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Abstract 30 
 31 
Tumor hypoxia levels range from mild to severe and have different biological and 32 

therapeutical consequences, but are not easily assessable in patients. We present a method 33 

based on diagnostic dynamic contrast enhanced (DCE) magnetic resonance imaging (MRI) 34 

that visualizes a continuous range of hypoxia levels in tumors of cervical cancer patients. 35 

Hypoxia images were generated using an established approach based on pixel-wise 36 

combination of the DCE-MRI parameters ne and Ktrans, reflecting oxygen consumption and 37 

supply, respectively. An algorithm to retrieve hypoxia levels from the images was developed 38 

and validated in 28 xenograft tumors, by comparing the MRI-defined levels with hypoxia 39 

levels derived from pimonidazole stained histological sections. We further established an 40 

indicator of hypoxia levels in patient tumors based on expression of nine hypoxia responsive 41 

genes. A strong correlation was found between these indicator values and the MRI-defined 42 

hypoxia levels in 63 patients. Chemoradiotherapy outcome of 74 patients was most strongly 43 

predicted by moderate hypoxia levels, whereas more severe or milder levels were less 44 

predictive. By combining gene expression profiles and MRI-defined hypoxia levels in cancer 45 

hallmark analysis, we identified a distribution of levels associated with each hallmark; 46 

oxidative phosphorylation and G2/M checkpoint were associated with moderate hypoxia, 47 

and epithelial-to-mesenchymal transition and inflammatory responses with significantly 48 

more severe levels. At the mildest levels, interferon response hallmarks, together with 49 

stabilization of HIF1A protein by immunohistochemistry, appearred significant. Thus, our 50 

method visualizes the distribution of hypoxia levels within patient tumors and has potential 51 

to distinguish levels of different prognostic and biological significance.  52 

 53 

 54 
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Introduction 61 

Solid tumors show a highly heterogeneous oxygen distribution with hypoxia levels ranging 62 

from mild to moderate and severe (1). The hypoxia level determines resistance to cancer 63 

therapies like radiation, chemotherapy and many molecular targeting drugs (1–4), and may 64 

therefore have large therapeutical consequences. Current understanding of how the 65 

different levels drive cancer progression and affect treatment response is scarce and mostly 66 

based on experimental studies (5–7). At mild hypoxia, around 2% O2, activation of the 67 

hypoxia inducible transcription factor HIF1 promotes metabolic reprogramming and cell 68 

survival (8,9), more severe levels, below 1% O2, may impair cell proliferation and lead to 69 

genomic instability (10,11), and below 0.5% O2 the cytotoxic effect of radiation is more than 70 

2-fold reduced (2). Hypoxia may also induce epithelial-mesenchymal-transition (EMT) and 71 

immune evasion of tumor cells (12,13), but the levels of importance for these processes 72 

have not been clarified. In patient tumors, earlier investigations using invasive electrodes to 73 

measure oxygen partial pressure (pO2) have shown considerable differences across cancer 74 

types in the level most strongly associated with treatment outcome, ranging from 2.5-10 75 

mmHg or approximately 0.3-1.3% O2 (14). More recent clinical work has almost exclusively 76 

focused on the presence or absence of hypoxia (15), mainly because oxygen electrodes are 77 

not feasible and alternative approaches to assess hypoxia levels are lacking. A method based 78 

on medical imaging would facilitate investigations of how individual levels relate to 79 

treatment outcome and tumor biology in patients, and help development of more efficient 80 

therapies to combat hypoxia. 81 

 82 

Hypoxia occurs in tumors due to impaired oxygen supply by a chaotic vascular network 83 

and/or elevated oxygen consumption in regions with high cellularity (1). We recently 84 

presented a tool for pixel-wise combination of images reflecting oxygen consumption with 85 

images reflecting oxygen supply into images representing hypoxia (16). The consumption 86 

and supply based hypoxia (CSH)-imaging tool was originally developed in prostate cancer 87 

patients, using images of the apparent diffusion coefficient (ADC) and fractional blood 88 

volume (fBV) derived from diffusion weighted (DW) magnetic resonance (MR) images. The 89 

information in the two images was utilized to reflect the difference between oxygen 90 

consumption and supply and thereby the probability of each pixel to locate in a hypoxic 91 

region. Although only the presence of hypoxia was addressed in this study, it is likely that a 92 
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difference between oxygen consumption and supply within a tumor region also would 93 

provide information on the hypoxia level. The CSH-principle may therefore be a basis for 94 

establishing an imaging approach for quantifying hypoxia levels. 95 

 96 

Locally advanced cervical cancer is a disease for which better biological understanding and 97 

new therapeutical approaches to overcome hypoxia are urgent (17,18). In the present work, 98 

we aimed to construct images that visualize a continuous distribution of hypoxia levels in 99 

cervical tumors by applying the CSH-tool. Our approach was based on dynamic contrast 100 

enhanced (DCE)-MR imaging (MRI), because this modality is state-of-the-art diagnostics for 101 

the disease. We showed that the DCE-MRI parameters ne and Ktrans from the Tofts 102 

pharmacokinetic model (19) reflected oxygen consumption and supply, respectively, and 103 

could be successfully combined to generate hypoxia images in xenograft and patient tumors. 104 

We further developed an algorithm to assign hypoxia levels to all pixels. The algorithm was 105 

validated by comparison with hypoxia levels determined from pimonidazole stained sections 106 

in xenograft tumors and hypoxia related gene expression in patient tumors. The power of 107 

this approach was demonstrated by presenting the distribution of hypoxia levels in tumors 108 

of 74 patients and identifying significant differences in the levels associated with treatment 109 

outcome and a set of cancer hallmarks.   110 

 111 

Materials and Methods 112 

Clinical cohort 113 

Totally 74 patients with locally advanced cervical carcinoma, prospectively recruited to our 114 

chemoradiotherapy protocol at the Norwegian Radium Hospital were included 115 

(Supplementary Table S1). Gene expression profiles and a gene score reflecting hypoxia 116 

were available from previous work (20) for 63 patients, and paraffin embedded tissue 117 

sections for immunohistochemistry were available for 73 patients. The gene score was based 118 

on the expression level of 6 hypoxia responsive genes and increased with increasing amount 119 

of hypoxia (20). All patients received external radiotherapy combined with cisplatin (40 120 

mg/m2 weekly) followed by intracavitary brachytherapy and follow up as described (20). The 121 

study was approved by the Regional Committee for Medical Health Research Ethics in 122 

southern Norway, and written informed consent was attained from all patients. 123 

 124 
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Cell lines and hypoxia treatment 125 

HeLa and SiHa cervical cancer cell lines from American Type Culture Collection were used. 126 

Confirmation of cell line identity and cell culturing were performed as described  (21). 127 

Totally 1.5·106 HeLa and 1.7·106 SiHa cells were reseeded in 10 cm plastic dishes 24 hours 128 

before exposure to hypoxia at 0.2%, 0.5%, 1%, 2% and 5% O2 for 24 hours at 37⁰C, all with 129 

5% CO2, by using an Invivo2200 chamber (Ruskinn Technology Ltd). Normoxic controls 130 

(95% air, 5% CO2) were included for all hypoxia experiments.  131 

 132 

Human tumor xenografts 133 

HeLa and SiHa cervical cancer xenograft tumors were established in female nude mice, bred 134 

at the animal department of our institute and kept in specific pathogen-free environment, 135 

with food and water supplied ad libitum. Totally 1·106 HeLa cells in 20 µl or 2·106 SiHa cells in 136 

40 µl of Hank's balanced salt solution were injected intramuscularly in both hind legs of 137 

adult mice. Tumor growth was monitored with anatomical T2-weighted MRI. At the day of 138 

DCE-MRI, the hypoxia marker pimonidazole (60 mg/kg; Hydroxyprobe, Inc) was administered 139 

intraperitoneally prior to MR scanning in 16 HeLa and 12 SiHa tumors. After the scan, 90-120 140 

minutes after pimonidazole injection, the mice were euthanized by dislocation of the neck, 141 

and the tumors were excised, formalin-fixed and paraffin-embedded for 142 

immunohistochemistry. All procedures were approved by the Norwegian Animal Research 143 

Authority and performed in accordance with the guidelines on animal welfare of the 144 

Federation of Laboratory Animal Science Associations. 145 

 146 

DCE-MRI 147 

DCE-MRI of xenograft tumors was performed at a volume of 100-800 mm3, using a 7.05 T 148 

Biospec bore magnet (Bruker) and a fast bolus injection of 5.0 ml/kg body weight of Gd-149 

DOTA (Dotarem, Guerbet) (Supplementary Method S1). Totally 8 images prior to and 57 150 

images post injection of Gd-DOTA were acquired with an axial T1-weighted spoiled gradient 151 

recalled sequence (SPGR). The images had a spatial resolution of 234x234x1000 μm3. The 152 

three most central tumor slices were used in the analysis. 153 

 154 

In patients, DCE-MRI was performed at diagnosis, using a 1.5 T Signa Horizon LX tomograph 155 

(GE Medical Systems) with a pelvic phased array coil and a fast bolus injection of 0.1 156 
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mmol/kg body weight Gd-DTPA (Magnevist, Schering) (Supplementary Method S1). Totally 157 

1-2 series prior to and 12-13 series post injection of Gd-DTPA were acquired with an axial T1-158 

weighted SPGR sequence. The images had a pixel size of 780x780 μm2, slice thickness of 5 159 

mm and slice gap of 1 mm. All slices containing tumor were used in the analysis. 160 

 161 

Hypoxia images 162 

The tumors were outlined in T2-weigthed MR images and co-registered with the DCE-MR 163 

images. Pharmacokinetic analysis of the contrast uptake curves obtained from the DCE-MR 164 

images was performed on a pixel-by-pixel basis using the Tofts model (19) (Supplementary 165 

Methods S1), and parametric images of Ktrans and ne were generated. To construct hypoxia 166 

images, the CSH-tool was applied on the Ktrans and ne images as described for DW-MRI (16). 167 

Hence, pixel-wise plots of Ktrans versus ne were generated for each tumor, representing 168 

decreasing oxygen consumption on the horizontal ne-axis and increasing oxygen supply on 169 

the vertical Ktrans-axis. To determine a threshold for hypoxia, a line discriminating pixels in 170 

hypoxic and non-hypoxic regions, and thus defining the hypoxic fraction, was determined in 171 

an iterative procedure with all tumors, using an independent hypoxia measure as learning 172 

variable. The hypoxic fraction was calculated for each tumor and iteration and correlated 173 

with the independent hypoxia measure. The optimal line was determined by the highest 174 

Pearson correlation coefficient and was described by its intersections with the horizontal 175 

(ne0) and vertical axes (K0
trans).  176 

 177 

Immunohistochemistry and digital histopathology 178 

Adjacent sections, 4-5 μm thick, from xenograft tumors were stained for hypoxia (n=28) 179 

using a pimonidazole polyclonal rabbit antibody (1:3500; Hydroxyprobe Inc.) and endothelial 180 

cells (n=26), using a CD31 rabbit polyclonal antibody (1:50, ab28364; Abcam). Hematoxylin 181 

was used as counterstain to visualize cell nuclei. Digital histopathology was performed to 182 

quantify hypoxic fraction (HFPimo), cell density (CD) and blood vessel density (BVD) 183 

(Supplementary Method S1). Sections from 73 patient tumors were stained with the 184 

monoclonal mouse HIF1A antibody clone 54 (1:25, no. 610958; BD Transduction 185 

Laboratories) as described (21). Percentage of HIF1A positive tumor cells was scored 186 

manually based on nuclear staining: 0, 0%; 1, 1-10%; 2, 11-25%; 3, 26-50%; 4, 51-75% and 5, 187 

>75%.  188 
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Gene expression 189 

Gene expression profiling of HeLa and SiHa cells exposed to hypoxia at 0.2%, 0.5%, 1%, 2% 190 

and 5% O2 and normoxia (95% air) was carried out using Illumina bead arrays HT-12 v4 191 

(Illumina Inc.). Total RNA was isolated using miRNeasy MiniKit (Qiagen). Complementary 192 

RNA was synthesized, labeled and hybridized to the arrays. Signal extraction and quantile 193 

normalization were performed using software provided by the manufacturer (Illumina Inc.). 194 

The data were deposited in the Gene Expression Omnibus (GEO;  GSE147384). Normalized 195 

gene expression profiles of 63 patients, generated previously using Illumina bead arrays 196 

WG-6 v3 (Illumina Inc.) (20), were downloaded from GEO (GSE72723).  197 

 198 

Statistical analysis 199 

To compare hypoxic fractions derived from MR images and pimonidazole stained sections, 200 

an adapted version of Pearson product moment correlation test for similarity between two 201 

data sets was applied (22): 202 

 203 

   𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑥, 𝑦) = 	 ∑(010̅)(3134)
(567)
8 (9:;(0)<9:;(3))

  204 

 205 

where x and y are sets of hypoxic fractions from MRI and pimonidazole, respectively, var(x) 206 

and var(y) are their sample variance and n is sample size. The function is equal to one when 207 

the hypoxic fractions from the two modalities are perfectly correlated with a slope of one. In 208 

cases of poor correlation or a slope deviating from one, the similarity decreases. 209 

 210 

Curve fitting was performed through regression analysis. Student's t-test was used for 211 

comparison of groups when data complied conditions of normality and equal variance. 212 

Otherwise, Wilcoxon rank sum test was used. Linear correlations were searched for by 213 

Pearson correlation test. Clinical endpoint was progression-free survival defined as time 214 

from diagnosis to disease-related death or first occurrence of relapse. Patients were 215 

censored at their last appointment or at 5 years. Cox univariate proportional hazard analysis 216 

was performed, and Kaplan-Meier curves were compared using log-rank test. Probability 217 

values of P<0.05 were considered significant. The statistical analyses were performed using 218 

SigmaPlot and SPSS. 219 
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Results 220 

MRI-based hypoxia images provide measures of hypoxic fraction 221 

The possibility to construct hypoxia images from DCE-MR images was investigated in 222 

xenograft tumors by first examining whether the histopathology parameters cell density 223 

(CD) and blood vessel density (BVD) could be used to reflect oxygen consumption and 224 

supply, respectively. Images of the DCE-MRI parameters ne and Ktrans displayed resemblance 225 

with those of CD and BVD, respectively, with some disagreement possibly due to a two-226 

hundred fold difference in slice thickness (Supplementary Fig. S1). Consistent with these 227 

observations, significant correlations were found between median values of ne and CD 228 

(R2=0.46, P<0.0005) and between median values of Ktrans and BVD (R2=0.17, P=0.03) 229 

(Supplementary Fig. S1). No significant correlation was found between ne and BVD or 230 

between Ktrans and CD (Supplementary Fig. S2A). Hypoxic fraction determined by 231 

pimonidazole staining (HFPimo) was correlated with both ne (R2=0.46, P<0.00005) and Ktrans 232 

(R2=0.22, P<0.05; Supplementary Fig. S2B). ne and Ktrans  therefore seemed to be connected 233 

to hypoxia and contain different information related to oxygen consumption and supply, 234 

respectively, in line with other reports where low molecular weight contrast agents are used 235 

for DCE-MRI (23).   236 

 237 

Based on the above results, we searched to construct hypoxia images in xenograft tumors by 238 

combining images of ne and Ktrans and using HFPimo as independent measure of hypoxia. In 239 

pixel-wise plots of Ktrans versus ne, pixels from tumors having a high HFPimo were in general 240 

located more towards the lower left corner than pixels from tumors with a low HFPimo (Fig. 241 

1A, B), consistent with the CSH-principle. The line that best discriminated pixels in hypoxic 242 

and non-hypoxic regions for all tumors combined was determined (Supplementary Fig. S3A). 243 

Pixels below the optimal line were considered hypoxic and the fraction of these pixels, HFMRI, 244 

was strongly correlated to HFPimo (R2=0.57, P<0.000005; Fig. 1C). This correlation was 245 

stronger than between ne or Ktrans and HFPimo (Supplementary Fig. S2). The resulting binary 246 

hypoxia images showed strong resemblance to the pimonidazole stained sections (Fig. 1B, 247 

D).  248 
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 249 
 250 
Figure 1. Construction of hypoxia images in xenograft and patient tumors. A, Pixel-wise plot 251 
of Ktrans versus ne for a xenograft tumor with high hypoxic fraction according to pimonidazole 252 
staining (HFPimo) (red) and another with low HFPimo (blue). The optimal discrimination line 253 
separating pixels in hypoxic and non-hypoxic regions is shown. B, Pimonidazole stained 254 
sections of the tumors presented in A. C, Scatter plot of HFMRI versus HFPimo for 28 xenograft 255 
tumors based on the optimal discrimination line. D, Binary hypoxia images visualizing HFMRI 256 
of the tumors presented in A and B. E, Scatter plot of HFMRI versus hypoxia gene score for 63 257 
patient tumors based on the optimal discrimination line. F, Binary hypoxia images visualizing 258 
HFMRI of a less and more hypoxic tumor according to the hypoxia gene score. C, E, P-value 259 
and correlation coefficient (R2) from linear correlation analysis are shown. D, F, The binary 260 
images are overlaid on axial T2-weighted images.  261 
 262 

To confirm applicability of the CSH-tool to produce hypoxia images in patient tumors, pixel-263 

wise plots of Ktrans versus ne were generated from the clinical images. Similar to what we 264 
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observed in xenografts, pixels from hypoxic tumors appeared to be located towards the 265 

lower left corner in these plots (Supplementary Fig. S4). By using the same procedure as 266 

above and the gene score from previous work (20) as independent hypoxia measure, an 267 

optimal line to discriminate pixels in hypoxic and non-hypoxic regions for all tumors 268 

combined was determined (Supplementary Fig. S3B) and a HFMRI was calculated for each 269 

tumor. A strong correlation between HFMRI and the hypoxia gene score (R2=0.27, P<0.00001; 270 

Fig. 1E, F) was found. This correlation was stronger than between ne or Ktrans and the gene 271 

score (Supplementary Fig. S5A). In analysis of all 74 patients, HFMRI was strongly correlated 272 

with progression-free survival, where patients with high HFMRI had a poor outcome 273 

compared to the others (P=0.0014; Supplementary Fig. S5B), consistent with the prognostic 274 

significance of the gene score (20). The correlation to outcome was weaker for Ktrans or ne 275 

(P=0.015 and P=0.074, respectively; Supplementary Fig. S5B). All together, this showed that 276 

hypoxia images could be constructed using the DCE-MRI parameters ne and Ktrans as input to 277 

the CSH-tool.   278 

   279 

Hypoxia levels defined by pimonidazole staining in xenograft tumors are visualized by MRI  280 

Based on the hypoxia images, an algorithm to assign a hypoxia level to each individual pixel 281 

was developed. We hypothesized that the location of a pixel in plots of Ktrans versus ne; i.e., 282 

the distance from the pixel to the optimal discrimination line, depends on the hypoxia level 283 

of the corresponding tumor region (Fig. 2A). This hypothesis is likely because the line 284 

represents the weighted information of Ktrans (oxygen supply) and ne (oxygen consumption) 285 

underlying the level of the independent hypoxia measure. The hypoxia level, HLMRI, can thus 286 

be expressed as: 287 

𝐻𝐿?@A = (−1) ∗
E𝐾

G;:HI

𝐾JG;:HI
+	 𝜈M𝜈MJ

N − 1

OE 1
𝐾JG;:HI

N
P
+ Q 1𝜈MJ

R
P
 288 

 289 

where the level of the optimal line, described by the intersection points ne0 and K0 trans, was 290 

set to zero, and increasing values of HLMRI indicated more severe hypoxia. Application of the 291 

algorithm to calculate four hypoxia levels is shown in Figure 2B, together with the underlying 292 

HLMRI image (Fig. 2C).  293 
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 294 
 295 
Figure 2. Indicator of hypoxia levels in xenograft tumors. A, Principle of assessing hypoxia 296 
levels (HLMRI) from hypoxia images as the distance from the pixel to the optimal 297 
discrimination line (HLMRI=0). B, Pixel-wise plot of Ktrans versus ne of a xenograft tumor. The 298 
solid line indicates the optimal discrimination line (HLMRI=0), whereas the stippled lines in 299 
parallel represent three different hypoxia levels; i.e. different HLMRI values. Points are color-300 
coded according to their HLMRI value. C, Hypoxia image of the tumor presented in B, overlaid 301 
on an axial T2-weighted image. D, Pimonidazole staining intensity in histological sections 302 
from a xenograft tumor versus distance from necrosis. The histological section is shown 303 
above. E, Pimonidazole stained section of the tumor presented in B and C. F, Color coded 304 
pimonidazole-based image of hypoxia levels, HLPimo, for the tumor presented in B, C and E. 305 
 306 

 307 

A procedure to extract hypoxia levels from pimonidazole stained tumor sections in 308 

xenografts was developed for validation of the algorithm. In vitro studies have shown that 309 

the binding efficacy of pimonidazole during hypoxia increases exponentially with decreasing 310 

oxygen concentrations (24). In line with this, the pimonidazole staining intensity was 311 

generally strongest close to necrotic regions (anoxia) and decreased with increasing distance 312 

from necrosis (Fig. 2D), most likely reflecting a hypoxia gradient. We therefore assumed that 313 

the staining intensity was proportional to hypoxia level, and produced pimonidazole-based 314 
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images of hypoxia levels (HLPimo) that were used for validation (Fig. 2E, F; Supplementary 315 

Method S1). Visual inspection showed large resemblance between the HLMRI and HLPimo 316 

images (Fig. 2C, F), although there was a considerable difference in slice thickness between 317 

the two modalities. By this inspection, we further found that the staining intensity in 318 

pimonidazole-based images could be evaluated down to a HLPimo of 0.38. Below this limit, 319 

the intensity was weak with small changes, probably reflecting non-hypoxic levels. 320 

 321 

Hypoxia levels derived from MR- and pimonidazole-based images (Fig. 2C, F) were compared 322 

in 28 xenografts. By varying the threshold for HLMRI, from 0.11 in severe hypoxia to -0.05 at 323 

the mildest level, and for HLPimo, from 2.6 at the strongest staining intensity to 0.01 in the 324 

weakly stained region, we generated sets of hypoxic fractions (% of tumor > HLMRI or HLPimo) 325 

for both modalities and all xenografts (Fig. 3A). The two data sets, each consisting of 28x200 326 

hypoxic fractions, were first compared using similarity analysis, where we for each HLMRI 327 

threshold identified the HLPimo threshold that led to the highest similarity between hypoxic 328 

fraction derived by the two modalities (Fig. 3B). Overall, the similarity values were high 329 

(>0.6) and an exponential relationship was observed between the similarity-matched HLMRI 330 

and HLPimo. The exponential relationship, presented as a linear relationship in a log plot in 331 

Figure 3C, is in line with the exponential binding of pimonidazole with decreasing oxygen 332 

concentrations (24). Correlation analysis of the most similar hypoxic fractions provided an 333 

indication of how well HLMRI reflected the different hypoxia levels. A strong correlation 334 

(P<0.001) was found for HLMRI in the range of -0.03 to 0.1. Hence, hypoxic fraction from a 335 

large range of levels could be measured. Moreover, within this range the mean hypoxic 336 

fraction based on all 28 xenograft tumors showed considerable differences, ranging from 337 

0.38 at mild hypoxia (HLMRI=-0.03; Fig. 3D) to 0.07 at more severe hypoxia (HLMRI=0.06; Fig. 338 

3E) and 0.02 at the most severe levels (HLMRI=0.1; data not shown). These results supported 339 

that our algorithm to image hypoxia levels was reliable. Further, the MRI-defined hypoxia 340 

levels could distinguish a large range of hypoxic fractions in xenograft tumors.  341 
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 342 

 343 
Figure 3. Assessing hypoxia levels in xenograft tumors. A Examples of binary MR- and 344 
pimonidazole-based images, visualizing hypoxic fractions for four different HLMRI and HLPimo 345 
thresholds of the tumor presented in Fig. 2C and 2F. B, Similarity plots for the HLMRI 346 
thresholds indicated in A, showing the similarity between MRI- and pimonidazole-based 347 
hypoxic fractions versus HLPimo threshold. The highest similarity is marked for each HLMRI 348 
threshold. C, HLMRI versus HLPimo in 28 xenograft tumors. Similarity-matched HLMRI and HLPimo; 349 
i.e., HLMRI and HLPimo leading to the highest similarity in the analysis presented in B, are 350 
shown. The four HLMRI thresholds shown in A are indicated with solid symbols together with 351 
the correlation coefficient (R2) and curve from linear correlation analysis. D, E, Scatterplots 352 
of MRI-based versus pimonidazole-based hypoxic fraction for a HLMRI threshold of -0.03 (D) 353 
and 0.06 (E). Similarity-matched HLMRI and HLPimo were used to calculate hypoxic fractions for 354 
28 xenograft tumors. P-value, correlation coefficient (R2) and curve from linear correlation 355 
analysis are shown. 356 
 357 

Hypoxia levels defined by gene expression in patient tumors are visualized by MRI 358 

To confirm the validity of our algorithm in patient tumors, we constructed an indicator of 359 

hypoxia levels based on the expression of hypoxia responsive genes. We utilized that genes 360 

may be activated and, thus, show increased expression, at specific oxygen concentrations 361 
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(25). Nine  indicator genes were selected among 31 previously identified hypoxia responsive 362 

genes in cervical cancer (21) (Supplementary Document S1). The genes are known to be 363 

regulated by HIF1 (AK4, PFKFB4, P4HA2), by both HIF1 and the unfolded protein response 364 

(STC2, ERO1A) or the regulation mechanisms are poorly exlpored (UPK1A, KCTD11, SNTA1, 365 

PYGL). By exposure of SiHa and HeLa cells to oxygen concentrations in the range of 0.2-21% 366 

O2, the concentration for half-maximal response was recorded for each gene (Fig. 4A, B), in a 367 

similar way as described for stabilization of HIF1A protein (8). This cell line derived hypoxia 368 

activation level was found to range from 0.55% to 1.81% O2, where the HIF1A targets AK4 369 

and PFKFB4 had the highest level, in line with an HIF1 activation level of 1.5-2.0% O2 (8) (Fig. 370 

4C, Supplementary Document S1). Thus, the indicator genes showed a range of levels likely 371 

to be found in human tumors (6) and broad enough for testing our algorithm.  372 

 373 

HLMRI images were constructed for all 74 patient tumors (Fig. 4D). Using the same strategy as 374 

for xenografts, a set of 200 hypoxic fractions was calculated for each tumor using HLMRI 375 

thresholds ranging from 0.1 in severe hypoxia to -0.3 as the mildest level. Expression data of 376 

the nine indicator genes were further retrieved from the gene expression profiles of each 377 

tumor. A correlation analysis of the two data sets was performed, where we for each 378 

indicator gene identified the HLMRI threshold that led to the strongest association between 379 

hypoxic fraction and expression (Fig. 4E; Supplementary Document S1). These HLMRI 380 

thresholds showed a strong correlation to the cell line derived hypoxia activation level for 381 

the nine indicator genes (Fig. 4F; R2=0.84, P<0.0005). Although oxygen concentrations found 382 

for half-maximal response in cell lines are not directly transferable to patient tumors, this 383 

relationship together with the above xenograft results strongly supported that HLMRI 384 

provided a continuous, linear measure of hypoxia levels in tumors. 385 

 386 
 387 
 388 
 389 
 390 
 391 
 392 
 393 
 394 
 395 
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Figure 4. Assessing hypoxia levels in patient tumors. A, B, Gene expression in HeLa (A) and 396 
SiHa (B) cell lines versus the logarithm of oxygen concentration for two indicator genes, 397 
KCTD11 and PKFKB4. The expression levels are plottet relative to the level of normoxic 398 
controls (21% O2). Hypoxia activation level and curve from linear correlation analysis are 399 
indicated for each gene. C, Hypoxia activation level of nine indicator genes. Bars, range of 400 
data for SiHa and HeLa cell line. D, Hypoxia level image of a patient tumor overlaid on an 401 
axial T2-weighted image. E, P-value in correlation analysis of hypoxic fraction calculated for a 402 
set of 200 HLMRI thresholds versus gene expression in 63 patients, plotted as a function of 403 
HLMRI. Data for two indicator genes, KCTD11 and PKFKB4 are shown. The HLMRI value leading 404 
to the strongest correlation  between gene expression and MRI-based hypoxic fraction (i.e., 405 
lowest P-value) is indicated for each gene. F, HLMRI for the strongest correlation achieved in E 406 
versus hypoxia gene activation level in cell lines for nine indicator genes. Point and bar, 407 
average value and range for SiHa and HeLa cell lines. Curve, P-value and correlation 408 
coefficient (R2) from linear correlation analysis are shown.  409 
 410 

Hypoxia levels of prognostic significance are distinguished in MR images 411 

The relationship presented in Figure 4F provided a tool to relate MRI defined hypoxia levels 412 

to biological information derived in cell lines. Aided by this relationship, we defined 413 

approximate HLMRI intervals for severe, moderate and mild hypoxia in order to characterize 414 

the hypoxia level distribution in patient tumors (Fig. 5A). The definitions corresponded 415 

roughly to those proposed by others (6). Median HLMRI of all tumors combined was -0.08. 416 

This value was related to a cell line derived level of 1.3% O2 (Fig. 5A) and within the 417 
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moderate hypoxia range. However, the median value differed considerably across tumors, 418 

ranging from -0.22 (2.3% O2) in mild hypoxia to 0.004 (0.8% O2) in moderate hypoxia. A pie 419 

chart of each tumor was generated to visualize these differences, showing fraction of pixels 420 

within HLMRI intervals of 0.05 (Fig. 5B; Supplementary Fig. S6). Most tumors contained a 421 

range from severe to non-hypoxic levels, however, fraction of the different levels varied 422 

considerably across patients.  423 

 424 

 425 
 426 
 427 
 428 
 429 
 430 
 431 
 432 
 433 
 434 
 435 
 436 
 437 
 438 
 439 
 440 
 441 
 442 
Figure 5. Hypoxia levels in patient tumors in relation to treatment outcome. A, Approximate 443 
HLMRI intervals for severe, moderate and mild hypoxia based the relationship between HLMRI 444 
and hypoxia gene activation level in cell lines presented in Fig. 4F. Stippled lines indicate 445 
median hypoxia level (HLMRI=-0.08) for all patient tumors combined and the hypoxia level 446 
with the strongest correlation to progession free survival (HLMRI=0.01) in the analysis 447 
presented in C. B, Pie charts showing fractions of pixels with HLMRI within the indicated 448 
intervals for four tumors with different distribution of hypoxia levels. C, P-value in Cox 449 
regression analysis of hypoxic fraction calculated for increasing HLMRI threshold (increasing 450 
severity level) versus progression-free suvival, plotted as a function of HLMRI. Horizontal 451 
stippled line indicates a significance level of 0.05. Vertical stippled line indicates HLMRI for the 452 
strongest correlation (HLMRI=0.01). D, Kaplan Meier curves for progression-free survival of 74 453 
patients with low (solid line) and high (stippled line) hypoxic fraction based on the HLMRI 454 
threshold of 0.01 indicated in C. Patients were divided with 1/3 in the high-risk and 2/3 in 455 
the low-risk group based on an expected failure rate 30%. P-value in log-rank test is shown.  456 
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To address whether differences seen in the pie charts across patients were associated with 457 

differences in chemoradiotherapy outcome, hypoxic fraction was determined for a range of 458 

HLMRI thresholds for each tumor and included in survival analysis with progression-free 459 

survival as end point. The strongest association to outcome was found for hypoxic fractions 460 

below a HLMRI threshold of 0.01 (Fig. 5C), which was related to a cell line derived level of 461 

0.7% O2 and in moderate hypoxia close to the interval of severe hypoxia (Fig. 5A). Hence, 462 

patients with a high hypoxic fraction below this level had a poor outcome compared to the 463 

others (P=0.0014; Fig. 5D). In contrast, weaker or no association to outcome was found for 464 

more severe hypoxia; i.e., the highest HLMRI values, or for milder hypoxia.  465 

 466 

MR images distinguish hypoxia levels of biological significance 467 

The data set of hypoxic fractions generated in the above analysis was further correlated with 468 

gene expression profiles of the patient tumors to identify possible associations between 469 

hypoxia levels and biological processes. Totally 1344 genes showed a positive correlation 470 

(P<0.05) for one or more HLMRI thresholds and were included in a hallmark enrichment 471 

analysis. Out of 50 hallmarks, 36 were found to be significantly enriched (Supplementary 472 

Table S2), and 350 of the 1344 genes were included in one or more of these hallmarks. By 473 

assigning the HLMRI threshold showing the strongest correlation between hypoxic fraction 474 

and expression (P<0.05) for the 350 genes, a distribution of hypoxia levels was produced for 475 

each of the 36 enriched hallmarks. In general, the individual HLMRI distributions covered a 476 

large range of hypoxia levels, and most hallmarks (n=26) had a median HLMRI in the 477 

moderate hypoxia range, including well known hypoxia regulated processes like hypoxia and 478 

glycolysis (Supplementary Figure S7, S8).  479 

 480 

The HLMRI distributions were further compared across the 36 hallmarks, to search for 481 

differences in the hypoxia level associated with biological processes. All hallmarks were 482 

tested against each other, and those with a difference (P<0.05) to less than 25% of the 483 

others were removed to simplify analysis. For the remaining 15 hallmarks, three groups with 484 

a significant difference in HLMRI distribution was identified (Fig. 6A; Supplementary Figure 485 

S7). A group with the interferon α and	 g response hallmarks was associated with mild 486 

hypoxia (Fig. 6A, B). At moderate levels, a group including G2/M checkpoint, MYC targets, 487 

oxidative phosphorylation and MTORC1 signalling appeared significant, whereas hallmarks 488 
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like TNFA signalling via NFKB, DNA repair, inflammatory response, angiogenesis and EMT 489 

were associated with the most severe levels.  490 

 491 

Figure 6. Hypoxia levels in patient tumors in relation to cancer hallmarks. A, Correlation 492 
analysis showing three distinct groups of hallmarks with significant difference in HLMRI 493 
distribution, each related to either mild, moderate or severe hypoxia. P-values from 494 
Wilcoxon rank sum test are shown (right). B, Cumulative HLMRI  distribution associated with a 495 
selection of the hallmarks identified in A. Fraction of correlated genes in the hallmark is 496 
summarized at each HLMRI interval of 0.0004. Significant different HLMRI distributions are 497 
shown in each panel. 498 
 499 
 500 

The data set of hypoxic fractions used for the analysis in Figure 5C was also included in a 501 

correlation analysis against HIF1A protein level assessed by immunohistochemistry (Fig. 7A).  502 

A strong correlation between HIF1A level and hypoxic fraction was found for a HLMRI 503 

threshold of -0.21 (P=0.0021) (Fig. 7B), which was in the interval for mild hypoxia. This HLMRI 504 

value was related to the cell line derived hypoxia activation level of 2.2% O2 (Fig. 5A), which 505 

is comparable to the findings for HIF1A stabilization in experimental studies (8,9). Moreover, 506 

the HLMRI of -0.21 was outside the range for which a significant association to treatment 507 

outcome was found (Fig. 5C), consistent with results from survival analysis based on HIF1A 508 

protein (Fig. 7C). Taken together, by our imaging method it appeared possible to distinguish 509 

hypoxia levels with association to different biological processes like cancer hallmarks and 510 

HIF1A stabilization. 511 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 29, 2020. ; https://doi.org/10.1101/2020.05.28.20114769doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.28.20114769


19 
 

 512 

Figure 7. Hypoxia levels in patient tumors 513 
in relation to HIF1A protein level. A, 514 
Staining of HIF1A protein in a tumor with 515 
high (right) and low (left) protein level. B, 516 
P-value in correlation analysis of HIF1A 517 
protein level versus hypoxic fraction 518 
calcluated for increasing HLMRI threshold 519 
(increasing severity level) in 73 patients, 520 
plotted as a function of HLMRI. Stippled 521 
line indicates HLMRI for the strongest 522 
correlation (HLMRI=-0.21). C, Kaplan Meier 523 
curves for progression-free survival of 73 524 
patients with low (solid line) and high 525 
(stippled line) level of HIFA protein. 526 
Patients were divided in two groups 527 
based on the pathology score, 0-3 and 4-528 
5, to obtain approximately 1/3 in the 529 
high-risk and 2/3 in the low-risk group. P-530 
value in log-rank test is shown.  531 
 532 

 533 

 534 

 535 

 536 
 537 
 538 

 539 
 540 
Discussion 541 
 542 
We here present a method based on diagnostic MRI to visualize hypoxia levels in patient 543 

tumors. Previous imaging methods have focused solely on the presence of hypoxia without 544 

considering its severity (15). By utilizing the CSH-tool to combine multiparametric images, 545 

we obtained the weighted information of oxygen consumption and supply that visualized a 546 

continuous range of hypoxia levels. Although adding more information like cellular 547 

proliferation rate or blood oxyhemoglobin saturation may improve the technology, 548 

comparison of our results with direct measures of hypoxia levels by pimonidazole staining 549 
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and indirect measures by gene expression showed strong correlations and validated the 550 

method. The hypoxia levels were found to differ in their association to treatment outcome 551 

and cancer hallmarks in cervical cancer, demonstrating that new understanding of how 552 

various levels affects tumor aggressiveness and biology can be achieved by our method. Our 553 

approach is easily applicable in the hospital's diagnostic procedures, and is a step towards a 554 

better exploitation of MR images in the clinic. 555 

 556 

Our algorithm to calculate hypoxia levels from MR images was validated in xenograft tumors 557 

by using pimonidazole staining intensity in histological sections as direct measure of hypoxia 558 

level. This approach was justified by our observation of a steady decrease in staining 559 

intensity away from necrosis. Binding of pimonidazole or other nitroimidazole compounds in 560 

cells or pieces of tumor tissue cultured in vitro under increasing oxygen concentrations has 561 

been shown to decrease in the same manner (24,26,27). Moreover, similar staining intensity 562 

gradients from necrosis have been quantified in tumor sections both by light and 563 

fluorescence microscopy (28,29). It is therefore likely that the intensity gradients in our 564 

histological sections reflected true differences in hypoxia levels. Further, by using large scale 565 

similarity analysis of hypoxic fractions obtained from MRI and pimonidazole staining, 566 

followed by correlation analysis of the corresponding levels, the linear range for reliable 567 

detection of hypoxia levels in xenograft tumors was obtained. 568 

 569 

The algorithm was confirmed in patient tumors by using an indicator of hypoxia levels based 570 

on gene expression. We utilized that some genes are upregulated at specific levels because 571 

they primarily are involved in biological processes activated under these conditions (6). The 572 

hypoxia activation level has been assessed previously for the HIF1A protein as the oxygen 573 

concentration for half-maximal response in cell lines (8). The same strategy was applied on 574 

our gene expression data to construct a panel of indicator genes with different activation 575 

level. Strict criteria for gene selection, based on expression responses in two cell lines 576 

exposed to a range of oxygen concentrations and correlation analysis of expression and 577 

imaging data in patient tumors, revealed nine suitable indicator genes. Indeed, a strong 578 

linear relationship between the cell line derived hypoxia activation levels and HLMRI was 579 

found, confirming that a continuous range of hypoxia levels could be visualized in patient 580 

tumors. 581 
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 582 

Caution should be taken to directly transfer the oxygen concentrations for activation of 583 

genes in cell lines to hypoxia levels in patient tumors, however, it would enable a rough 584 

comparison of our results with existing pO2 data of cervical cancer. The median MRI-defined 585 

hypoxia level for all tumors combined corresponded to a cell line derived level of 1.3% O2, 586 

which is within the range of 3-17 mmHg (approximately 0.4-2.2%) achieved by oxygen 587 

electrodes (14). Moreover, the strongest correlation to treatment outcome was found for a 588 

level corresponding to 0.7% O2 based on cell line data. This is highly consistent with most 589 

pO2 studies, reporting association to outcome for hypoxic fraction below 5 mmHg 590 

(approximately 0.7% O2) (14). Our approach therefore seemed to indicate hypoxia levels in 591 

accordance with oxygen electrode measurements, and to distinguish levels shown to be of 592 

prognostic significance in previous work.  593 

 594 

Hypoxia levels associated with biological processes like cancer hallmarks and stabilization of 595 

HIF1A protein were identified by our method. At moderate hypoxia, which was the level 596 

most strongly correlated with treatment outcome, hallmarks like oxidative phosphorylation, 597 

targets of the MYC oncogene and G2/M checkpoint, appeared significant. This finding is 598 

consistent with our previous work where we identified a treatment resistant cervix tumor 599 

phenotype associated with the same hallmarks (30). In addition, this tumor phenotype 600 

appeared to have increased mitochondrial and proliferative activity (30). This implies that 601 

the stronger correlation of moderate hypoxia levels with poor outcome could be because 602 

hypoxic cells still have enough oxygen to proliferate under these conditions, in line with a 603 

hypothesis proposed by others (10,31). Stabilization of HIF1A protein, on the other hand, 604 

appeared significant at mild hypoxia levels, consistent with previous reports (6), and showed 605 

no correlation to outcome.  606 

 607 

At severe hypoxia, the DNA repair hallmark appeared significant, consistent with studies 608 

showing activation of DNA damage response at extremely low oxygen concentrations (32). 609 

Our finding that inflammatory response and EMT were associated with such severe levels, 610 

on the other hand, is less well documented. It is tempting to speculate that this could be a 611 

consequence of lactate accumulation due to near complete vascular shut down in regions 612 

with severe hypoxia. Lactate is a key molecule in the inflammatory immune suppressive 613 
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response in tumors (33,34), and such inflammatory environment is a strong inducer of EMT 614 

(35). Although these novel associations for the most severe levels need to be explored 615 

further in experimental work, the findings demonstrate a potential of our method to achieve 616 

better insight into the hypoxic tumor phenotype.   617 

 618 

Our method to visualize hypoxia levels proposes a new application of routinously acquired 619 

DCE-MR images that may have implications for the diagnostic evaluation of patients. The 620 

finding that the CSH-tool could be used for this purpose, broadens the utility of the tool. This 621 

encourages investigations of hypoxia levels in other cancer types as well, by exploiting the 622 

MR technology already available at most hospitals. Our method provides a well needed 623 

opportunity to investigate the importance of individual hypoxia levels in tumor progression 624 

that eventually may lead to new and more efficient therapeutic options to combat hypoxia.  625 
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