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One-sentence summaries: Adaptive physical distancing policies save more lives with fewer weeks of 12 

intervention than policies which prespecify the length and timing of interventions. 13 

Abstract 14 

Policymakers need decision tools to determine when to use physical distancing interventions to maximize the 15 

control of COVID-19 while minimizing the economic and social costs of these interventions. We develop a 16 

pragmatic decision tool to characterize adaptive policies that combine real-time surveillance data with clear 17 

decision rules to guide when to trigger, continue, or stop physical distancing interventions during the current 18 

pandemic. In model-based experiments, we find that adaptive policies characterized by our proposed approach 19 

prevent more deaths and require a shorter overall duration of physical distancing than alternative physical 20 

distancing policies. Our proposed approach can readily be extended to more complex models and interventions. 21 

Main Text 22 

The health and economic costs of the ongoing SARS-CoV-2 pandemic are staggering. In the absence of an 23 

effective vaccine or other pharmaceutical interventions, physical distancing (PD) measures have been the primary 24 

means to reduce the speed of epidemic growth, to relieve pressure on the health care system, and to buy scientists 25 

time to develop new prevention and treatment strategies. Model-based analysis of previous pandemics (1) as well 26 

as current models of the COVID-19 pandemic suggest that these PD interventions will need to be maintained for 27 

weeks to months in the United States to minimize risks of overwhelming hospital capacity and to avoid epidemic 28 

rebound (2, 3). However, PD measures also impose an immense economic and social burden. Indeed, it is clear 29 

that a single uninterrupted period of strict PD cannot be practically sustained to achieve eradication. Accordingly, 30 

policymakers require tools to help them determine when PD interventions should be started and stopped to 31 

optimize health and economic outcomes. 32 

Here, we describe a method for adaptive decision making during the ongoing pandemic that explicitly accounts 33 

for the tradeoffs between the health benefits and economic costs of PD interventions. We demonstrate how this 34 

decision model can assemble the necessary evidence to characterize policies that use surveillance data to inform 35 
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real-time determination of starting, continuation, or stopping of PD interventions. Using a simulation model of the 36 

COVID-19 pandemic, we show that these types of adaptive policies can avert more deaths while requiring a 37 

shorter total duration of PD compared to alternative policies, including pre-determined periodic interventions and 38 

those that focus on ensuring available ICU capacity is not surpassed (2, 3). 39 

For the analysis presented here, we assume that a policymaker’s objectives are to minimize both the number of 40 

deaths associated with COVID-19 and the duration of physical distancing interventions as a proxy for the harm 41 

inflicted by shutdowns on the economy. We quantify the trade-off between these objectives using the net 42 

monetary benefit (NMB) framework (4, 5), expressed as ∑ (𝜔𝑞𝑘 + 𝑎𝑘)𝑇
𝑘=1 , where 𝑇 is the number of weeks the 43 

epidemic lasts; 𝑞𝑘 is the number of deaths due to COVID-19 that occur in week 𝑘; and 𝑎𝑘 = 1 if physical 44 

distancing is in effect during week 𝑘, and 𝑎𝑘 = 0, otherwise.  45 

In the objective function described above, 𝜔 represents how a specific policymaker weighs the number of 46 

COVID-19 deaths per 100,000 population against the duration of PD. For example, a policymaker with trade-off 47 

value 𝜔 = 0.1 weeks per COVID-19 death averted is willing to keep PD in place for one additional week if it 48 

could prevent 10 deaths related to COVID-19 per 100,000 population. Higher values of 𝜔 indicate a higher 49 

tolerance for paying the economic and social costs of PD interventions in the interest of reducing COVID-19-50 

related mortality. In the Supplement, we describe how this objective function can be extended to incorporate more 51 

comprehensive outcomes including quality-adjusted life-years lost and cost incurred due to cases of COVID-19, 52 

and the societal and economic cost of PD in each week. 53 

Here, we estimate 𝑞𝑘 using a simple SEIR model of SARS-CoV-2 transmission in a population of size 1,000,000.  54 

Informed by data from the COVID-19 pandemic in U.S. (6), the model projects the weekly incidence of cases, 55 

patients requiring hospitalization and/or critical care, and deaths due to COVID-19. We assume that the PD 56 

intervention reduces the population contact rate by 70% with uncertainty interval of [60% − 80%] (3). 57 

Additional details are provided in the Supplement.  58 

An adaptive policy for informing PD interventions uses surveillance data available at the start of week 𝑘 to 59 

recommend whether PD should be started, continued, or stopped during week 𝑘. One example of such a policy 60 

would recommend triggering PD when the estimated prevalence of infection surpasses 375 cases per 100,000 61 

people and stopping PD when this epidemiological measure falls below 100 cases per 100,000 people (3). As data 62 

such as the weekly number of COVID-19 patients requiring critical care (𝐶𝑘) may be more easily observed than 63 

prevalence of infection, we focus on adaptive policies that use 𝐶𝑘 to guide the use of PD interventions during the 64 

next week. We consider policies that, for a given trade-off value 𝜔, specify two thresholds (𝑇1(𝜔), 𝑇2(𝜔)) which 65 

govern the recommendation of PD for the following week. This results in very simple decisions rules: If 𝐶𝑘 >66 

𝑇1(𝜔), PD should be used in the following week and if 𝐶𝑘 < 𝑇2(𝜔), PD should be stopped. In the Supplement, 67 

we describe the optimization algorithm which identifies the thresholds (𝑇1(𝜔), 𝑇2(𝜔)) that minimize the loss in 68 

the population NMB for a given trade-off value 𝜔. 69 

Fig. 1 presents an example of a policy which uses 𝐶𝑘 to guide weekly decisions about the use of PD and 70 

minimizes the loss in the population NMB. At a trade-off value 𝜔 = 0.1 weeks per death averted per 100,000 71 

persons, for example, this policy suggests that the PD intervention should be started when 𝐶𝑘 exceeds a threshold 72 

13.2 per 100,000 persons (Fig. 1A) and stopped when 𝐶𝑘 falls below 12.9 per 100,000 persons (Fig. 1B). For a 73 

policymaker with an uncertain trade-off value 𝜔, Fig. 1 presents an affordability curve (Fig. 1C), which returns the 74 

cumulative number of weeks for which PD interventions are expected to be used for different values of 𝜔. A 75 
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policymaker with a maximum tolerance for the overall number of weeks of PD can consult Fig. 1C to select a 76 

trade-off threshold that satisfies this constraint in expectation. The policymaker can then use Fig. 1A-B to make 77 

real-time decisions given their selected trade-off threshold. We note that higher trade-off values lead to lower 78 

thresholds of 𝐶𝑘 at which to start PD interventions (Fig. 1A-B), more weeks during which PD is used (Fig. 1C) 79 

and a lower expected number of deaths due to COVID-19 over the course of the pandemic (Fig. 1D).  80 

As we have shown in previous studies of epidemics (7-9), the performance of policies to guide decision-making 81 

depends on the specific features of surveillance data (e.g. 𝐶𝑘) selected to inform decisions. To demonstrate the 82 

differential performance of PD policies in the context of the ongoing epidemic, we used our simulation model of 83 

the COVID-19 pandemic to simulate the outcomes of three types of PD policies that use different features and 84 

decision rules to inform recommendations (Fig. 2). We consider a static periodic policy (purple curve) that 85 

employs the periodic use of PD at pre-defined durations and frequencies (e.g. every 2 weeks for 2 weeks, every 4 86 

weeks for 4 weeks, etc.). We also evaluate two adaptive policies that use 𝐶𝑘 to determine whether PD should be 87 

started, continued or stopped for the following week: 1) an ‘Adaptive: ICU Capacity’ policy which is similar to 88 

policies proposed by (2, 3) where the on/off PD thresholds are determined to ensure that the expected probability 89 

of surpassing available ICU capacity is below a certain value (e.g. 90%); and 2) an ‘Adaptive: Minimize Loss of 90 

NMB’ that determines the on/off thresholds to minimize the loss in the population NMB using the optimization 91 

algorithm described in the Supplement (this policy is displayed in Fig. 1A-B).  92 

The adaptive policies that seek to minimize the loss in NMB can be designed to dominate (i.e. prevent more 93 

deaths and require shorter duration of PD as) other policies described above (Fig. 2). For any given number of 94 

weeks the policy maker is willing to maintain the PD intervention, the horizonal distance between the green curve 95 

and other curves in Fig. 2 represents how many deaths could be prevented by using an adaptive policy designed to 96 

minimize the loss in NMB, as compared to one of the other two approaches. 97 

The results presented here highlight the need for several specific data items to promote better decision-making 98 

during this pandemic. First, we need the best data possible to understand the natural history of the pathogen (e.g. 99 

duration of immunity, infectiousness, role of asymptomatic transmission, mortality), the current epidemiology 100 

(e.g. the prevalence of infectious individuals and hospitalized patients), and the effectiveness (e.g. reduction in 101 

contact rate) of PD interventions. Second, we need better data on the economic costs of physical distancing 102 

interventions. Third, and most difficult, is the need for policymakers to establish what economic tradeoffs we are 103 

willing to make to preserve the health of the population. In the absence of clearly established guidelines on 104 

societal willingness-to-pay for health, policymakers may choose some proxies for the consumption of societal 105 

resources such as the number of weeks over which PD interventions are expected to be used (Fig. 1C) to choose 106 

an efficient PD policy to follow.  107 

This paper presents a simple model of the COVID-19 pandemic in order to facilitate exposition and discussion. 108 

As such, we have made a number of assumptions. We average across many important sources of heterogeneity. 109 

Additional details (e.g. age-structure, risk-group membership, asymptomatic transmission, population compliance 110 

with different PD interventions over time, availability of tests, and lags in the reporting of test results) will need to 111 

be added to allow for context-specific usage and to allow for simulation of more complex interventions (e.g. 112 

contact tracing, age-specific relaxation of PD rules, use of serological tests to establish which individuals should 113 

not be limited by PD interventions). We used crude estimates to project health loss associated with the COVID-19 114 

pandemic ignoring comorbidities and downstream health consequences of unemployment during tightened PD 115 

interventions. These factors could also be incorporated, depending on the availability of data, in the objective 116 
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function we described above and in the Supplement. The effectiveness of different PD interventions may not be 117 

known a priori, and our simple approach for modeling PD ignores the complexities in which mobility may change 118 

over the course of the epidemic regardless of the PD policy adopted. New data on the relationship between 119 

mobility, contact patterns, and the types of PD interventions guidelines in place can help improve the usefulness 120 

of these models. 121 

The decision tool we present here provides a flexible framework for using real-time observations to guide the use 122 

of PD interventions. It seems likely to us that policymakers would prefer policies that are responsive to updated 123 

surveillance and do not prematurely commit them to future actions. The algorithm we propose to optimize PD 124 

policies does not restrict the type of epidemic model used to project the health and economic outcomes of the 125 

COVID-19 pandemic. Various frameworks, including compartmental, agent-based, or network models may be 126 

used as needed to relax the simplifying assumptions of our model. Furthermore, our proposed approach can also 127 

incorporate delays in reporting of data and uncertainties in estimates (due to limited sample size) (7, 9). We have 128 

described an algorithm to optimize PD policies in the Supplement and welcome other groups to contact us or 129 

adapt this approach to help improve real-time decision making during this epidemic.  130 
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Figures 165 

 166 

 

Fig. 1: A policy that uses the number of COVID-19 patients who need critical care (𝑪𝒌) at the beginning of a given 

week to inform whether the physical distancing interventions should be turned on or off during the following week. 

Panel A displays the decision rule to be used when the physical distancing intervention is currently off and panel B displays 

the decision rule when the physical distancing intervention is currently on. Panel C returns the accumulated number of weeks 

during which physical distancing is expected to be used, and Panel D displays the number of deaths per 100,000 population 

expected to occur due to COVID-19 under adaptive policies that correspond with different trade-off values (𝜔) (Panels A-B). 
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Fig. 2:Comparing the performance of difference physical distancing (PD) policies. The origin in this figure corresponds 

to a counterfactual scenario where PD is not used at all, which is expected to result in 1,391 deaths per 100,000 population. 

The curve ‘Static: Periodic’ corresponds to policies that recommend using PD every 2 weeks for 2 weeks, every 4 weeks for 

4 weeks, and so on. The numbers on the red curve (‘Adaptive: ICU Capacity’) represent the probability that a COVID-19 

patient who requires critical care would get admitted to ICU. The numbers on the green curve (‘Adaptive: Minimize Loss of 

NMB’) represent the trade-off thresholds of policies selected from Fig. 1A-B. The bars represent the 95% confidence interval 

of projections using 200 simulated trajectories. NMB: net monetary benefit. 
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