-2.02-1.20) 0.614 +4.21(-29.9-38.3) 0.809 +2.47(1.02-3.92) 0.001 +16.8(-12.2-45.7) 0.256 
Pacific Islanders +1.68(-2.23-5.59) 0.401 -192(-702-318) 0.462 +10.1(6.3-13.9) <0.0001 -836(-1825-154) 0.098 
Hispanics +0.58(0.25-0.91) 0.001 -10.7(-17.2 to -4.3) 0.001 +0.57(-41.7-42.9) 0.979 -14.9(-2689-2660) 0.991 
Non-Hispanic White -0.11(-0.33-0.12) 0.380 +2.11(1.78-2.43) <0.0001 -0.23(-0.48-0.01) 0.065 +0.92(0.11-1.73) 0.027 
Female +7.22(5.83-8.61) <0.0001 +1.7(-18.4 -21.8) 0.867 +8.46(7.07-9.86) <0.0001 -13.2(-23.2 to -3.2) 0.010 
CVD hospitalizations +0.002(-0.0005-0.005) 0.100 +0.008(-0.009-0.03) 0.357 +0.0008(-0.002-0.004) 0.612 +0.01(0.004-0.02) 0.006 
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CVD death +0.003(0.002-0.004) <0.0001 +0.01(0.004-0.02) 0.001 +0.002(0.001-0.003) <0.0001 +0.008(0.003-0.01) 0.003 
HF hospitalizations +0.002(-0.004-0.008) 0.563 +0.04(-0.0007-0.08) 0.054 +0.001(-0.006-0.008) 0.751 +0.05(0.01-0.08) 0.006 
HF death +0.003(0.002-0.004) <0.0001 +0.04(-0.01-0.09) 0.127 +0.001(-0.00006-0.003) 0.060 +0.04(-0.008-0.09) 0.103 
CHD hospitalizations +0.02(0.009-0.03) <0.0001 -0.06(-0.36-0.25) 0.717 +0.01(0.00001-0.02) 0.050 -0.34(-3.17-2.48) 0.812 
CHD death +0.003(0.002-0.004) <0.0001 -0.07(-0.55-0.41) 0.779 +0.002(0.0008-0.003) <0.0001 +0.03(-0.004-0.07) 0.082 
Diabetes  +0.0006(-0.009-0.01) 0.893 +0.05(-0.04-0.14) 0.258 -0.004(-0.01-0.006) 0.393 +0.08(0.04-0.11) <0.0001 

Table 4. Unadjusted impact on Covid-19 confirmed case and death rate 

 Covid-19 confirmed case rate Covid-19 death rate 
Impact factor Direct (county-own) effect Indirect (spillover) effect Direct (county-own) effect Indirect (spillover) effect 
Per 1% rate increase Marginal effect (95%CI) P-value Marginal effect (95%CI) P-value Marginal effect (95%CI) P-value Marginal effect (95%CI) P-value 
All CVD drugs use +0.20(0.13-0.27) <0.0001 +1.22(0.84-1.60) <0.0001 +0.10(0.06-0.14) <0.0001 +0.18(0.11-0.25) <0.0001 
Births in 2019 +1.05(0.73-1.37) <0.0001 -3.67(-5.03 to -2.32) <0.0001 +0.49(0.28-0.69) <0.0001 -0.86(-1.58 to -0.14) 0.019 
Deaths in 2019 -0.40(-0.67 to -0.13) 0.003 -0.92(-2.19-0.35) 0.156 -0.23(-0.33 to -0.13) <0.0001 +0.07(-0.13-0.28) 0.490 
GQ population 2019 -0.004(-0.065-0.057) 0.897 -2.60(-3.81 to -1.38) <0.0001 +0.0001(-0.036-0.036) 0.995 -0.39(-0.48 to -0.30) <0.0001 
Poverty +0.002(-0.009-0.012) 0.764 +0.32(0.13-0.51) 0.001 -0.002(-0.01-0.006) 0.602 +0.08(0.06-0.11) <0.0001 
Median HH income +0.01(0.007-0.01) <0.0001 +0.10(0.02-0.18) 0.014 +0.007(0.005-0.009) <0.0001 +0.004(-0.001-0.009) 0.104 
Poor/Fair Health +2.58(0.81-4.34) 0.004 +30.2(18.4-41.9) <0.0001 +0.07(-1.11-1.24) 0.912 +6.89(4.74-9.04) <0.0001 
Smoking +0.67(-1.35-2.70) 0.514 +30.7(13.1-48.3) 0.001 -2.23(-3.57 to-0.89) 0.001 +7.22(-7.10-21.55) 0.323 
Obesity +0.63-0.51-1.76) 0.280 +22.9(13.8-32.1) <0.0001 -1.26(-2.16 to -0.36) 0.006 +6.30(4.49-8.11) <0.0001 
Physical Inactivity -3.6(-4.7 to-2.5) <0.0001 +40.0(14.6-65.4) 0.002 -2.58(-3.49 to -1.67) <0.0001 +9.09(6.78-11.39) <0.0001 
Drinking +7.5(4.9-10.1) <0.0001 +43.5(9.1-77.9) 0.013 +2.90(1.09-4.71) 0.002 +3.51(-0.51-7.53) 0.087 
Uninsured(all) -2.47(-4.24 to-0.70) 0.006 -375(-2440-1689) 0.721 -2.00(-3.22 to -0.77) 0.001 +24.3(12.4-36.3) <0.0001 
Some college +0.23(-0.39-0.84) 0.472 -105(-1080-870) 0.833 +1.15(0.77-1.53) <0.0001 +0.59(-0.22-1.40) 0.153 
Air pollution index +0.37(0.24-0.50) <0.0001 +0.08(-0.45-0.60) 0.775 +0.21(0.17-0.25) <0.0001 -0.11(-0.21 to -0.004) 0.041 
HH with high cost +7.5(5.6-9.4) <0.0001 +25.8(23.2-28.4) <0.0001 +6.56(5.22-7.90) <0.0001 +0.63(-5.18-6.43) 0.833 
Food insecurity -0.61(-2.52-1.29) 0.528 +102(-73-277) 0.252 +0.92(-0.56-2.40) 0.223 +8.61(5.68-11.55) <0.0001 
Insufficient Sleep +5.2(0.9-9.6) 0.019 +8.0(-0.6-16.6) 0.068 +2.82(1.12-4.52) 0.001 -0.58(-4.62-3.47) 0.780 
Population age<18 +5.9(3.9-8.0) <0.0001 +32.6(11.5-53.9) 0.002 +2.69(1.42-3.96) <0.0001 +2.32(-0.23-4.89) 0.075 
Population age>65 -8.4(-9.8 to-7.1) <0.0001 +243(-540-1028) 0.542 -3.96(-4.88 to -3.03) <0.0001 +15.07(10.27-19.87) <0.0001 
Non-Hispanic Black +2.8(2.3-3.2) <0.0001 +5.7(1.9-9.6) 0.003 +2.46(1.87-3.05) <0.0001 +6.13(4.80-7.46) <0.0001 
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Native Americans +0.23(-0.76-1.22) 0.643 -71.8(-103.9 to -39.6) <0.0001 +0.10(-0.53-0.73) 0.751 -410(-1784-964) 0.559 
Asians +6.2(2.8-9.6) <0.0001 +143(112-175) <0.0001 +6.05(3.82-8.28) <0.0001 +117.3(87.2-147.4) <0.0001 
Pacific Islanders +28.0(14.6-41.4) <0.0001 +688(-827-2205) 0.373 +9.7(1.5-17.9) 0.021 +1948(368-3528) 0.016 
Hispanics +3.6(2.8-4.4) <0.0001 -33.5(-56.6 to -10.4) 0.004 +1.31(0.85-1.77) <0.0001 +24.8(4.8-44.7) 0.015 
Non-Hispanic White -2.6(-3.0 to -2.1) <0.0001 -8.8(-26.3 -8.6) 0.322 -1.45(-1.76 to -1.13) <0.0001 +5.57(3.48-7.66) <0.0001 
Female +2.2(-0.8-5.1) 0.148 +12.3(1.3-23.2) 0.029 +5.14(3.00-7.29) <0.0001 -6.00(-10.63 to -1.38) 0.011 
CVD hospitalizations +0.02(0.01-0.02) <0.0001 +0.07(-0.001-0.14) 0.054 +0.005(0.002-0.009) 0.006 +0.02(0.002-0.03) 0.024 
CVD death -0.002(-0.004 to -0.001) 0.001 +0.04(0.01-0.07) 0.007 -0.002(-0.003 to -0.0009) <0.0001 +0.009(0.006-0.01) <0.0001 
HF hospitalizations +0.04(0.03-0.06) <0.0001 +0.08(0.004-0.15) 0.039 +0.02(-0.03-0.07) 0.387 -0.06(-3.44-3.32) 0.973 
HF death -0.005(-0.007 to -0.003) <0.0001 -0.25(-1.00-0.50) 0.510 -0.004(-0.006 to -0.002) <0.0001 +0.02(0.02-0.03) <0.0001 
CHD hospitalizations -0.003(-0.05-0.04) 0.875 +0.04(-3.22-3.31) 0.979 -0.03(-0.13-0.06) 0.506 -0.09(-6.18-6.00) 0.976 
CHD death -0.004(-0.006(-0.003) <0.0001 +0.13(0.05-0.21) 0.002 -0.004(-0.006 to -0.002) <0.0001 +0.02(0.02-0.03) <0.0001 
Diabetes  +0.01(-0.004-0.03) 0.141 +0.46(0.07-0.83) 0.016 -0.003(-0.06-0.05) 0.924 -0.03(-3.42-3.37) 0.988 

HH=household  
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Table 5. Unadjusted and adjusted impact of the ACEIs and ARBs use rate on Covid-19 confirmed case and death rate 

 Impact factor Direct (county-own) effect Indirect (spillover) effect Direct (county-own) effect Indirect (spillover) effect 
Model Marginal effect (95%CI) P-value Marginal effect (95%CI) P-value Marginal effect (95%CI) P-value Marginal effect (95%CI) P-value 
U ACEI +0.17(0.09-0.26) <0.0001 +2.78(1.40-4.17) <0.0001 +0.12(0.06-0.17) <0.0001 +0.42(0.22-0.61) <0.0001 
U ARB +0.24(0.17-0.31) <0.0001 +1.56(1.36-1.76) <0.0001 +0.17(0.12-0.22) <0.0001 +0.53(0.41-0.64) <0.0001 
A ACEI +0.30(-7.67-8.27) 0.941 +0.23(-154.2-154.7) 0.998 +0.16(-0.12-0.43) 0.270 -0.88(-2.78-1.02) 0.365 
A ARB +0.20(0.03-0.37) 0.019 -1.56(-6.55-3.44) 0.541 +0.14(0.08-0.21) <0.0001 -0.64(-1.62-0.34) 0.203 

U=unadjusted. A=adjusted for the percentage of Black non-Hispanic county residents, percentage of a county residents younger 

than 18 years of age, percentage of residents with at least some college degree, median household income as a percent of the state 

total, air quality index, CDC-reported CVD hospitalization rate in Medicare beneficiaries, and CVD death rate in a total county 

population. 
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Supplemental Table 1. Unadjusted impact of the use of cardiovascular medications on Covid-19 confirmed case and death rate 

Impact factor Direct (county-own) effect Indirect (spillover) effect Direct (county-own) effect Indirect (spillover) effect 
 Marginal effect (95%CI) P-value Marginal effect (95%CI) P-value Marginal effect (95%CI) P-value Marginal effect (95%CI) P-value 
Lipid-lowering 
drugs 

+0.25(0.17-0.33) <0.0001 -0.06(-3.04-2.93) 0.970 +0.16(0.11-0.21) <0.0001 +0.31(0.20-0.40) <0.0001 

CCB 
dihydropyridine 

+0.26(0.18-0.34) <0.0001 +1.19(0.73-1.64) <0.0001 +0.19(0.14-0.24) <0.0001 +0.44(0.30-0.57) <0.0001 

CCB 
Nondihydropyridine 

-0.03(-0.10-0.04) 0.348 +0.49(-1.65-2.63) 0.656 +0.08(0.02-0.13) 0.006 +3.48(0.21-6.75) 0.037 

Beta-blockers +0.19(0.12-0.27) <0.0001 -0.02(-3.02-2.98) 0.991 +0.13(0.08-0.18) <0.0001 +0.43(0.16-0.69) 0.002 
Alpha-blockers +0.15(0.08-0.22) <0.0001 +1.63(0.87-2.40) <0.0001 +0.13(0.07-0.19) <0.0001 +1.14(0.78-1.50) <0.0001 
Alpha-and-beta-
blockers 

+0.12(0.05-0.19) 0.001 +1.21(-0.11-2.53) 0.072 +0.18(0.12-0.23) <0.0001 +0.46(-4.16-5.08) 0.846 

Aldosterone 
antagonists 

-0.06(-0.13-0.01) 0.077 -3.63(-6.71 to -0.54) 0.021 +0.06(0.003-0.11) 0.040 -1.19(-3.99-1.61) 0.403 

Anticoagulants +0.05(-0.02-0.11) 0.177 -2.53(-9.56-4.51) 0.482 +0.11(0.06-0.16) <0.0001 +1.44(1.04-1.85) <0.0001 
Anti-platelets +0.09(0.02-0.15) 0.009 +0.99(-0.34-2.31) 0.143 +0.16(0.10-0.21) <0.0001 +1.60(-0.28-3.48) 0.094 
AAD class I -0.12(-0.16 to -0.07) <0.0001 -1.08(-1.82 to -0.33) 0.005 +0.01(-0.-2-0.04) 0.440 -0.89(-1.08 to -0.70) <0.0001 
AAD class III -0.09(-0.14 to -0.05) <0.0001 -1.82(-2.87 to -0.78) 0.001 +0.05(0.01-0.09) 0.007 -1.33(-1.60 to -1.07) <0.0001 
AAD class V -0.16(-0.22 to -0.11) <0.0001 -2.98(-3.25 to -2.71) <0.0001 +0.04(-2.92-3.00) 0.980 +2.46(-183.7-188.7) 0.979 
Vasodilators -0.19(-0.23 to -0.14) <0.0001 -1.32(-1.68 to -0.95) <0.0001 -0.08(-0.12 to -0.05) <0.0001 -0.55(-0.77 to -0.34) <0.0001 
Central  -0.19(-0.26to -0.11) <0.0001 +0.84(-1.27-2.96) 0.431 -0.01(-0.06-0.05) 0.831 -4.23(-7.41 to -1.04) 0.009 
Loop diuretics +0.08(-0.001-0.16) 0.052 +8.80(-5.63-23.23) 0.232 +0.08(0.03-0.14) 0.004 +0.88(0.68-1.08) <0.0001 
Thiazides, other 
diuretics 

+0.20(0.11-0.29) <0.0001 -0.27(-5.85-5.32) 0.925 +0.14(0.08-0.19) <0.0001 +0.46(0.09-0.82) 0.013 

Insulins +0.14(0.06-0.22) <0.0001 +0.38(-2.26-3.02) 0.778 +0.11(0.06-0.17) <0.0001 +1.38(1.06-1.71) <0.0001 
Oral hypoglycemic 
drugs 

+0.21(0.12-0.30) <0.0001 +6.20(-27.11-39.52) 0.715 +0.12(0.06-0.17) <0.0001 +0.37(-0.08-0.83) 0.108 
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Supplemental Table 2. Adjusted impact of cardiovascular medications use on Covid-19 confirmed case and death rate 

Impact factor Direct (county-own) effect Indirect (spillover) effect Direct (county-own) effect Indirect (spillover) effect 
 Marginal effect (95%CI) P-value Marginal effect (95%CI) P-value Marginal effect (95%CI) P-value Marginal effect (95%CI) P-value 
Lipid-lowering 
drugs 

+0.22(-0.67-1.11) 0.622 -2.14(-25.8-21.5) 0.860 +0.17(-0.77-1.11) 0.729 -0.65(-3.49-2.19) 0.653 

CCB 
dihydropyridine 

+0.24(0.11-0.36) <0.0001 -1.46(-3.57-0.65) 0.174 +0.17(0.06-0.28) 0.002 -0.95(-2.56-0.66) 0.246 

CCB 
Nondihydropyridine 

+0.05(-0.13-0.22) 0.590 -0.74(-2.13-0.66) 0.300 +0.11(-4.41-4.63) 0.961 +0.56(-286.7-287.8) 0.997 

Beta-blockers +0.38(-70.8-71.5) 0.992 +2.34(-1738-1743) 0.998 +0.15(0.003-0.29) 0.046 -0.62(-1.74-0.50) 0.277 
Alpha-blockers +0.17(-0.20-0.54) 0.373 -1.00(-3.11-1.11) 0.352 +0.14(0.06-0.22) 0.001 -1.05(-6.17-4.07) 0.688 
Alpha-and-beta-
blockers 

+0.11(-0.12-0.35) 0.357 -1.21(-11.1-8.72) 0.811 +0.14(0.06-0.22) <0.0001 -0.96(-2.90-0.99) 0.335 

Aldosterone 
antagonists 

+0.06(-0.04-0.15) 0.227 -0.74(-2.13-0.66) 0.300 +0.09(-0.19-0.38) 0.519 -0.29(-1.31-0.73) 0.579 

Anticoagulants +0.11(0.004-0.21) 0.042 -0.91(-2.32-0.51) 0.209 +0.11(0.05-0.17) <0.0001 -0.53(-1.49-0.43) 0.280 
Anti-platelets +0.18(-7.68-8.05) 0.964 -0.81(-17.78-16.17) 0.926 +0.15(0.07-0.23) <0.0001 -1.34(-6.92-4.25) 0.639 
AAD class I -0.07(-0.11 to -0.02) 0.007 -0.18(-0.76-0.39) 0.531 +0.01(-0.03-0.04) 0.711 +0.03(-0.46-0.52) 0.892 
AAD class III -0.07(-0.13 to -0.01) 0.031 +0.31(-3.59-4.21) 0.876 +0.03(-0.03-0.09) 0.282 -0.58(-2.37-1.21) 0.528 
AAD class V -0.06(-0.14-0.01) 0.098 +0.51(-0.41-1.42) 0.278 +0.002(-0.06-0.07) 0.954 +0.08(-0.50-0.65) 0.799 
Vasodilators -0.09(-0.14 to -0.05) <0.0001 -0.14(-0.55-0.27) 0.494 -0.05(-0.09 to -0.004) 0.031 +0.03(-1.03-1.09) 0.953 
Central  -0.11(-1.51-1.28) 0.874 +0.04(-26.8-26.9) 0.998 +0.007(-0.11-0.13) 0.901 -0.57(-3.76-2.62) 0.727 
Loop diuretics +0.16(0.01-0.30) 0.037 -1.33(-5.16-2.51) 0.499 +0.11(0.04-0.18) 0.001 -0.65(-1.83-0.54) 0.285 
Thiazides, other 
diuretics 

+0.20(-0.23-0.63) 0.369 -1.35(-8.93-6.23) 0.727 +0.14(0.06-0.23) 0.001 -1.01(-3.33-1.31) 0.395 

Insulins +0.17(-0.10-0.44) 0.214 -1.64(-14.7-11.4) 0.806 +0.12(0.04-0.20) 0.002 -0.93(-5.62-3.77) 0.699 
Oral hypoglycemic 
drugs 

+0.22(-0.04-0.49) 0.101 -1.82(-9.67-6.03) 0.650 +0.12(0.05-0.20) 0.001 -0.85(-2.81-1.12) 0.397 
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Figure legends 

Figure 1. ACEIs (A) and ARBs (B) total day supply rate and their ratio (C).  

Figure 2. Confirmed Covid-19 cases (A) and deaths (B) in the United States adjusted for a 

county population size.  

Figure 3. Marginsplot of the adjusted effect of ACEI (A, B) and ARB (C, D) use rate on 

Covid-19 confirmed cases rate (A, C) and death rate (B, D). All variables were log-transformed 

and reflected the relative change. Plots show the effect of ACEI (A, B) and ARB (C, D) use rate 

drop and increase by 0.5%, 0.4%, 0.3%, 0.2%, 0.1% for each county. All models were adjusted 

for the percentage of Black non-Hispanic county residents, percentage of a county residents 

younger than 18 years of age, percentage of residents with at least some college degree, median 

household income as a percent of the state total, air quality index, CVD hospitalization rate in 

Medicare beneficiaries, and CVD death rate in a total county population.  
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Figure 1A: 
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Figure 1B: 
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Figure 1C: 
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Figure 2A: 

 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 1, 2020. ; https://doi.org/10.1101/2020.05.31.20118802doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.31.20118802


42 

Figure 2B: 
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Figure 3: 
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