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Abstract 24 

Genome-wide DNA methylation aberrations are pervasive and associated with 25 

clinicopathological features across pituitary tumors (PT) subtypes. The feasibility to detect 26 

CpG methylation abnormalities in circulating cell-free DNA (cfDNA) has been reported in 27 

central nervous system tumors other than PT. Here, we aimed to profile and identify 28 

methylome-based signatures in the serum of patients harboring PT (n=13). Our analysis 29 

indicated that serum cfDNA methylome from patients with PT are distinct from the 30 

counterparts in patients with other tumors (gliomas, meningiomas, colorectal carcinomas, 31 

n=134) and nontumor conditions (n=4). Furthermore, the serum methylome patterns 32 

across PT was associated with functional status and adenohypophyseal cell lineage PT 33 

subtypes, recapitulating epigenetic features reported in PT-tissue. A machine learning 34 

algorithm using serum PT-specific signatures generated a score that distinguished PT 35 

from non-PT conditions with 100% accuracy in our validation set. These preliminary 36 

results underpin the potential clinical application of a liquid biopsy-based DNA methylation 37 

profiling as a noninvasive approach to identify clinically relevant epigenetic markers that 38 

can be used in the management of PT. 39 
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Introduction 48 

Liquid biopsy (LB) is a method used to detect molecular elements (e.g., DNA, RNA, 49 

etc.) shed by tumors in biofluids (blood, cerebrospinal fluid etc). Circulating cell-free DNA 50 

(cfDNA), specifically the tumor DNA fraction (ctDNA), is thought to originate from cellular 51 

death (apoptosis and necrosis) or secretion from live cells, especially from proliferative 52 

tissues or tumors 1–5. Blood-based LB has emerged as a reliable and a minimally invasive 53 

approach to identify clinically relevant molecular biomarkers from several tumor origins, 54 

including from central nervous system (CNS) neoplasms 5–8.  55 

In contrast to CNS tumors that are shielded by the blood-brain barrier, the pituitary 56 

gland presents an anatomical structure that facilitates the spillage of tumor cellular 57 

material into the bloodstream, i.e. a fenestrated pituitary portal system and/or an access 58 

to the cavernous system. This structural advantage creates an opportunity to profile 59 

tumor-specific molecular features of material released from these tumors potentially 60 

suitable for clinicopathological application 9,10. Indeed, the feasibility to detect and 61 

sequence somatic gene variants in ctDNA has recently been reported in PT 1; however, 62 

the detection sensitivity of this approach was low in these tumors 1. The paucity of genetic 63 

alterations in the pathogenesis of PT such as recurrent somatic mutations may have 64 

contributed to these results 11–15. In contrast, genome-wide methylation abnormalities 65 

detected in the tissue are knowingly pervasive across PT subtypes 13,16–23. Additionally, 66 

DNA methylome patterns are tissue- and tumor-specific providing an opportunity to 67 

predict the tissue of origin of the tumor through DNA methylation profiling 5,20,24,25. In fact, 68 

many studies showed that specific methylome patterns detected in the tissue 69 

distinguished PT from other CNS tumors and defined discrete methylation subtypes 70 
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among different CNS tumors 20,26,27. Additionally, methylation markers presented 71 

diagnostic, prognostic and predictive applications in CNS tumors 20,26,27. The feasibility of 72 

detecting these tissue- or tumor-specific methylation signatures using a liquid biopsy 73 

approach is an emerging field that has not been reported in PT to date. 74 

In this study, we profiled the serum cfDNA methylome derived from patients with 75 

PT or other tumors and nontumor conditions. We identify unique methylation signatures 76 

in the serum associated with clinicopathological features specific to PT. This proof-of-77 

concept study paves the way for the potential clinical application of a liquid biopsy as a 78 

noninvasive approach to identify and assess relevant epigenetic markers that may be 79 

useful in the management of patients with PT.  80 

Results 81 

Characterization of pituitary cell-free DNA methylome  82 

cfDNA quantification 83 

Total extracted serum cfDNA quantity, normalized to the genomic size (ng/ml, see 84 

Methods), were not significantly different from controls (mean±SD, 59.3±134.2 vs 5±5.0 85 

ng/ml, respectively; p=.14) or in relation to functional or invasion status in PT 86 

(Supplemental Figure 1A).  87 

Deconvolution 88 

The deconvolution of the serum cfDNA methylome showed that patients harboring PT 89 

had higher proportion of bulk pituitary gland signatures compared to the control serum 90 

and other CNS conditions (3% higher, p = .05)(Supplemental Figure 1B; Supplemental 91 

Table 2). 92 

Methylome analysis 93 
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The genome-wide mean methylation landscape of the serum cfDNA from patients with 94 

PT and non-PT conditions (gliomas, meningiomas, colorectal carcinomas and nontumor 95 

conditions)  showed that PT segregated into a hypomethylated and a hypermethylated 96 

cluster; the latter, shared similar CpG methylation degree with the serum methylome from 97 

patients with glioma, meningioma, colorectal cancer and nontumor controls (Figure 1A 98 

and 1B).  99 

Conducting a supervised analysis between PT and non-PT serum specimens and 100 

selecting probes that shared similarities with the matching PT tissue (Supplemental 101 

Figure 1D, left), we identified 46 differentially methylated probes (DMP), namely Pituitary 102 

Tumors-specific Epigenetic-Liquid Biopsy (PeLB) probes, that significantly distinguished 103 

both groups (Figure 1B) and distinguished two subgroups across PT (hyper and 104 

hypomethylated) (Figure 1C),  105 

The two methylation clusters were associated with distinct clinicopathological 106 

status, i.e. the hypermethylated cluster was predominantly composed of nonfunctioning, 107 

mainly encompassed by SF1 lineage and null cell tumors and the hypomethylated with 108 

functioning PT mostly comprised of Pit1-lineage tumors (Figure 1 C). As an exception, 109 

one lactotroph adenoma/Pit1-lineage segregated with nonfunctioning PT, despite being 110 

clinically classified as functioning, and a functioning Tpit1-lineage tumor clustered with 111 

nonfunctioning tumors. These results recapitulate the findings in their matching tissue 112 

(Supplemental Figure 1E). 113 

 cfDNA methylome from patients with PT pituitary-specific epigenetic signatures 114 

distinct from other pathological conditions. 115 
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Overlapped with tumor tissues, PeLB probes clustered with PT tissue and significantly 116 

separated PT from other CNS tumor-tissue, confirming PeLB-specificity to PT in an 117 

independent cohort (Figure 1D). Taking this feature into account, we developed and 118 

cross-validated a score derived from a machine learning (ML) model (repeated 5000 119 

times), namely the PeLB score, to predict whether a serum specimen originates from a 120 

patient with PT or a non-PT condition (Figures 1E-F). Pituitary-derived serum methylome 121 

samples carried the highest values of PeLB score (71-99%), whereas the serum of non-122 

PT tumors carried the lowest values (0-45%) (Figure F). The evaluation of the model in 123 

the validation sample set showed that the model performed with an accuracy of 100%, 124 

taking into account a 50% PeLB cutoff. 125 

We also defined serum-based methylation signatures (n=70) accounting for the 126 

functional/lineage status of PT (nonfunctioning vs functioning PT) (p < .01, differential 127 

mean methylation >.2, FDR < .26), we named functioning-PeLB (Func-PeLB)(Figures 128 

2A, Supplemental Figure 1D, right). Harnessing the methylome from matching tissue 129 

and publicly available data reporting on the functional status of PT, we observed that a 130 

subset of the Func-PeLB probes (overlapped with the 450K platform, used to profile the 131 

tissue-methylome of those samples) (n=22 probes) (Supplemental Figure 1D, right), 132 

also discriminated the two functional groups at the tissue and respective serum levels 133 

(Figure 2B-D) 134 

The CpG probes that distinguished the methylation clusters either in tissue 135 

(n=5000) or serum (6000) were most frequently located in open sea regions (67% and 136 

61%, respectively) and gene bodies (61 and 55%, respectively) (Figure 1B, 137 

Supplemental Table 2). 138 
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Discussion 139 

Methylome-derived signatures define molecular subtypes that are useful for the 140 

diagnosis and prognostication across many tumors 13,16–18,20,21,26–29. Additionally, 141 

genome-wide DNA methylation patterns are cell-specific either in healthy or tumor 142 

specimens 5,18,20,24,25,30–32. The ability to detect methylation signatures and tumor-specific 143 

abnormalities by the profiling of circulating cell-free DNA (cfDNA) in biofluids (liquid 144 

biopsy), such as blood, has been useful for the early detection and surveillance of 145 

malignant neoplasms 5,33–35. In relation to CNS tumors, our group has recently reported 146 

on the feasibility to identify methylation-based markers in serum-derived cfDNA for the 147 

diagnosis and prognostication of gliomas and meningiomas 36. Herein, we show that, 148 

similar to malignant and other CNS tumors, PT releases tumor-related information in the 149 

blood that allows the identification of clinically relevant methylation signatures specific to 150 

patients with PT, namely PeLB probes (Figure 1A-B; Supplemental Figure 1D). 151 

Capitalizing on the specificity of these probes, we used a machine learning approach to 152 

generate the PeLB score (Figure 1D-E) to predict the presence of a pituitary tumor using 153 

liquid biopsy. We showed that PeLB score performed with a 100% accuracy to predict 154 

that serum was derived from patients with PT in our validation cohort (Figure 1F). These 155 

results remain to be confirmed in an independent cohort of PT-derived, currently 156 

unavailable. 157 

In addition, distinct serum DNA methylation landscape, specifically PeLB probes, 158 

defined two methylation groups that recapitulated the clinicopathological findings 159 

displayed in their matching tissue as reported in other studies 13,16–18,20,21 (Figure 1C-D, 160 

Supplemental Figure 1E). These serum-derived clusters showed that the 161 
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hypermethylated group was enriched by nonfunctioning PT mainly originated from SF1 162 

and Tpit cell lineages and the hypomethylated set mainly composed of functioning PT 163 

mostly originated from Pit-1 cell lineages (Figure 1C, Supplemental Figure 1D). We 164 

narrowed down to a subset of PeLB probes (Func-PeLB) that preserved the distinction 165 

between both clusters in tumor-tissue specimens as well (Figure 2C, Supplemental 166 

Figure 1D). Altogether, these results suggest that PT releases DNA methylation markers 167 

in the serum that reflect clinicopathological features such as functional status and 168 

adenohypophyseal lineage of these tumors. Confirmation of these findings in a larger and 169 

more comprehensive cohort lay the groundwork to the application of PeLB probes as an 170 

objective approach to classify PT according to cell-lineage as recommended by the 2017 171 

WHO 37. 172 

Considering the prognostic value reported in glioma or meningiomas, we surveyed 173 

serum-methylation markers specific to the invasion status of PT. Corroborating the 174 

findings reported in the tissue, we found slight serum differences between invasive and 175 

noninvasive groups (data not shown)13,16,17,21. However, the association of tissue- or 176 

serum-derived methylation groups with the criteria that better predict PT with higher risk 177 

to progress or recur remains to be elucidated 13,18,38–43.  178 

The application of PeLB score is not intended to replace the standard approaches 179 

to diagnose and classify PT which, in most of the cases, is satisfactorily performed by 180 

clinical features, hormonal assessment in the blood/urine and on the imaging of the 181 

pituitary gland 44. However, these results provide evidence that serum cfDNA constitutes 182 

a reliable source of clinically relevant tumor-specific epigenetic signatures in PT as 183 

observed in other CNS tumors 36. Potentially, the specificity of PeLB probes could be 184 
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helpful to distinguish PT from other rare primary or secondary sellar tumors whose 185 

diagnosis by morphologic and immunohistochemical approaches may be challenging, 186 

unavailable and/or inconclusive (e.g. craniopharyngioma variants, lymphoma, metastasis 187 

etc) 5,34,45,46.  188 

In conclusion, our results indicate that similar to malignant tumors, PT releases 189 

circulating tumor DNA that present specific methylation patterns, recapitulating molecular 190 

features detected in PT-tissue (e.g. adenohypophyseal lineage-related). Serum from 191 

patients with PT provides tumor-specific methylation signatures that allow the 192 

classification of samples into PT subtypes or non-PT groups. Finally, our preliminary 193 

results underpin the potential application of methylation profile in the serum-based liquid 194 

biopsy as a noninvasive approach to assess clinically relevant epigenetic features useful 195 

for clinical purposes in the management of patients (e.g. aggressiveness markers, 196 

actionable markers to guide future clinical trials to treat aggressive, resistant or recurrent 197 

PT etc).   198 
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Methods 199 

Patients - We conducted a retrospective analysis of a cohort comprised of archival serum 200 

and paired tissue (fresh-frozen) from 13 patients who underwent transsphenoidal surgery 201 

for the resection of invasive (n=5) or noninvasive (n=8) macroadenomas of different 202 

functional status and histological subtypes (9 nonfunctioning: 4 gonadotroph and 5 null 203 

cell and 4 functioning: 2 lactotroph, 1 corticotroph and 1 mixed GH/PRL/TSH) (Table 1). 204 

Criteria for invasiveness was based on Knosp grades 3-4 (n=4) or invasion of clivus (n=1) 205 

47,48. MRI assessment for size, and invasiveness classification was blindly and 206 

independently performed by two physicians from the Henry Ford Health System (HFHS) 207 

(TA, KPA). HFHS Pathologists provided a comprehensive pathology report on 208 

adenohypophyseal immunostaining, necrosis and quantification of markers of 209 

proliferation (Ki-67, mitotic counts, p53). Control serum was obtained from patients 210 

without PT (three epileptic patients and one with a nontumor condition). Control pituitary 211 

tissue was obtained from non-neoplastic pituitary harvested at autopsy (FFPE).   We also 212 

generated serum methylome data from patients with glioma (n=114), meningiomas (n=6) 213 

and other CNS conditions (brain metastasis, 1 brain colloid cyst, 6 brain radiation 214 

necrosis) (Supplemental Table 2) The project was approved by the HFHS Institutional 215 

Review Board (IRB# 10963) and patients consented to have their specimens used for 216 

research purposes. Publicly available methylome data from colorectal carcinoma was 217 

retrieved (CRC, n= 2 pooled samples) 49.  218 

Serum collection and processing  219 

For the specimens originated from the HFHS, peripheral blood (15 mL) was drawn 220 

from each subject at the time of surgery before the tumor excision (transphenoidal). 221 
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Serum sample was separated within 1 hour from collection by centrifugation at 1,300 x g 222 

for 10 minutes at 20°C; aliquoted into up to five 2 mL cryovials and stored at -80°C until 223 

processing.  The methods for the publicly available data is described in their respective 224 

manuscripts 49 225 

DNA isolation, quantification, and DNA methylation data generation 226 

Tissue and serum DNA were extracted from 2.2-9.3mL aliquots of serum using the 227 

Quick-cfDNA Serum & Plasma Kit according to the manufacturer's protocol (Zymo 228 

Research - catalog # D4076). DNA concentration was measured with Qubit (Thermo 229 

Fisher Scientific) /or with 4200 TapeStation (Agilent Technologies). The concentration of 230 

cfDNA in the serum was calculated by dividing the total amount of cfDNA extracted by 231 

the amount of serum used for extraction. We then converted the concentration of cfDNA 232 

in the serum (ng/mL) into haploid genome equivalents/mL by multiplying by a factor of 233 

303 (assuming the mass of a haploid genome 3.3 pg) 50. 234 

The extracted DNA (30-300 ng) was bisulfite-converted (Zymo EZ DNA 235 

methylation Kit; Zymo Research) and profiled using an Illumina Human EPIC array 236 

(HM850K), at the USC Epigenome Center, Keck School of Medicine, University of 237 

Southern California, Los Angeles, California. The raw DNA methylation data reported in 238 

this paper has been deposited to Mendeley Data at 239 

https://data.mendeley.com/datasets/cgrz6zztfg. 240 

DNA methylation pre-processing 241 

Methylation array data was processed with the minfi package in R. The raw signal 242 

intensities were extracted from the *.IDAT files and corrected for background 243 

fluorescence intensities and red-green dye-bias using the function preprocess Noob as 244 
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described by Triche et al., 2013 51. The beta-values were calculated as (M/(M+U)), in 245 

which M and U refer to the (pre-processed) mean methylated and unmethylated probe 246 

signal intensities, respectively. Measurements in which the fluorescent intensity was not 247 

statistically significant above background signal (detection p value > 10-16) were removed 248 

from the data set. Before the analysis, we filtered out probes that were designed for 249 

sequences with known polymorphisms or probes with poor mapping quality (complete list 250 

of masked probes provided by Zhou et al. 52) and the X and Y chromosomes.  251 

Deconvolution 252 

We applied a previously described methodology 50 to deconvolute the relative 253 

contribution of cell types to a given sample 50. We included methylation signatures from 254 

cell lines, immune cells (B-cell, CD4T, CD8T, natural killer cells and white blood cells 255 

(monocytes, neutrophils) and vascular endothelial cells 50 (Supplemental Table 2) For 256 

lack of information related to methylation signatures from individual cells that comprise 257 

the pituitary gland, we generated genome-wide methylation signatures from bulk non-258 

neoplastic pituitaries obtained from cadavers (unpublished data) and followed the steps 259 

for defining the signatures as previously described 50. Briefly, we selected the 100 most 260 

specific hypermethylated and hypomethylated CpG probes for each cell/tissue type of 261 

interest. Using this signature, we applied a non-negative least squares method to 262 

deconvolute our serum and tissue cohort using the standalone program provided by Moss 263 

and colleagues 50. We then normalized the percentages generated by the standalone 264 

program for each cell type/PT-tissue from 0 to 100 by serum. 265 

DNA methylation exploratory analysis (unsupervised analysis) 266 
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In order to evaluate the DNA methylation profile in the serum from patients with 267 

distinct tumor types and non-neoplastic brain diseases, we performed a genome-wide 268 

Principal Component Analysis (PCA) across the samples (N=147) using the function 269 

prcomp (version 3.6.0). Consensus clustering was determined by k-means clustering of 270 

euclidean distance from the ConsensusClusterPlus (version 1.48.0) package.   271 

Supervised analysis 272 

We also performed an epigenome-wide differential analysis across the serum from 273 

10 patients with PT and 105 with non-PT conditions patients (4 non-tumor, 114 glioma, 3 274 

meningioma, 1 brain metastasis carcinoma, 1 colloid cyst, and 4 from other CNS necrotic 275 

tumors). We used the Wilcoxon rank-sum test to identify differentially methylated probes 276 

between two different pairs: PT vs non-PT and functioning vs nonfunctioning PT.  277 

For the comparison between PT and non-PT, probes were considered differentially 278 

methylated when the false discovery rate (FDR)  was less than .001 and absolute value 279 

of the difference of a pair of probe mean methylation between each group was greater 280 

than 20%. To identify DMP in the serum that were tissue-specific, we calculated the 281 

differences in DNA methylation between the matching serum and tissue, by patient. We 282 

then selected probes with less than 5% difference between tissue and serum and 283 

considered them tissue-specific.  284 

To validate their PT-specificity, we overlapped PeLB probes with the DNA 285 

methylome of an independent cohort consisting of pituitary-, glioma- and meningioma-286 

tissue (Figure 1D). 287 

For the comparison between functioning and nonfunctioning, probes were 288 

considered differentially methylated when the p-value was less than .01 and absolute 289 
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value of the difference of probe mean methylation between each group was greater than 290 

20%. 291 

Random Forest 292 

We used a random forest machine-learning (ML) model for binary classification of 293 

the specimens with the aim to classify available cfDNA methylation (from serum) derived 294 

from patients with PT and non-PT (other neoplastic or non-neoplastic conditions: 295 

meningioma, glioma and colorectal carcinoma and nontumor). We first randomly 296 

allocated 20% of all samples for the validation set (n = 3 PT; n = 29 Non-PT) only analyzed 297 

for the assessment of the prediction model accuracy. The remainder serum specimens 298 

were used for the feature extraction or training of the random forest model. For developing 299 

the model we randomly partitioned the remainder samples into a training (n = 8 PT; n = 300 

84 Non-PT) and testing set (n = 2 PT; n = 21 Non-PT). We used the function train 301 

(package caret version 6.0.82) in CRAN, with 5000 trees, and 10 fold cross validation to 302 

generate our model. When testing the model, we used an output of 50% probability as a 303 

cut-off for classification.   304 

Based on this result, we adopted the default PeLB score cutoff value of 50 to 305 

determine whether a patient had PT. We evaluated the performance of the prediction by 306 

applying the ML model on the validation set.  307 

Probe annotation 308 

CpG probes were mapped to their CpG genomic location as CpG islands (CGI), 309 

shores, shelves, and open sea regions as previously defined 52–55. 310 

Statistical analysis 311 
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All processing and statistical analyses were done in R (3.6.1). Wilcoxon rank-sum test 312 

and multiple testing adjustments (e.g. FDR) were used to identify differentially 313 

methylated probes (DMP) as stated in the previous sections.  314 
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TABLE LEGENDS 353 

Table 1- Summary of clinicopathological features of patients included in this study. 354 

FIGURE LEGENDS 355 

Figure 1:  Genome-wide DNA methylation profile of pituitary serum cfDNA. 356 

Identification of tissue-specific probes that distinguish pituitary serum from non-pituitary 357 

serum specimens (Pituitary-tumor specific Epigenetic Liquid-biopsy or PeLB probes). 358 

(A) PCA of the mean methylation of pituitary tumors and non-pituitary tumors (glioma, 359 

meningioma and colorectal carcinoma) and controls (nontumor conditions). (B) 360 

Heatmap depicting the methylation levels of  PeLB probes across the entire serum 361 

cohort (n=107); (C) Heatmap highlights the methylation levels of  PeLB probes across 362 

pituitary samples and overlapping clinicopathological annotations such as functional and 363 

invasion status, transcription factor-related adenohypophyseal cell lineage. (D) The t-364 

Distributed Stochastic Neighbor Embedding (t-SNE) plot depicts the overlap of PeLB 365 

probes with the methylome of serum specimens from patients harboring pituitary tumors 366 

and of the tissue methylome from PT and other CNS tumors (glioma, meningioma). (E) 367 

Workflow of sample partitioning of serum cohort for training, testing, and validation used 368 

in the random forest analysis to distinguish pituitary tumors from non-pituitary tumors 369 

(colorectal carcinoma, glioma, meningiomas). Each test tube represents 10% of the 370 

samples. (F) Boxplot of the PeLB score results from the validation set. The dotted line at 371 

50% represents the cutoff used for classification into pituitary tumors and non-pituitary 372 

samples. 373 

Figure 2: Supervised analysis to identify tissue-specific probes that distinguish 374 

serum originated from functioning pituitary tumor from those from nonfunctioning 375 

PT (Functioning Pituitary-tumor specific Epigenetic Liquid-biopsy-PeLB or Func-376 

PeLB).  377 

(A) Heatmap displays the methylation levels of the 70 Func-PeLB differentially methylated 378 

probes (DMP) in the serum of nontumor and tumor pituitary specimens. (B) Heatmap 379 

displays the 22 Func-PeLB porbes that overlap with the 450K array in nontumor and 380 

pituitary tumor tissue (C) PCA of pituitary tumor tissue from an independent cohort using 381 

the 22 Func-PeLB probes showing that they segregate samples based on functional 382 
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status in both tissue and serum. (D) Box plots of serum (left) and tissue (right) mean 383 

methylation for each PT (functioning and nonfunctioning) and nontumors samples.  384 

 385 

SUPPLEMENTAL INFORMATION 386 

Supplemental Table 1 - (A) Distribution of the number of the most variant methylated 387 

probes in the serum and in the pituitary tumor tissue according to their genomic context 388 

and CpG location. (B) Distribution of the number of differentially methylated probes 389 

(PeLB and Func-PeLB) according to their genomic context and CpG location.  390 

 391 

Supplemental Figure 1 - (A) Cell-free DNA concentration in the serum derived from 392 

patients with  nontumor and tumor conditions. (B) Cell-free DNA concentration in the 393 

serum of patients with pituitary tumors (PT) according to function and invasion status. 394 

(C) Deconvolution of serum in relation to cell composition from control or pituitary tumor 395 

patients. (D) Workflow displaying the selection criteria of pituitary tumor- and 396 

functioning-specific methylated probes from the supervised analysis between PT and 397 

non-PT (right) and Functioning and nonfunctioning PT (left) in the serum. (E) Heatmap 398 

displaying the genome-wide methylation profile across PT tissue-specimens. 399 

 400 

 401 

  402 
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Feature Nontumor (n=4) NFPT (n=9) FPT (n=4)

Gender

Female 1 3 1

Male 2 6 3

Unknown 1 0 0

Age at surgery (years)

Median  (Lower and upper quartile) 31 (22-60) 65(57-68) 52(46-57)

2017 WHO/Hormone staining

Gonadotroph/LH and/or FSH - 4 -

Null Cell - 5 -

Corticotroph/ACTH - - 1

Mixed/GH/PRL/TSH - - 1

Lactotroph/PRL - - 1

Densely lactotroph/PRL - - 1

Invasion status

Invasive - 5 2

Noninvasive - 4 2

Size

Micro_<1cm - 0 1

Macro_≥1-4cm - 7 2

Giant_≥4cm - 2 1

Legend - FPT: Functioning pituitary tumor. ACTH: Adrenocorticotropic hormone; GH: Growth hormone; PRL: prolactin; LH: luteinizing 

hormone; FSH: follicle stimulating hormone

Table 1- Summary of the clinicopathological features from patients harboring pituitary tumors and 

nontumor conditions  (serum)
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