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Abstract 

COVID-19 has spread around the world with nearly 360,000 deaths from the virus as of today 

(5/28/2020). Mathematical models have played an important role in many key policy discussions about 

COVID-19. SIR or SIR-derived models are a common modeling technique. However, the application of 

these models needs to solve complicated differential equations, enabling use of these models only by 

professional researchers. In this study, a simple, SIR-like but individual-based model, the l-i AIR model, 

is presented. The parameters l and i represent the length of the latent period and the infectious period, 

respectively. The variable A stands for the number of the infected people in the active infectious period, 

I for the number of cumulative infected people, and R for the number of the people in recovery or death. 

The nth terms of the three variables are derived, which can be easily calculated in Microsoft Excel, 

making the program easy to be used in most offices. A transmission coefficient k and a transient 

incidence rate α of the infected people are induced in the model to examine the effect of social 

distancing and the testing capacity of coronavirus on the epidemic curves. The simulated daily new cases 

from this l-i AIR model can fit very well with the reported daily new cases of COVID-19 in Wuhan, China 

and in New York City, USA, providing important information about latent period, infectious period and 

lockdown efficiency, and calculating the number of actual infected people who are positive in antibodies. 
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Introduction 

In early December 2019, a new type of pneumonia, which is named COVID-19 by the World Health 

Organization (WHO), was found in Wuhan, Hubei province, China [1, 2], and then the disease was found 

in all provinces of China and almost all countries around the world. This extensive spread of disease in 

the world was officially described as a pandemic on March 11, 2010. Currently (5/28/2020), there are 

more than 5.8 million confirmed cases, and around 360,000 people are killed by COVID-19 globally. To 

prevent the disease of further transmission, many cities, states or provinces, and countries declare 

lockdown. Since the beginning of the COVID-19 epidemic, several papers using SIR or SIR-derived 

models to analyze the characteristic of the COVID-19 have been published[3-7]. The SIR model was first 

published nearly 90 years ago[8]. Here, S stands for the number of susceptible, I for the number of 

infectious, and R for the number recovered (or immune) individuals[9]. A main assumption to the 

change of S with time, dS/dt, is that dS/dt is proportional to S and I. This assumption requires both S and 

I be well-mixed rapidly and an individual in S and I have the same probability appearing at different 

locations in the whole area studied. The same requirement is needed for people in R. So, the SIR model 

can be considered as a “well-mixed” based model. However, in actuality, individuals in S, I and R are not 

well-mixed in the whole population. Individuals in the real world usually have their own moving path 

daily. Furthermore, the model needs to solve complicated differential equations to calculate epidemic 

curves, making the use of the SIR model to be limited to professional researchers. In this study, we 

present a new individual-based l-i AIR model, which does not require a well-mixed population. Since we 

have found simple nth term formulas for all variables in this model, it is easy to implant nth terms of 

these variables in Microsoft Excel, which can be run in most offices. This new mathematical model is 

then applied to the analysis of the epidemiological characteristics of infectious diseases; and we 

compare COVID-19 in Wuhan, China and in New York City (NYC), USA, where the lockdown intervention 

was applied to slow down the disease transmission during the epidemic outbreak.  

 

Theory: l-i AIR Model 

If a person is infected by an infectious disease, the person will experience a latent period (l), an 

infectious period (i), and then recovery or death. In this model, l and i are two parameters; and the 

three letters A, I and R are variables.  A stands for the active infectious individuals or the individuals in 

the infectious period, I for the cumulative infected individuals, and R for the recovered individuals. It is 

assumed that (a) the length of latent period is l days or l time units (1 time unit can be 1 day or 

less/more than 1 day); (b) the length of infectious period is i days or i time units; and (c) the infectious 

individual infects one person per day or per time unit in the infectious period. Under these assumptions, 

if i=n, it means that an infectious individual will infect 1 person per day (or per time unit) for n days (or n 

time units) in the infectious period, or will infect a total of n people in the infectious period before the 

infectious individual is recovered or dead.  

 

In the following, a special example is given for examining how an infectious person spreads the diseases 

in the l-i AIR model. At first, it is assumed that the time unit is 1 day/unit; the latent period is 2 days 

(l=2); the infectious period is 3 days (i=3); and the first infected individual has been generated on day 1. 

A column of 5 cells (Figure 1A) is used to represent the infectious status of an infected individual. The 

transmission pattern of the epidemics is illustrated in Figure 1B: 

 

On day 1, the infected individual is in the latent period, so A1=0 because there is no one in the infectious 

period. However I1=1 because the first infected individual exists already. There is no one recovered, so 

R1=0.  Thus, the three variables (A1, I1, R1)=(0,1,0).  
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On day 2, the first infected individual is still in the latent period, who is not able to infect others and is 

not recovered yet, so (A2, I2, R2)=(0,1,0).  

On day 3, the first infected person enters the infectious period, so its infectious status changes from 0 to 

1 (A3=1). In this infectious status, the individual can infect one person (I3=I2+1=2). The new infected 

person is in the latent period. No one is recovered (R3=0).Thus, we have (A3, I3, R3)=(1,2,0).   

On day 4, the first infected person is in the infectious period; the second infected person is still in the 

latent period; so there is only one person in the infectious period (A4=1), and they can only infect 1 more 

person (I4=I3+1=2+1=3), and there is still no recovered persons (R4=0). So, we have (A4, I4, R4)=(1, 3, 0). 

 On day 5, in addition to the first infected person, the second infected person also enters the infectious 

period (A5=A4+1=1+1=2). Since A5=2, they can infect two more persons, or (I5=I4+2=3+2=5). There are 

no recovered people (R5=0). Thus we have (A5, I5, R5)=(2,5,0). 

 On day 6, the first infected person is recovered, so we have R6=R5+1=1. The number of persons in the 

infectious period decreases by 1, but the third infected person enters the infectious period, so we have 

A6=A5-1+1=2. Since A6=2, they can only infect two more persons. Thus I6=I5+2=5+2=7, or (A6, I6, 
R6)=(2,7,1). 

On day 7, there is still only the first infected person in the recovered status (R7=1). In addition to 

infected persons 2 and 3, infected persons 4 and 5 enter the infectious period (A7=A6+2=4). Infected 

persons 6 and 7 are in latent period, so they can only infect 4 more persons, I7=I6+4=11. Thus (A7, I7, 
R7)=(4,11,1). 

On day 8, in addition to the first infected person, the second infected person is also recovered 

(R8=R7+1=2). Thus, the number of the infectious persons needs to be subtracted by 1. However, the 

infected persons 6 and 7 enter the infectious period, so the number of the total infectious persons 

A8=A7-1+2=5.  Since A8=5, they can infect 5 more persons, so I8=I7+5=16. Thus, (A8, I8, R8)=(5,16,2).  

Considering all of the above steps, we obtain the following formulas to calculate the nth term (An,In,Rn) 

after its previous terms are determined. Given l=2 and i=3, we let the first term (A1,I1,R1)=(0,1,0) and all 

previous terms as n<1 are (0,0,0), then we have the following formulas for calculating the nth term: 

�� � ���� � ����� � ������� � ����� � �������   (1a) 

 

Figure 1. Illustration of l-i AIR model. (A) A single column with 5 cells is used to represent the 

infectious state of an infected individual in the 5 days (l=2 days and i=3 days). At day 1 and 2, the 

state number is 0 meaning that the person is in the latent state. From day 3 to day 5, the state 
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�� � ���� � ��        (1b) 

�� � ���� � ���� � ������       (1c) 

In the above equations, c=l+i. From Eqn. (1) we can easily find the total infected person in the latent 

period and infectious period: 

	� � �� � ��        (1d) 

In the above example, we have l=2 and i=3, so we can calculate the second term from the first term 

(0,1,0) considering that Am=0 and Rm=0 as m≤1,  I1=1 at m=1 and Im=0 as m<1. 

On day 2: 

�� � �� � �� � ��� � ���� � ��	� � 0 � 0 � 0 � �0 � 0� � 0  

�� � �� � �� � 1 � 0 � 1  

�� � �� � ��� � ��	 � 0 � 0 � 0 � 0   

Thus, (A2, I2, R2)=(0,1,0) 

In the same way, we can use Eqn. (1) to calculate (An, In, Rn) from n=3 to n=8. The calculated results are 

exactly the same as these (An, In, Rn) terms derived from the transmission pattern showing Figure 1B. 

l-i AIR model with lockdown intervention 

If the outbreak of an epidemic occurs in a geographic area, and the area is lockdown from a day (n=m) 

to slow down or stop the epidemic outbreak, then we can simply revise Eqn. (1b) from the lockdown day 

(n=m): 

�
 � �
�� � � 
 �
      (2) 

Where the transmission coefficient k=0 if assuming that the lockdown intervention completely blocks 

any further infection to uninfected persons, or k is a positive value close to zero indicating that the 

transmission activity has been greatly reduced. To demonstrate the effect of lockdown on An, In and Rn, 

we assume that the lockdown starts at day 9 in the above example: 

On day 9, one infected person (the third infected one) is recovered, but 4 infected persons enter the 

infectious status from latent status. Thus, the number of the recovered people increases by 1, or 

R9=R8+1=3; and the number of the active infectious persons A9=A8-1+4=8. Since one infected person is 

recovered and no more persons are infected because of the transmission coefficient k=0 after lockdown 

intervention, we have I9=I8+k*A9= I8=16. Thus (A9, I9, R9)=(8,16,3). 

On day 10, two more persons are recovered (R10=R9+2=5), but 5 new persons enter the active infectious 

period (A10=A9-2+5=8-2+5=11). Since no new persons are infected because of k=0, we have I10=I9=16, so 

(A10, I10, R10)=(11,16,5). 

On day 11, two persons are recovered (R11=R10+2=7), but no new active infectious persons are added, so 

we have A11=A10-2=11-2=9 and I11=I10=16, thus (A11, I11, R11)=(9, 16, 7). 

Similarly, on day 12 and 13, 4 persons and 5 persons are recovered, respectively. So, we can get 

(A12,I12,R12)=(5,16,11) and (A13,I13,R13)=(0,16,16).  
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The above (An, In, Rn ) terms were derived from the transmission pattern shown in Figure 1B. These 

terms can be also calculated from Eqn. (1) & (2) assuming that k=0 after lockdown intervention. If k=0, 

the nth term for In can be simplified as  

�� � ����  (2a) 

Thus we can calculate An, In, Rn on 

day 9:  

�� � �� � ��
 � ��� � ��	 � ��� �

5 � �11 � 7� � �3 � 2� � 8  

�� � �� � 16  

�� � �� � �	 � �� � 2 � 3 � 2

� 3 

So, we have (R9, I9, T9)=(8,16,3) . 

Similarly, we calculate other terms 

from n=10 to n=13. These 

calculated terms are exactly the 

same as those we have 

demonstrated above.  

Simulated results 

To simulate an epidemic outbreak, 

l and i can be given different 

numbers for fitting the reported 

data. Eqns. (1) and (2) can be 

easily implanted into 

Microsoft Excel to examine 

how An, In and Rn change 

with n. Here, n can be 

considered as a unit of time 

or date. By the following 

simulation, we can examine 

the characteristics of An, In 

and Rn in the outbreak phase 

and lockdown phase.  

1. No epidemic outbreak at 

i=1. The rapidity of outbreak 

of epidemics is greatly 

related to the time length of l 
and i. In Figure 2, we 

demonstrate how the total 

number of infected 

individuals (Tn) changes with 

time (n) for different l at i=1. 

No epidemic outbreak can be 

   

   

Figure 2. Changes of the total number of infected individuals in both 

the latent and the infectious periods Tn with n for different l at i=1. 

The values of Tn vary between 1 and 2. 
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Figure 3. Changes of Rn and An with time (n) for different values of l at i=1.  
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seen from the figure. At i=1, the present infectious 

person will only infect one new person before the 

former person loses his/her transmissibility by 

recovery. As a result, the number of infectious 

individuals can’t be accumulated up to more than 2. 

Although the total number of infected persons in the 

latent and infectious periods (Tn) jumps up and down 

between 1 and 2 repeatedly, the number of 

recovered individuals (Rn) can be accumulated up 

with time. However, the number of infectious persons 

(An), similar to Tn, jumps between 0 and 1 repeatedly 

(Figure 3).  

2. Propagated epidemic 

curves as l>i>1. Propagated 

epidemic curves usually 

consist of a series of waves 

with successively larger 

peaks[10]. By simulations, 

we observed that the 

propagated epidemic curves 

are formed when l>i>1. In 

Figure 4, we illustrate three 

calculated curves of An for 

l=4, 6 and 8 at i=2. These 

calculated curves are very 

similar to the 

propagated epidemic 

curves reported in the 

literature. 

3. Exponential 

epidemic outbreak as 

i≥l≥1 except i=1. In the 

early stage of epidemic 

outbreak, it is often 

seen that epidemic 

curves of new cases 

exponentially grow 

with time. By 

simulation using the l-i 
AIR model, we can see 

that all curves of An, In 

and Rn exponentially 

increase with time if 

i≥l≥1 except i=1. A 

 
Figure 4. Propagated epidemic curves for l=4, 

6 and 8 at i=2. Each curve consists of a series 

of waves with successively larger peaks. 
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Figure 5. An example of exponential growth of Rn, An and Tn as i>l>1. (A) 

The curves are calculated from Eqn. 1 assuming l=2 and i=4. (B) The 

logarithm of An, In and Rn linearly increase with n. 

 
 Figure 6. Calculated epidemic curves (An & Tn) at 4 different combinations of l 
and i assuming the lockdown intervention started at n=41 and the transmission 

coefficient k=0 after lockdown.  
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special example of the calculated An, In and Rn at l=2 and i=4 is shown in Figure 5A. The logarithm of An, 

In and Rn at l=2 and i=4 is linear with n (Figure 5B), indicating that Rn, In and Tn exponentially increase 

with n. 

4. Epidemic curves with lockdown intervention. During an epidemic outbreak, if the lockdown 

intervention of the epidemic area is performed, the forward tendency of the epidemic curve will change 

depending on how strict the lockdown intervention is being implemented. In an ideal situation, the 

infection of an infectious person to an uninfected person is completely blocked, or the transmission 

coefficient k in Eqn. (2) is 0, then Eqn. (2) can be simply replaced by Eqn. (2a). Using Eqn. (1) and Eqn. 

(2a), we calculated Rn, An and Tn at different combination of l and i. The calculated An and Tn, assuming 

that the first infected person appears on day 1 and that the lockdown is performed on day 41, are 

demonstrated in Figure 6.  

In comparison, if the virus transmission is 

not completely blocked by the lockdown 

intervention or k is greater than 0, then 

the shape of epidemic curves will depend 

on k. In Figure 7, we present the simulated 

epidemic curves for the nonzero value of k 

at l=3 and i=5 to show how the shape of 

An curve changes with k (An is proportional 

to the number of the reported daily new 

cases).  

When the number of the cumulative 

infected individuals increases to a range 

comparable to the total susceptible 

population, the remaining susceptible people 

is largely reduced. In this case, the chance to 

contact an uninfected person is reduced, so k 

will decrease even If there is no lockdown 

intervention. Assuming that k is proportional 

to the ratio of the number of uninfected 

people (N-I) to the number of initial 

susceptible population (N), kn=(N-In-1)/N,  the 

simulated epidemic curves of An, In and Rn at 

l=1, i=2 and N=1x10
6
 are demonstrated in 

Figure 8. As defined previously, I is the 

number of the cumulative infected people, 

and (N-I) is the number of the total uninfected 

people. During the epidemic outbreak, I 
increases from 0 to a number close to N, so k 

will decrease from 1 to a number close to 0 

correspondingly. 

 

Application of the l-i AIR model to compare COVID-19 outbreak in Wuhan, China and in NYC, USA 

 
Figure 7. Simulated epidemic curves with lockdown 

intervention for different transmission coefficient k. 
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Simulation of COVID-19 outbreak in Wuhan. In the l-i AIR model, A stands for the number of 

individuals in the infectious period. To compare the calculated epidemic curve with the reported data in 

an epidemic event, we need to have an assumption: the daily new case (y) of the epidemic event can be 

considered as the transient incidence of infectious disease at day n, which is proportional to An, or y=αAn. 

Here α is the incidence rate. In Figure 9A, we compare the calculated daily cases with the reported daily 

new cases of COVID-19 in Wuhan, China. The red line with closed circles represents the three-day 

averages of the reported daily new cases in Wuhan. The daily new cases were reported by Hubei Health 

Commission. Between 2/12/2020 and 2/18/2020, a total of 7 days, clinical diagnosis of COVID-19 was 

added as a diagnostic criteria, resulting in large increase in case number on February 12 and subsequent 

days. This change in diagnosis of COVID-19 disease creates difficulties in using the reported cases for 

data analysis[4]. Fortunately, both the number of the total new cases and the number of cases 

diagnosed clinically were listed in the first 4 days between 2/12/2020 and 2/15/2020, so it is easy to find 

the number of daily new cases confirmed from the viral tests by subtracting the clinically diagnosed case 

number from the total new case number. The daily new cases in the last three days between 2/16/2020 

and 2/18/2020 can be estimated from the reported daily new cases by using information (the ratio of 

the numbers measured by the two diagnosis methods) provided in the previous days. To calculate daily 

new cases from Eqns. (1) and (2), we set: (a) the first COVID-19 case appeared on December 8, 2019, 

and the lockdown day of Wuhan started on January 23, 2020; (b) l=1 unit (3 days) [11, 12], i=4 units, and 

each time unit is 3 days; (c) the transmission coefficient k is 1 before lockdown; 0.25 in the first time unit 

(3 days) after the city lockdown considering that each infected individual can still transmit the virus to 

the person who lives with the infected individual; 0.03 in the second time unit and all 0.02 from the 

third time unit after the city lockdown; and (d) the transient incidence rate α is 1/100 or 1%. From Figure 

9A, it can be seen that the calculated number of daily new cases (green line) is consistent with the 

reported daily new cases (red line with closed circles) before and on the date 2/12/2020. After this date, 

it seems that the reported number of daily new cases makes a turn and deviates from the calculated 

curve. Changing the parameter k or α can make the calculated curve fit the reported number of daily 

new cases better.  However, although increasing k can moderately improve the fitting, a bigger k will be 

too large to be reasonable considering the strict lockdown that was performed during that time. This 

deviation is more likely caused by changes in α because of some other intervention used during this time, 

such as the large increase in the number of viral tests and the use of more than 10 Fangcang shelter 

hospitals to admit more than 10,000 patients[13]. By gradually increasing α from 2/15/2020 to 3/1/2020, 

Figure  9. Comparison of the calculated daily new cases with the reported daily new case during the 

outbreak of COVID-19 in Wuhan. 
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the calculated number of daily new cases fits with the reported number of daily new cases pretty well 

(Figure 9B).   

Simulation of COVID-19 outbreak in NYC. The first COVID-19 case in New York City was confirmed on 

March 1, 2020[14]. Research indicates that coronavirus started to transmit in the New York state 

between late January to mid-February[15]. A state of emergency in New York was declared on March 7 

after 89 cases were confirmed in the New York state. All schools, bars, and restaurants in NYC were 

closed on March 17, 2020[16]. The statewide stay-at-home order of New York was effective on March 

22, 2020[17]. To simulate the reported daily new cases of COVID-19 in NYC, a different combination of l 
and i, and different start date of the first infected person who initiated the COVID-19 transmission in 

NYC were tried. It was found that the simulated curve of daily new cases can fit well with the reported 

daily new cases if l=4[18], i=10, and the start day of the first infected person appeared in NYC was on 

February 9, 2020.  In the simulation, the transmission coefficient k was largely dropped from 1 on March 

17 (k=0.45), the first day that NYC closed schools, restaurants and bars, and then gradually decreased to 

0.064 by April 19, 2020. The transient incidence rate α is 1/85 or ~1.2%. The reported daily new cases in 

NYC and the simulated epidemic curve are demonstrated in Figure 10A. The calculated number of 

cumulative infected people (In) based on Eqns. (1) and (2) using the parameters for Figure 10A is shown 

in Figure 10B.  

Comparison of the spreading characteristic of COVID-19 in Wuhan and in New York City. The values of 

l and i of COVID-19 in NYC 

are different from those of 

the COVID-19 in Wuhan. 

For Wuhan’s COVID-19, l is 

1 time unit and i is 4 time 

units, with the time unit 

being 3 days/unit. This 

means: (a) the latent 

period l is 3 days; (b) the 

infectious period i is 12 

  

Figure 10. The simulated curve of daily new cases of COVID-19 and the reported daily new cases of 

New York City assuming that l=4, i=10 and k gradually decreases to 0.064 after March 17 (A). The 

number of cumulative infectious people was calculated from Eqns. (1) and (2) (B). 
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Figure 11. Comparison of transmission characteristic of COVID-19 in New 

York City, USA (A) with that in Wuhan, China (B). 
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days; and (c) each infectious individual can infect one person every 3 days or infect 4 persons in 12 days. 

For NYC’s COVID-19, l=4, i=10, and time unit is 1 day/unit. This meansthat the latent period l and 

infectious period i are 4 days and 10 days respectively; and each infectious individual can infect 1 person 

per day for a total of 10 days. To compare the transmission characteristic of the two types of COVID-19, 

simulations were performed by assuming that the outbreak of COVID-19 occurs in an area having 1 

million susceptible people and no intervention is used to slow down the disease outbreak. In the 

simulations, it was assumed that the transmission efficiency is gradually reduced while the number of 

uninfected people is gradually reduced with time by assuming that k is proportional to (N-I)/N.  The 

simulated epidemic curves of An, In and Rn are shown in Figure 11. COVID-19 in Wuhan takes 72 days to 

reach the outbreak peak in an area with 1 million susceptible people, but COVID-19 in NYC only needs 

54 days to reach the outbreak peak in the same area with the same population.  

Discussion 

Simulations based on Eqn. (1) (Figure 2 & 3) show that no epidemic outbreak can happen if i=1 

regardless of the length l of the latent period, even though the number of the total recovered people (Rn) 

will be linearly accumulated up with time. The meaning of i=1 is that an infected individual can only pass 

the virus to one another person before the infected individual is recovered or dead. Under this situation, 

Tn and An cannot be accumulated with time after the transmission process of the disease started by the 

first infectious individual, so this transmission process may be stopped any time when an infectious 

individual is not able to infect another person before recovery because of any interference. 

For any other situations of i>1, all of An, Tn and Rn will continuously increase with time until an 

intervention is applied or the number of available susceptible people has been largely reduced. For 

special conditions of l>i>1, simulations (Figure 4) show the repeated wave-shape in the epidemic curves, 

which have been observed in the real world, named as propagated epidemic curves, usually 

transmission by direct person-to-person contact[10]. From the viewpoint of the l-i AIR model, the 

propagated epidemic curves can happen when l>i>1. 

For all other conditions of i≥l>1 and i>1 at l=1, all of An, Tn and Rn will exponentially increase with time 

until an intervention is applied or the number of available susceptible people is largely reduced (Figure 

5). As shown in Figure 6, if the transmission process is completely blocked by a lockdown intervention or 

k=0, then Tn will stop to increase on the lockdown day and decrease to 0 in l+i days (the total length of 

the latent period and the infectious period). In comparison, An will stop to increase l days later, but will 

decrease to 0 in i days. As a result, both Tn and An decrease to 0 on the same day even though An stops 

to increase or reaches the peak l days later. Since An is proportional to the reported daily new cases in 

an epidemic event, the effect of lockdown on the daily new cases will be observed l days later. This is 

reasonable because those individuals infected immediately before the lockdown starting day will get 

symptoms after the latent period of l days (assuming that time in latent period and time in incubation 

period are similar to each other), so the daily new cases will continuously increase for l days after the 

beginning of the lockdown intervention. Figure 6A & 6B also show that for a given i=12, increasing l 
from 2 to 5 reduces the peaks of the epidemic curves by nearly 4 orders of magnitude. In contrast, for a 

given l=3, increasing i from 4 to 8 only increases the peak by 6 folds.  

If the lockdown process is not strict enough in such a way that the transmission process is not 

completely blocked, then k will be greater than 0. In this situation, the epidemic curve may decrease, go 

flat or even continuously increase depending on whether ki is less than 1, equals 1, or greater than 1. 

Here, ki is similar to the basic production number R0 used in the SIR model[19]. A simulation is 
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demonstrated in Figure 7, assuming that l=3 and i=5. When ki=1, k will equal 1/i=0.2. It can been seen 

that the epidemic curve increases when k>0.2, goes flat at k=0.2, and decreases when k<0.2. In some 

situations, the number (I) of the cumulative infected individuals becomes large enough to compare with 

the number of the initial susceptible population N so that the chance of the infected individuals to meet 

uninfected individuals gradually decreases. A simulation was done by assuming that the chance of 

infected individuals meeting uninfected individuals is proportional to (N-I)/N (Figure 8). It can be seen 

that a peak appears in the epidemic curve when In is comparable to N. To make the epidemic curve 

decrease, I must be large enough to meet the condition (N-I)/N<1/i. Thus, we have I>N(1-1/i). If i=2, I 
must be greater than 0.5N to make the epidemic curve decrease. As shown in Figure 8, the peak of An 

appears after In passes 0.5 N.  

The COVID-19 pandemic provides a lot of data to test this l-i AIR model. The first example is the COVID-

19 outbreak in Wuhan, China, where the first COVID-19 patient was seen in early December 2019 [4]. 

After testing different combinations of l and i, the final simulated epidemic curve (Figure 9) fits the 

reported daily new cases in Wuhan pretty well by meeting all of the following requirements: (a) the 

epidemics started on December 8, 2019; (b) the lockdown intervention was started on January 23, 2020; 

(c) the latent period (l=1 unit or 3 days) is within the range of reported data[11, 12]; and (d) the 

simulated epidemic curve fits well with Wuhan’s daily new case. It can be noticed that the reported daily 

cases (the red line with closed circles) are deviated from the simulated epidemic curve (green line) after 

February 12, 2020. This may be related to interventions implanted during this period, such as the large 

increase in the number of viral tests and the use of more than 10 Fangcang shelter hospitals to admit 

more than 12,000 patients between February 5 and March 10, 2020[13]. These interventions can help to 

find many more patients with mild symptoms, but may generate a greater apparent transient incidence 

rate of epidemics than usual. By gradually increasing the incidence rate α from February 15 to March 1, 

2020, the calculated daily new case fits the reported data very well (Figure 9B). The second example is 

COVID-19 outbreak in NYC, USA. As shown in Figure 10, the simulated epidemic curve fits well with the 

reported daily new cases in NYC. The simulated curve meets the following requirements: (a) the first 

case started on February 9, 2020, which is within the time range estimated in the report[15]; (b) the 

intervention to slow down the COVID-19 transmission started on March 17, 2020 and more strict 

interventions were added later; (c) the latent period (l=4 days) is within the range of the reported data; 

and (d) the simulated epidemic curve fits well with New York City’s daily new cases (Figure 10A). Using 

the same parameters for Figure 10A, the calculated number In of the cumulative infected people is 

shown in Figure 10B. On May 1, 2020, In is 1.58 million, which is very close to the estimated 1.67 million 

people[20] infected with SARS-CoV-2 in NYC that was determined from the results of antibody tests[21].  

Research has shown that the earliest cases of COVID-19 in New York were likely brought in by travelers 

from Europe[15]. Simulated curves in Figure 11 show that COVID-19 in Wuhan takes 72 days to reach 

the outbreak peak in an area with 1 million susceptible people, while COVID-19 in NYC needs only 54 

days to reach the outbreak peak in the same area with the same population. This indicates that the 

transmission rate of NYC’s COVID-19 is nearly 30% greater than the transmission rate of Wuhan’s 

COVID-19.  Furthermore, the value of i for NYC’s COVID-19 is 10, but i is 4 for COVID-19 in Wuhan. 

Because an intervention must reduce k to below 1/i for making the epidemic curve decrease, it needs to 

reduce k down to 1/10 or 0.1 to make the epidemic curve decrease in New York. However, it just needs 

to reduce k down to 1/4 or 0.25 in Wuhan. Therefore, it is likely that COVID-19 in NYC has stronger 

infectivity than that in Wuhan. 
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