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ABSTRACT  

Streptococcus pneumoniae remains a leading cause of morbidity and mortality. Pneumococcal 

conjugate vaccines (PCVs) are effective but target only a fraction of the more than 90 

pneumococcal serotypes. As a result, the introduction of PCVs has been followed by the 

emergence of non-vaccine serotypes. With higher-valency PCVs currently under development, 

there is a need to understand and predict patterns of serotype replacement to anticipate future 

changes. In this study, we evaluated patterns of change in serotype prevalence post-PCV 

introduction in Israel. We found that the assumption that non-vaccine serotypes increase by the 

same proportion overestimates changes in serotype prevalence in Jewish and Bedouin children. 

Furthermore, pre-vaccine prevalence was positively associated with increases in prevalence over 

the study period. From our analyses, serotypes 12F, 8, 16F, 33F, 9N, 7B, 10A, 22F, 24F, and 17F 

were estimated to have gained the most cases of invasive pneumococcal disease through serotype 

replacement in the Jewish population. However, this model also failed to quantify some 

additional cases gained, suggesting that  changes in carriage in children alone may be insufficient 

to explain serotype replacement in disease. Understanding of serotype replacement is important 

as higher-valency vaccines are introduced.  

 

Keywords: pneumococcal conjugate vaccine, pneumococcus, post-vaccine dynamics, 

Streptococcus pneumoniae 
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Streptococcus pneumoniae (pneumococcus) is a leading cause of morbidity and mortality 

globally and causes a range of diseases including pneumonia, meningitis, and septicemia [1]. 

Nasopharyngeal carriage of pneumococcus is a precursor for disease [2]. Carriage is common in 

young children, who are the main reservoir of transmission to adults and other children [2, 3]. 

The likelihood of developing disease following exposure to pneumococcus depends on bacterial 

factors (i.e., serotype and other virulence factors) and host factors (age, immunocompetence, 

recent viral infection) [4, 5].  

Pneumococcal conjugate vaccines (PCVs) protect against carriage and invasive infections 

due to serotypes targeted by the vaccine [6-9]. However, PCVs target only a fraction of the more 

than 90 pneumococcal serotypes. As a result, despite an overall decline in pneumococcal disease, 

the introduction of PCVs is followed by the emergence of non-vaccine serotypes among healthy 

carriers and, consequently, as causes of disease [6, 10, 11]. This ‘serotype replacement’ has 

reduced the overall impact of PCVs on disease rates and has prompted the development of PCVs 

that target larger numbers of serotypes. Several new PCVs are under development that target 15, 

20, or more serotypes [12-14]. These vaccines will again likely disrupt the balance of serotypes 

in the nasopharynx and lead to further serotype replacement. As these next-generation conjugate 

vaccines move towards licensure, it is important to understand likely patterns of serotype 

replacement so that the marginal benefit of higher-valency vaccines can be anticipated. This is 

useful as countries decide which product to recommend in a given setting.   

When evaluating the potential impact of new vaccines, there is a need to predict the 

overall benefits, which are influenced by both declines in disease incidence due to vaccine-

targeted serotypes and by increases in disease incidence due to non-vaccine serotypes. At the 

same time, it is important to predict which serotypes are likely to emerge to help with future 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 3, 2020. ; https://doi.org/10.1101/2020.05.31.20116228doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.31.20116228
http://creativecommons.org/licenses/by-nd/4.0/


 4 

adjustments to the vaccine. To produce such projections, it is necessary to make assumptions 

about which serotypes are likely to increase and by how much. There are several proposed 

frameworks for accomplishing this goal. Nurhonen and Auranen predicted the impact of 

alternative PCV formulations with the assumption that all non-vaccine serotypes increase by the 

same proportion following vaccine introduction and that the invasiveness of the non-vaccine 

serotypes as a group is constant over time [15]. This approach can successfully capture the 

overall magnitude of the benefit of a vaccine by lumping vaccine and non-vaccine serotypes into 

broad groups [16-18]. However, when the goal is to examine emerging serotypes, it is important 

to consider individual serotypes. Recent work has used genomic data with models of negative 

frequency-dependent selection to quantify post-vaccine expansion patterns [19, 20]. However, 

whole genome sequence data are not always widely available, and their interpretation is 

complex. A complementary approach would be to identify characteristics of serotypes that 

emerge following vaccine introduction and to use this information to inform projections.  

In this study, we characterized the expansion patterns of non-vaccine serotypes among 

healthy carriers following the introduction of PCVs in Israel. We evaluated correlates of serotype 

expansion, compared the expansion patterns in Israel to those that would be expected if the 

commonly-employed assumption that all non-vaccine serotypes expand by the same amount 

were correct, and assessed the implications for disease projections if this assumption is wrong. 

Finally, we provided a framework to rank serotypes not currently included in PCV13 based on 

the likelihood that they may be important causes of disease in the future. 

 

METHODS 

Data, setting, & participants 
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PCV7 was introduced for use in Israel in the national immunization program in July 2009 

with a catch-up program in children <2 years old and was replaced by PCV13 in November 2010 

without further catch-up. Carriage data were collected as part of prospective surveillance in 

southern Israel from November 2009-June 2016, described in detail elsewhere [21]. Every 

weekday during the study period, nasopharyngeal cultures were collected from the first four 

Jewish and first four Bedouin children under five presenting at a pediatric emergency department 

in Be’er Sheva, Israel for any reason. Information was recorded regarding ethnicity, result of the 

pneumococcal culture, pneumococcal serotype (if applicable), clinical diagnosis, number of PCV 

doses received to date (PCV7 and/or PCV13), and the year and month when the swab was 

recorded. 

Invasive pneumococcal disease (IPD) data were also collected during the same time 

period as part of nationwide surveillance. These data were collected for individuals of all ages. 

Variables were collected regarding age group (<5, 5-17, 18-39, 40-64, and 65+ years), serotype, 

date (July 2009- June 2016), and number of swabs. Both the carriage and IPD datasets were 

aggregated into counts by serotype and epidemiological year (seven July-June years); the number 

of swabs negative for pneumococcus in the carriage dataset was also tallied. Year 0 in the 

carriage dataset is only ¾ of an epidemiological year, due to the fact that data collection started 

in November (instead of July) that year.  

 

Other data 

Additional serotype-specific characteristics were used in regression models to evaluate 

associations with baseline carriage prevalence and with changes in prevalence. These serotype-

specific variables included relative density of growth reached at an early time point during in 
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vitro growth [22], case fatality rate, negative charge carbon, total carbon per polysaccharide 

repeat, and capsule thickness [23]. In instances of missing data, missing values were imputed in 

the model assuming the data were missing completely at random (S1 Text). 

 

Carriage model 

The goal was to quantify changes in the prevalence of carriage of individual serotypes 

and to evaluate correlates of baseline prevalence or changes in prevalence. To do this, we fit a 

hierarchical Bayesian regression model to the data. The data for individual serotypes were 

sparse, so we used a hierarchical prior structure to provide stabilized estimates of the prevalence 

ratios for all serotypes [24]. In this model, pneumococcal carriage at time (epidemiological year) 

t follows a multinomial distribution with the number of successes being the number of detections 

of each non-vaccine serotype (i.e., each non-vaccine serotype representing a unique category), 

and the number of trials being the total number of nasopharyngeal swabs at time t. The 

“reference” category in this model includes all negative swabs and detections of PCV13 

serotypes combined. The change in prevalence in the post-vaccine period varies by serotype and 

is a function of serotype-specific covariates. In this model, time is defined as a three-category 

variable, with the three categories corresponding to the pre- (November 2009-June 2010), early 

post-PCV (July 2010-June 2012), and late post-PCV (July 2012-June 2016) vaccination periods. 

This time structure provided a better fit compared to linear time, and was compared to several 

other functions of time. The three-category structure of time allows serotype prevalence to level 

out to its final post-vaccine prevalence, facilitating a better comparison of pre- to post-vaccine 

prevalence. The overall model is defined as: 

𝑛. 𝑐𝑎𝑟𝑟𝑡~𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑁. 𝑠𝑤𝑎𝑏𝑡;  𝑝𝑟𝑒𝑣𝑟𝑡 , 𝑝𝑟𝑒𝑣1𝑡 , 𝑝𝑟𝑒𝑣2𝑡 , … , 𝑝𝑟𝑒𝑣𝑚𝑡) 
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ln (
𝑝𝑟𝑒𝑣𝑖𝑡

𝑝𝑟𝑒𝑣𝑟𝑡
) = 𝛽0,𝑖 + 𝛽1,𝑖 ∗ 𝑡𝑖𝑚𝑒1,𝑡 + 𝛽2,𝑖 ∗ 𝑡𝑖𝑚𝑒2,𝑡 

𝛽2,𝑖 = µ0,𝑖 + ∑ 𝛼𝑗x𝑖𝑗 

 

n.carrt     = pneumococcal carriage count at time period t 

N.swabt   = total # swabs at time period t 

previt         = pneumococcal prevalence for non-vaccine serotype i at time  

   period t (m=54 non-vaccine serotypes)  

𝑝𝑟𝑒𝑣𝑟𝑡 = pneumococcal prevalence from the “reference” group at time  

period t (“reference” swab is defined as negative for any    

pneumococcus or positive for vaccine-serotypes) 

i          = 1, 2, …, m 

t  = 0, 1, …, 6 (year) 

time1 = 0, 1, 1, 1, 1, 1, 1  

time2 = 0, 0, 0, 1, 1, 1, 1  

xij   = the jth serotype-level covariate for non-vaccine serotype i 

 

All prior distributions were chosen to be weakly informative.  The intercepts (relative 

prevalence at time 0) and slopes (early and late post-vaccine prevalence compared to time 0) 

were allowed to vary by serotype and were estimated hierarchically by having the serotype-

specific parameters centered around global parameters that were common to all non-vaccine 

serotypes. Conjugate priors were used in all cases except for the standard deviation parameters, 

where uniform priors were used [25].  

Different assumptions about model structure and covariates were evaluated for this 

model. Variations in random and fixed effects were considered, different structures of time were 

evaluated, and covariance matrices were applied to model both independence and dependence of 

the intercepts and slopes. The best model formulation was chosen using the optimal deviance 

information criterion (DIC) [26], using decreases of at least 10 to be considered an improved 

model. Using Markov chain Monte Carlo sampling techniques, we obtained 150,000 posterior 

samples from the joint posterior distribution following a burn-in period of 10,000 iterations. The 

Gelman-Rubin [27] and Geweke [28] diagnostics were used to investigate convergence of 
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individual parameters and effective sample sizes were calculated to ensure we collected enough 

posterior samples post-convergence to make accurate inference. Additional details about the 

model, including structure and model diagnostics, can be found in the supplementary text (S1 

Text). 

Serotype-specific prevalence, relative risk ratios (RRRs; the multiplicative change for a 

one-year increase for a specific serotype prevalence relative to the reference prevalence), slopes, 

and intercepts were estimated from the final model. Where relevant, these estimates were 

compared to the corresponding values from the constant proportional change model, which 

assumes that serotype replacement in carriage is complete and that all serotypes increase by the 

same factor (i.e., prevalence ratio is the same for all serotypes). 

 

Linking carriage with disease 

We sought to quantify the impact of serotype replacement on IPD. This is challenging 

because many serotypes have secular trends or exhibit epidemic patterns even in the absence of 

the vaccines. Simply comparing the cases of IPD before and after vaccination can sometimes be 

misleading. Instead, we chose a more stable approach which used the estimates of the serotype-

specific prevalence ratios from our carriage model to estimate the additional cases gained as a 

result of increased carriage in children (cases.gained.explained). The number of cases that would 

be expected in the absence of changes in carriage in children is calculated by dividing the 

observed number of cases at a given time point by the prevalence ratio for the same serotype. 

The cases gained (explained by increased carriage) estimate is calculated by subtracting this 

counterfactual for the number of cases from the observed number of cases for each serotype, age 

category and time point: 
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𝑐𝑎𝑠𝑒𝑠. 𝑔𝑎𝑖𝑛𝑒𝑑. 𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑𝑠𝑒𝑟𝑜𝑡𝑦𝑝𝑒,𝑎𝑔𝑒,𝑡𝑖𝑚𝑒

= 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑. 𝑐𝑎𝑠𝑒𝑠𝑠𝑒𝑟𝑜𝑡𝑦𝑝𝑒,𝑎𝑔𝑒,𝑡𝑖𝑚𝑒 −
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑. 𝑐𝑎𝑠𝑒𝑠𝑠𝑒𝑟𝑜𝑡𝑦𝑝𝑒,𝑎𝑔𝑒,𝑡𝑖𝑚𝑒

𝑝𝑟𝑒𝑣. 𝑟𝑎𝑡𝑖𝑜𝑠𝑒𝑟𝑜𝑡𝑦𝑝𝑒,𝑡𝑖𝑚𝑒
 

where the prevalence ratios (prev.ratio) from time 0 to time 6 were estimated from the model. 

We also calculated the number of cases gained that were not explained by increased carriage in 

children (e.g., could be due to secular trends; cases.gained.unexplained), by subtracting the 

observed number of IPD cases at time 0 from the number of cases that would have been expected 

in the absence of changes in carriage in children (i.e., the number of IPD cases in the first time 

period):  

𝑐𝑎𝑠𝑒𝑠. 𝑔𝑎𝑖𝑛𝑒𝑑. 𝑢𝑛𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑𝑠𝑒𝑟𝑜𝑡𝑦𝑝𝑒,𝑎𝑔𝑒,𝑡𝑖𝑚𝑒

=
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑. 𝑐𝑎𝑠𝑒𝑠𝑠𝑒𝑟𝑜𝑡𝑦𝑝𝑒,𝑎𝑔𝑒,𝑡𝑖𝑚𝑒

𝑝𝑟𝑒𝑣. 𝑟𝑎𝑡𝑖𝑜𝑠𝑒𝑟𝑜𝑡𝑦𝑝𝑒,𝑡𝑖𝑚𝑒
− 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑. 𝑐𝑎𝑠𝑒𝑠𝑠𝑒𝑟𝑜𝑡𝑦𝑝𝑒,𝑎𝑔𝑒,𝑡𝑖𝑚𝑒0 

Using the values of cases gained as a result of increased carriage in children, we sorted 

the serotypes from highest to lowest. All of these calculations were carried out using results from 

the Jewish carriage model only, since the IPD dataset predominantly included Jewish 

individuals.  

In some instances, the expected number of IPD cases exceeded the number of observed 

cases. In such cases, we adjusted the expected number of cases to be the number of observed 

cases. In other words, we let the maximum number of expected cases be the number of observed 

cases, resulting in zero cases gained in that instance. 

 To assess whether changes in carriage in younger children or older children better 

correlated with changes in IPD in adults, we additionally fit the carriage model separately for 

younger children (<12 months) and older children (different subsets of 24-60-month-old 
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children), and compared the number of unexplained vs explained cases gained between the two 

age groups.  

 All analyses were performed using R version 3.4.0 [29]. The carriage model was fit using 

JAGS version 4.3.0 [30]. All code, with simulated data, can be found online at 

https://github.com/mailephillips/post-pcv-expansion. 

 

RESULTS 

Characteristics of the data  

The Israel carriage dataset contained 10,396 observations, with 57.1% of samples from 

Bedouin children and the rest from Jewish children. Of all swabs, 47.7% were positive for 

pneumococcus, with 42.6% positive among Jewish children and 51.5% positive among Bedouin 

children. In 2009, just after vaccine introduction, 63.5% of colonized children had a vaccine-

targeted serotype and 36.5% had a non-vaccine serotype. The most commonly-carried non-

PCV13 serotypes in 2009 were 15B/C, 15A, 16F, 10A, 38, 35B, 23B, 23A, 21, and 10B. 

 

Serotype expansion patterns in pneumococcal carriage 

Some typical assumptions when projecting serotype replacement are that all non-vaccine 

serotypes increase by the same amount (i.e., same prevalence ratio), that the rank order of non-

vaccine serotypes is maintained following vaccine introduction, and that non-vaccine serotypes 

completely replace vaccine serotypes in carriage. When we compare the observed pre-vaccine 

prevalence of serotypes to the post-vaccine prevalence, serotypes increase by different 

proportions and do not maintain rank order, suggesting that the assumption of constant 

prevalence ratio does not hold (Figure 1). However, our analysis suggests that instead some 

serotypes expand more than expected, and others remain stable or even decline (Figure 2).  
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Figure 1. Pre-vaccine vs. post-vaccine pneumococcal prevalence of non-vaccine types for children under 5 in Israel, November 

2009-July 2016. The observed log-prevalence of pneumococcus for each serotype is shown at Year 0 and Year 6, separately for 

Jewish and Bedouin children. If a serotype increased from or decreased to 0, the log prevalence is shown as “not detected” at the 

bottom of the graph.   
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The ten serotypes with the largest relative increase in carriage prevalence among Jewish 

children, from highest to lowest, were 7B, 17F, 9N, 10A, 23B, 21, 31, 35B, 20, and 8. Among 

Bedouin children, the largest relative increases were 9N, 7B, 10F, 35F, 10B, 35C, 2, 29, 13, and 

31 (Figure 2, Table S2). The majority of the prevalence ratios were larger than one in both 

models (Jewish median prevalence ratio: 1.35, Bedouin median: 1.36). In both models, many 

serotypes had changes that were smaller than expected based on the model assuming 

proportional increases (constant proportional increase: 1.48 Jewish, 2.03 Bedouin). The serotype-

specific intercepts and other serotype-specific parameters estimated from the model can be found 

in Table S2 and Figures S5-7.  

 

Correlates of serotype-specific changes 

While serotype-specific prevalence of the non-PCV13 serotypes mostly increased after 

vaccination, the degree to which each serotype changed varied. The distribution of the change in 

prevalence post-vaccination was skewed, but we were able to predict where on the distribution 

each serotype was located using serotype-specific characteristics. We evaluated several serotype-

specific correlates of fitness to try to explain this pattern. The best correlate of the post-vaccine 

increase was pre-vaccine prevalence. The relationship between pre-vaccine prevalence and the 

change in serotype prevalence over time improved model fit when included with a covariance 

matrix compared to all other combinations of predictors. When fit to carriage data from Jewish 

children, the model with the covariance matrix was the best model, based on DIC. When fit to 

carriage data from Bedouin children, the model with independent slopes (no predictors) and the 

model with the covariance matrix both fit the data best based on DIC. There was an overall 

positive association between pre-vaccine and the change to late post-PCV prevalence in the 

Jewish dataset (0.04, 95% credible interval: -0.68, 0.68), and a negative association in the 
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Bedouin dataset (-0.21, 95% credible interval: -0.69, 0.34). Combinations of relative density, 

case fatality rate, negative charge carbon, total carbon per polysaccharide repeat, and capsule 

thickness were not as strongly associated with the prevalence ratio and resulted in worse model 

fits in both datasets.  
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Figure 2. Log(prevalence ratios) from the carriage models for children under 5 in Israel, November 2009-June 2016. Log-

transformed ratios comparing late post- to pre-vaccine prevalence (last year/first year) are shown for each serotype with 95% 

credible intervals from the Jewish and Bedouin carriage models. The serotypes are shown from highest to lowest log prevalence 

ratios.  
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Ranking serotypes based on estimated cases gained  

From 2009-2015, there were 3,968 total cases of IPD. We estimate that during this 

period, there was an excess of 624 (95% credible interval: 397, 850) cases gained across all age 

groups as a result of increased carriage of non-vaccine serotypes in children (Figure 3, Table 1). 

From highest to lowest, serotypes 12F, 8, 16F, 33F, 9N, 7B, 10A, 22F, 24F, and 17F were 

estimated to have gained the most cases of IPD through serotype replacement (each with an 

estimated 21 to 112 additional cases gained). These 10 serotypes combined had a total of 1,223 

reported IPD cases during this period. An estimated 446 of these cases could be attributed to 

increases in carriage prevalence (Table 1). Fourteen serotypes did not account for any additional 

cases gained across this study period. 

Serotype 12F, in particular, was responsible for 112 cases gained as a result of increased 

carriage in children out of the total 394 IPD cases for 12F. In all age groups, 12F was among the 

three highest ranked serotypes among cases gained as a result of increased carriage in children. 

Serotype 8 was similarly highly ranked for cases gained as a result of increased carriage in 

children in all age groups except for children <5 years. Serotype 16F was highly ranked among 

cases gained among adults 18 years and older, driving up its overall ranking.  

Table 1. Model Estimates and Cases Gained Through Serotype Replacement over 6 Years among Jewish 

Individuals in Israel (July 2009-June 2016), Ranked from Most to Least Cases Gained in All Age Categories.  

The results of the observed carriage at time 0, observed prevalence ratio (time6/time0), model prevalence ratio 

(time6/time0), and estimated cases gained through serotype replacement by age groups are shown for each of the 

serotypes used in the carriage model. Serotypes are ordered from most to least cases gained among all ages. Note that 

the total cases gained in the last row adds up to more than the number of cases above for each serotype, because the 

serotypes shown are only those used in the carriage model. The values for total cases gained also included calculations 

for additional serotypes (not shown) that were responsible for IPD, but were not present in carriage in children under 5 

during this time period. 
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  Observed Model Cases gained over study period, by age in years  

Serotype 
<5 

carr. 

(t0) 

PR 

(t6/t0) PR (t6/t0) <5 5-17 18-39 40-64 65+ All Ages 

    Med. CrI Med. CrI Med. CrI Med. CrI Med. CrI Med. CrI Med. CrI 

12F 4 1.10 1.48 0.75, 2.98 58 0, 114 3 0, 6 8 0, 15 20 0, 39 22 0, 44 112 0, 219 

8 0 NA** 1.96 0.69, 6.44 4 0, 7 3 0, 5 14 0, 23 29 0, 49 23 0, 38 72 2, 122 

16F 4 2.48 1.82 1.10, 3.29 6 1, 9 0 0, 0 3 1, 4 14 4, 24 27 7, 45 50 13, 82 

33F 0 NA* 1.78 0.90, 3.95 20 1, 35 0 0, 1 3 0, 5 5 1, 9 11 1, 19 39 4, 69 

9N 1 1.00 3.08 1.39, 8.09 5 2, 7 1 1, 2 4 2, 5 9 4, 12 15 6, 20 35 15, 46 

7B 0 NA* 4.98 2.13, 15.25 10 6, 11 0 0, 0 1 1, 1 6 4, 7 15 10, 18 32 21, 38 

10A 3 3.30 2.62 1.40, 5.28 10 4, 14 0 0, 0 2 1, 2 8 4, 11 11 5, 15 31 14, 42 

22F 2 3.03 1.50 0.79, 3.10 5 0, 11 1 0, 2 2 0, 3 9 0, 17 11 0, 22 28 1, 55 

24F 1 2.75 1.52 0.75, 3.32 7 0, 15 1 0, 2 2 0, 4 6 0, 12 12 0, 24 28 1, 56 

17F 1 6.05 4.32 1.84, 13.00 3 2, 4 0 0, 1 2 1, 3 5 3, 6 10 6, 13 21 12, 27 

23B 6 2.11 2.46 1.52, 4.19 4 2, 5 2 1, 2 0 0, 1 4 2, 5 12 7, 15 21 12, 28 

15A 9 0.98 1.28 0.82, 2.06 3 0, 8 0 0, 1 0 0, 0 4 0, 9 13 0, 28 21 0, 46 

31 4 1.79 2.21 1.10, 4.62 1 0, 1 1 0, 1 1 0, 2 6 1, 8 12 3, 19 21 4, 31 

11A 7 1.81 1.90 1.17, 3.22 2 0, 3 1 0, 1 2 1, 4 7 2, 10 8 2, 12 19 6, 29 

35B 6 2.11 2.03 1.23, 3.50 2 1, 3 0 0, 0 1 0, 1 3 1, 5 11 4, 16 17 6, 25 

15BC 21 1.00 1.16 0.81, 1.66 8 0, 20 0 0, 0 1 0, 2 3 0, 7 4 0, 10 16 0, 39 

10B 10 1.05 1.33 0.76, 2.27 5 0, 10 0 0, 1 0 0, 1 1 0, 2 6 0, 13 12 0, 27 

2 1 0.55 1.32 0.35, 4.71 3 0, 8 2 0, 6 2 0, 6 3 0, 11 1 0, 3 11 0, 34 

23A 7 1.18 1.55 0.97, 2.61 1 0, 2 0 0, 0 0 0, 1 4 0, 7 5 0, 8 10 1, 17 

34 2 1.38 1.36 0.69, 2.80 1 0, 1 0 0, 1 0 0, 1 1 0, 2 6 0, 13 7 0, 17 

27 0 NA* 1.83 0.52, 7.33 6 0, 12 0 0, 1 0 0, 0 0 0, 0 0 0, 0 6 0, 12 

38 5 0.55 0.78 0.38, 1.56 1 0, 4 0 0, 0 0 0, 0 1 0, 4 3 0, 10 5 0, 17 

13 1 0.55 1.54 0.62, 4.00 0 0, 1 0 0, 1 0 0, 0 2 0, 4 2 0, 5 5 0, 10 

21 4 2.20 2.22 1.25, 4.20 3 1, 5 0 0, 0 0 0, 0 0 0, 0 0 0, 0 3 1, 5 

6C 6 0.73 0.58 0.32, 1.09 1 0, 2 0 0, 0 0 0, 1 0 0, 2 2 0, 5 3 0, 9 

20 0 NA* 1.99 0.62, 7.66 0 0, 0 0 0, 0 1 0, 1 1 0, 1 2 0, 3 3 0, 5 

29 0 NA* 1.60 0.40, 6.86 1 0, 3 0 0, 0 0 0, 0 0 0, 0 0 0, 1 1 0, 3 
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35F 2 0.28 0.83 0.34, 1.90 0 0, 1 0 0, 0 0 0, 1 0 0, 1 1 0, 5 1 0, 8 

9A 0 NA** 1.35 0.24, 6.93 0 0, 1 0 0, 0 0 0, 1 0 0, 1 0 0, 1 1 0, 3 

24B 0 NA** 1.34 0.23, 6.87 1 0, 2 0 0, 0 0 0, 0 0 0, 1 0 0, 0 1 0, 3 

18A 0 NA** 1.35 0.23, 6.77 0 0, 0 0 0, 0 0 0, 0 1 0, 2 0 0, 1 1 0, 3 

25A 0 NA** 1.35 0.24, 6.75 0 0, 0 0 0, 0 0 0, 0 0 0, 1 0 0, 1 1 0, 2 

10F 0 NA** 1.35 0.24, 6.91 0 0, 0 0 0, 0 0 0, 1 0 0, 0 0 0, 1 1 0, 2 

33A 0 NA** 1.29 0.40, 4.06 0 0, 1 0 0, 0 0 0, 0 0 0, 0 0 0, 0 0 0, 1 

19B 1 4.40 1.63 0.67, 4.23 0 0, 0 0 0, 0 0 0, 1 0 0, 0 0 0, 0 0 0, 1 

6D 0 NA** 1.36 0.36, 4.87 0 0, 0 0 0, 0 0 0, 0 0 0, 0 0 0, 1 0 0, 1 

9L 0 NA** 1.35 0.23, 7.02 0 0, 0 0 0, 0 0 0, 0 0 0, 1 0 0, 0 0 0, 1 

37 1 0.00 1.13 0.25, 4.35 0 0, 0 0 0, 0 0 0, 1 0 0, 1 0 0, 0 0 0, 2 

28A 0 NA** 1.35 0.24, 6.83 0 0, 0 0 0, 0 0 0, 0 0 0, 0 0 0, 1 0 0, 1 

11C 0 NA** 1.34 0.23, 6.88 0 0, 0 0 0, 0 0 0, 0 0 0, 0 0 0, 1 0 0, 1 

35A 0 NA* 1.16 0.32, 3.77 0 0, 0 0 0, 0 0 0, 0 0 0, 0 0 0, 1 0 0, 1 

10C 0 NA** 1.34 0.24, 6.90 0 0, 0 0 0, 0 0 0, 0 0 0, 0 0 0, 0 0 0, 0 

11B 0 NA** 1.34 0.24, 6.85 0 0, 0 0 0, 0 0 0, 0 0 0, 0 0 0, 0 0 0, 0 

12A 0 NA** 1.60 0.40, 6.97 0 0, 0 0 0, 0 0 0, 0 0 0, 0 0 0, 0 0 0, 0 

15F 0 NA** 1.35 0.24, 7.00 0 0, 0 0 0, 0 0 0, 0 0 0, 0 0 0, 0 0 0, 0 

19C 0 NA** 1.34 0.24, 6.88 0 0, 0 0 0, 0 0 0, 0 0 0, 0 0 0, 0 0 0, 0 

24A 0 NA** 1.17 0.26, 4.59 0 0, 0 0 0, 0 0 0, 0 0 0, 0 0 0, 0 0 0, 0 

33B 0 NA** 1.35 0.24, 6.87 0 0, 0 0 0, 0 0 0, 0 0 0, 0 0 0, 0 0 0, 0 

33D 0 NA** 1.35 0.24, 6.84 0 0, 0 0 0, 0 0 0, 0 0 0, 0 0 0, 0 0 0, 0 

35C 0 NA** 1.34 0.24, 6.89 0 0, 0 0 0, 0 0 0, 0 0 0, 0 0 0, 0 0 0, 0 

42 0 NA** 1.34 0.24, 6.86 0 0, 0 0 0, 0 0 0, 0 0 0, 0 0 0, 0 0 0, 0 

46 0 NA** 1.36 0.24, 6.93 0 0, 0 0 0, 0 0 0, 0 0 0, 0 0 0, 0 0 0, 0 

7A 0 NA** 1.34 0.23, 6.84 0 0, 0 0 0, 0 0 0, 0 0 0, 0 0 0, 0 0 0, 0 

7C 0 NA** 1.42 0.47, 4.39 0 0, 0 0 0, 0 0 0, 0 0 0, 0 0 0, 0 0 0, 0 

All       

  

167 88, 245 17 10, 26 49 29, 70 149 94, 203 242 162, 320 624 397, 850 

carr.=carriage; CrI=95% credible interval; med.=median; PR=prevalence ratio.  

a * Indicates that the prevalence at Time 0 was 0, and hence the observed prevalence ratio could not be estimated for that serotype. In instances where the prevalence at Time 6 was also 0, there is an 
additional asterisk (**). 

b Note that the total cases gained in the last row adds up to more than the number of cases above for each serotype, because the serotypes shown are only those used in the carriage model. The values for 

total cases gained also included calculations for additional serotypes (not shown) that were responsible for IPD, but were not present in carriage in children under 5 during this time period. 
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Adults 65+ and children under five years were responsible for the most IPD cases (Table 

1, Figure 3). In general, observed vaccine-type cases decreased over the study period, whereas 

the additional cases gained (both explained and unexplained) increased over the study period. 

Plots for individual serotype IPD cases over the study period can be found in Figure S8. Serotype 

12F in particular was responsible for the most estimated cased gained that are not explained by 

increased carriage in children.  

Figure 3. Estimated additional cases gained as a result of increased carriage in children 

under 5 in Israel, July 2009-July 2016. Results are shown for each age group and year of the 

study. Each full bar represents the total number of observed IPD cases for that stratum. The 

different patterned portions of the bars denote the fraction of total cases attributable to different 

groups of serotypes: observed vaccine-targeted (VT) serotype cases (solid gray), expected non-

vaccine-targeted (NVT) serotype cases had PCV13 not been introduced (diagonal black lines), 

estimated additional cases gained as a result of increased carriage in children, explained by this 

model (horizontal black lines), and estimated additional cases gained that are not explained by 

this model (gray diagonal gray lines). 
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We had intended to compare results from carriage models with children less than one 

year and different subsets of 24-60 months of age to assess whether changes in carriage in 

younger children or older children better correlated with changes in IPD in adults; however, the 

data were too sparse for a formal comparison.  

 

Cases not explained by carriage 

The number of additional cases gained over this time period that were not explained by 

increased carriage in children was also substantial. Over the study period, there were an 

estimated 462 (95% credible interval: 312, 641) cases that were not predicted based on changes 

in carriage in children.  The serotypes with the most unexplained cases gained were 12F, 24F, 

22F, 10A, and 15BC (Table 2). Serotype 12F had the most unexplained cases, with an estimated 

156 (95% credible interval: 50, 268) cases.  

Table 2. Estimated additional cases gained that are not explained by increased carriage in 

children. The median and 95% credible intervals for the unexplained excess cases during the 

full time period and across all ages is shown for each serotype. 

Serotype Median CrI 

12F 156 50, 268 

24F 53 25, 80 

22F 42 16, 69 

10A 30 19, 47 

15BC 22 5, 36 

6C 19 16, 22 

16F 19 0, 55 

15A 19 2, 39 

33F 18 0, 53 

2 14 0, 23 

10B 13 3, 25 

31 6 1, 20 

13 6 1, 10 

7B 5 1, 16 

23A 5 0, 13 

17F 3 0, 10 
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24B 3 1, 4 

11A 3 0, 12 

29 3 1, 4 

34 2 0, 7 

18A 2 0, 3 

37 2 0, 2 

16 2 1, 2 

18B 2 1, 2 

10F 1 0, 2 

25A 1 0, 2 

39 1 1, 2 

35F 1 0, 1 

35A 1 0, 1 

11C 1 0, 1 

8 1 0, 28 

28A 1 0, 1 

25F 1 1, 1 

9L 1 0, 1 

6D 1 0, 1 

22A 1 1, 1 

28F 1 1, 1 

19B 1 0, 1 

27 1 0, 6 

23B 0 0, 6 

10C 0 0, 0 

11B 0 0, 0 

12A 0 0, 0 

15F 0 0, 0 

19C 0 0, 0 

20 0 0, 2 

21 0 0, 0 

24A 0 0, 0 

33A 0 0, 0 

33B 0 0, 0 

33D 0 0, 0 

35B 0 0, 0 

35C 0 0, 0 

38 0 0, 0 

42 0 0, 0 

46 0 0, 0 
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7 0 0, 0 

7A 0 0, 0 

7C 0 0, 0 

9A 0 0, 0 

9N 0 0, 8 

CrI=95% credible interval 

 

DISCUSSION 

With several higher-valency conjugate vaccines under development, there is a need to 

understand and predict the patterns of serotype replacement to anticipate future changes. In this 

study, we created a model that quantifies changes in serotype prevalence post-PCV introduction 

in Israel based on carriage data. We found that the common assumption that non-vaccine 

serotypes increase by the same proportion underestimates changes in serotype prevalence in 

Jewish children and overestimates them in Bedouin children. The change in prevalence post-

vaccination was too variable across serotypes to use only one value to represent the proportional 

change for all serotypes. Instead, we found that the change in the prevalence of serotypes over 

time is not the same for all serotypes but has a positively skewed distribution. Using pre-vaccine 

prevalence data, we can estimate where on the distribution of post-vaccine changes that 

serotypes will fall. We can then combine observed IPD estimates and model-estimated 

prevalence ratios to get an estimate of serotype-specific replacement due to increased carriage. 

Using the estimated prevalence ratios, along with observed IPD data, we were able to rank 

serotypes based on cases gained as a result of increased carriage in children. However, there 

were also additional cases gained over this study period that were not predicted by increased 

carriage, suggesting the need to include additional mechanisms in the estimates. 

 The estimated number of cases that were not explained by the increased carriage in 

children illuminated some of the limitations of using carriage alone to predict disease. Changes 
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in carriage prevalence explained some of the variations in IPD in adults, but not all. A large 

number of excess IPD cases occurred during this time period that were not predicted by 

increased carriage. Serotype 12F in particular had a large number of unexplained cases gained. 

Surprisingly, serotype 8 did not have many unexplained cases. In fact, we would have expected 

there to be more IPD cases due to serotype 8 overall, either explained or unexplained.  

Changes like serotype-specific epidemics cycles or changes in ascertainment could 

account for some of this variability. Moreover, carriage patterns in specific age groups (e.g., 

older children, adults) might better reflect the changes in IPD seen in these other age groups. We 

had intended to carry out this comparison, but our data were too sparse in subsets of the 

population. Future work could investigate this difference further.  

We found that pre-vaccine prevalence was correlated with where on the distribution of 

slopes serotypes are located, with serotypes having higher pre-vaccine prevalence associated 

with larger increases after vaccination. In other words, more prevalent serotypes before 

introduction of PCV-13 were associated with larger increases over the study period. 

Our method of ranking serotypes varied between age groups, but overall the same 

serotypes had the highest number of cases gained through serotype replacement after 

vaccination. Unsurprisingly, serotype 8 was among the highest serotypes in this ranking system. 

It has recently been seen to be one of the most important serotypes to emerge in other 

populations, particularly in older age groups, which is consistent with our findings. Also not 

surprising were the high rankings of serotypes 12F and 33F, which have been noted to increase 

in recent years.  

Recent work has shown that models that incorporate genomics or clonal groups can 

forecast which serotypes will be successful after vaccination [19, 20, 31]. Future work could 
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combine the results of this study with new genomics studies, directly incorporating information 

on the fitness of a serotype (e.g., as calculated by Azarian) in these models, or this type of model 

structure could be used to benchmark alternative modeling approaches. 

A fundamental limitation of using carriage data to forecast changes in IPD is that changes 

in serotypes that are rarely carried in children cannot be easily tracked using carriage data. It is 

not clear if serotypes with these characteristics, like serotypes 1, 5, and 8 might be transmitted 

directly among older age groups (bypassing children) or if they might be transmitted between 

symptomatic individuals.  

This study had some other limitations. Many serotypes are rare, and as a result we did not 

have estimates for all 90+ serotypes for all variables. For the carriage data, we had count data for 

only 67 serotypes. However, this lack of data for the other serotypes is not likely to impact the 

results greatly because they are so rare in both carriage and disease and would probably not 

factor into the model. 

This analysis was limited to the available data in a single country. The dataset contained 

only seven years of data, and only included carriage data from children. The model structure 

additionally had some assumptions. We attempted to address these structural assumptions by 

comparing several models (variations in random and fixed effects, covariance matrices, 

predictors, and time). When compared to the observed data, the model appeared to fit, suggesting 

that these assumptions were valid. Future research could investigate these assumptions further, 

using other populations and additional time periods. Additionally, the IPD data available were 

comprised of mostly Jewish individuals. As a result, we were unable to extrapolate further for 

the Bedouin population past fitting the carriage model. Further analyses could explore higher 

transmission populations such as the Bedouin population.  
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Though we identified some of the top serotypes using our method of ranking, it is 

important to note that looking at individual serotypes can be sometimes misleading because the 

data are so noisy. Previous work demonstrates that estimating changes for specific serotypes can 

be subject to a high degree of noise, sometimes leading to inaccurate projections [17]. Future 

work could incorporate additional predictors of serotype prevalence growth as they become 

available.  

Having a strong understanding of the patterns of serotype replacement could be important 

as newer higher-valent vaccines are developed and introduced. With higher-valency vaccines, we 

need to be able to predict both the decline in vaccine-serotypes and the increase in non-vaccine-

serotypes. We can use this model to quantify changes in serotype replacement in other 

populations using the same analysis. This model may also help to optimize future serotype 

compositions.   
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SUPPORTING INFORMATION 

S1 Text. Carriage Model. 

 

Figure S1. Observed and expected prevalence plot, by year (Jewish children). Each panel 

shows the observed (black points) and model-fitted estimates of prevalence (different-colored 

dots and bars represent point estimates and 95% credible intervals), by year of the study period. 

 

Figure S2. Observed and expected prevalence plot, by year (Bedouin children). Each panel 

shows the observed (black points) and model-fitted estimates of prevalence (different-colored 

dots and bars represent point estimates and 95% credible intervals), by year of the study period. 

 

Figure S3. Observed versus fitted prevalence ratios (Jewish children). The plot shows the 

observed (black points) and model-fitted prevalence ratios (different-colored dots and bars 

represent point estimates and 95% credible intervals). The size of the different-colored dots 

indicates the number of isolates over the study period from the raw data (smaller dots = less 

isolates, larger dots = more isolates). Ratios shown are for the first to last years of the study 

period 
𝑝𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒𝑠𝑒𝑟𝑜𝑡𝑦𝑝𝑒,𝑦𝑒𝑎𝑟6

𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒𝑠𝑒𝑟𝑜𝑡𝑦𝑝𝑒,𝑦𝑒𝑎𝑟0
 . In instances where the observed prevalence in both Year 0 and 

Year 6 were 0, the observed prevalence ratio is indicated to be one. In cases where the observed 

prevalence in Year 0 was 0 and but the observed prevalence in Year 6 was nonzero, no observed 

point is shown (serotypes 20, 27, 29, and 7B). 

 

Fig S4. Observed versus fitted prevalence ratios (Bedouin children). The plot shows the 

observed (black points) and model-fitted prevalence ratios (different-colored dots and bars 

represent point estimates and 95% credible intervals). The size of the different-colored dots 

indicates the number of isolates over the study period from the raw data (smaller dots = less 

isolates, larger dots = more isolates). Ratios shown are for the first to last years of the study 

period 
𝑝𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒𝑠𝑒𝑟𝑜𝑡𝑦𝑝𝑒,𝑦𝑒𝑎𝑟6

𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒𝑠𝑒𝑟𝑜𝑡𝑦𝑝𝑒,𝑦𝑒𝑎𝑟0
 . 

 

Figure S5. Estimates for log relative risk ratios for pre-PCV period. Each serotype-specific 

log relative risk ratio with its 95% credible interval is shown for the pre-PCV period (𝛽0,𝑖), 

estimated from the model. The serotypes are shown from highest to lowest log relative risk 

ratios, separately for Jewish (A) and Bedouin (B) children. 

 

Figure S6. Estimates for log relative risk ratios for early post-PCV period. Each serotype-

specific log relative risk ratio with its 95% credible interval is shown for the early post-PCV 

period (𝛽1,𝑖), estimated from the model. The serotypes are shown from highest to lowest log 

relative risk ratios, separately for Jewish (A) and Bedouin (B) children. 

 

Figure S7. Estimates for log relative risk ratios for late post-PCV period. Each serotype-

specific log relative risk ratio with its 95% credible interval is shown for the late post-PCV 

period (𝛽2,𝑖), estimated from the model. The serotypes are shown from highest to lowest log 

relative risk ratios, separately for Jewish (A) and Bedouin (B) children. 
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Figure S8. Estimated additional cases gained as a result of increased carriage in children, 

by serotype. Each panel shows an individual serotype over the study period for all ages. Each 

full bar represents the total number of observed IPD cases for that stratum. The different colors 

denote the fraction of total cases attributable to different groups of serotypes: expected non-

vaccine-targeted serotype cases had PCV13 not been introduced (solid red), estimated 

additional cases gained that are not explained by this model (hatched blue), and the estimated 

additional cases gained as a result of increased carriage in children (hatched red). 

 

Table S1. Penalized deviance for all model combinations fit.  The deviance information 

criterion (DIC) used to determine the best fit model is shown for all combinations of models for 

both Jewish and Bedouin datasets. An “X” indicates whether that particular feature was used in 

building the specified model. 

 

Table S2. Serotype-specific parameters estimated from model: Jewish children under 5 in 

Israel, November 2009-July 2016. 

Estimates for the serotype-specific pre-PCV relative risk ratios (RRRs) (𝑒𝛽0,𝑖), early post-PCV 

RRRs (𝑒𝛽1,𝑖), and late post-PCV RRRs (𝑒𝛽2,𝑖) are shown for the Jewish carriage model, with their 

95% credible intervals. 

 

Table S3. Serotype-specific parameters estimated from model: Bedouin children under 5 in 

Israel, November 2009-July 2016. 

Estimates for the serotype-specific pre-PCV relative risk ratios (RRRs) (𝑒𝛽0,𝑖), early post-PCV 

RRRs (𝑒𝛽1,𝑖), and late post-PCV RRRs (𝑒𝛽2,𝑖) are shown for the Bedouin carriage model, with 

their 95% credible intervals. 
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