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Abstract 

Reducing COVID-19 illness and mortality for populations in the future will require equitable and 

effective risk-based allocations of scarce preventive resources, including early available vaccines. 

To aid in this effort, we develop a risk calculator for COVID-19 mortality based on various socio-

demographic factors and pre-existing conditions for the US adult population by combining 

information from the UK-based OpenSAFELY study, with mortality rates by age and ethnicity 

available across US states. We tailor the tool to produce absolute risks for individuals in future 

time frames by incorporating information on pandemic dynamics at the community level as 

available from forecasting models. We apply this risk calculation model to available data on 

prevalence and co-occurrences of the risk-factors from a variety of data sources to project risk for 

the general adult population across 477 US cities (defined as Census Places) and for the 65 years 

and older Medicare population across 3,113 US counties, respectively. Validation analyses based 

on these projected risks and data on tens of thousands of recent deaths show that the model is well 

calibrated for the US population. Projections show that the model can identify relatively small 

fractions of the population (e.g. 4.3%) which will lead to a disproportionately large number of 

deaths (e.g. 49.8%), and thus will be useful for effectively targeting individuals for early 

vaccinations, but there will be wide variation in risk distribution across US communities. We 

provide a web-based tool for individualized risk calculations and interactive maps for viewing the 

city-, county- and state-level risk projections. 
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Introduction 

The first case of SARS-CoV-2 infection in the US was reported on January 20th, 2020, in the state 

of Washington,1 and to date the pandemic has led to more than 168,000 COVID-19 deaths - making 

the US by far the most affected country globally. However, there is a major variation in rates of 

infections and underlying deaths across US states, counties and cities. Various local population 

characteristics, such as mitigation measures,2,3 population density and mobility patterns4,5 define 

background risks of illness and death across the regions. Further, epidemiologic studies have 

provided evidence that a variety of pre-disposing factors, including age, gender, ethnic and racial 

background, social conditions and pre-existing conditions, put individuals within the same 

community at differential risks of serious illness and mortality.6-14 

 

To date, the US and other countries have mostly relied on community-based intervention measures, 

such as lockdowns, social distancing, and guidance on mask wearing, for mitigating the worst 

effects of the pandemic. A variety of pandemic scenario models are available for forecasting future 

trends in infection, hospitalizations, and deaths at the population level. Although the existence of 

a variety of predisposing factors has been known, there has been limited effort to incorporate these 

factors into prevention strategies or/and forecasting models. In the future, however, as the US and 

other countries continue to face increasing societal and economic pressure for relaxing some of 

the broad intervention measures, consideration of risk associated with predisposing factors at the 

individual- and population-level will be important in developing more equitable strategies for 

prevention.15-17 Specifically, as promising results from early phases of a number of vaccines 

trials18,19 have raised the likelihood of available vaccines within a few months, there has been a 

recognition that a framework is urgently needed for equitable distribution of the limited supply of 
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early vaccines. Recently, the US National Academies of Science and Engineering announced the 

launch of a study to develop criteria for early vaccination based on various individual- and 

community-level risk information.20 Further, until vaccination is possible, risks calculations can 

also be critical for identifying high-risk groups who should be prioritized for “shielding”16,17 as the 

pandemic continues and yet various socioeconomic activities resume.  

 

In this article, we describe the development and validation of a COVID-19 mortality risk calculator 

for the US adult (18+ year old) population integrating information from a variety of datasets for 

estimation of risk associated with predisposing factors. Using a first of its kind method, we further 

extend the calculator to integrate information from pandemic forecasting models so that an 

individual’s absolute risk can be informed based not only on their underlying risk-factors, but also 

on community-level risk due to the underlying pandemic dynamics. We use the information on the 

prevalence and co-occurrence of risk-factors from various national databases to make population-

level projections of risks associated with these predisposing factors for the general adult population 

across 477 US cities, and for the 65+ year old population enrolled in Medicare across 3,113 US 

counties. We provide country-, state- and city/county- level estimates for the size of populations 

who are at or above different risk-thresholds and thus can be gradually prioritized for vaccination 

and other preventive efforts. Finally, we provide a web-based individual-level risk calculator and 

interactive maps for viewing the population-level risk projections to facilitate future policy 

decisions. 

 

Methods  

Definition of COVID-19 mortality risk-score 
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The risk-score for an individual is defined as a weighted combination of various socio-

demographic characteristics and predisposing health conditions, with weights defined by the 

relative magnitude of the contribution of these factors to the risk of death due to COVID-19 in the 

adult population. We use two sources of information to build the risk-score: (1) multivariate-

adjusted estimate of risk associated with gender, social deprivation index and 12 pre-existing 

conditions from the recently published UK-based OpenSAFELY study,13 and (2) death rates 

associated with different age and racial/ethnic groups in the US published by the Center of Disease 

Control,21 after performing external covariate adjustment accounting for the correlation of these 

factors with other risk factors in the model (See Below). 

 

Estimation of US-specific risk associated with age and racial/ethnic groups and external 

covariate adjustments 

We used data made available by the CDC21 on reported COVID-19 deaths as of June 6, 2020, by 

race, age, and state. We fitted a Poisson regression to the death counts available by age, race, and 

state with underlying population sizes as offset terms for modeling rates. We modelled the log-

rate in terms of additive effects of age and race/ethnicity categories and further adjusted for states 

as fixed effects in the model. We then used data available on age, race/ethnicity and all other risk 

factors of the model from a combination of health survey data (see below) to estimate joint 

distribution of all of these factors, and use Generalized Method of Moment (GMM) techniques 

we have developed earlier22 to obtain estimates for the effects associated with age and race adjusted 

for the other risk-factors in the model with their effects being fixed at those available from an 

underlying fully adjusted model from the UK OpenSAFELY study (Supplementary Methods 

Section 1.2, Extended Data Table 1). 
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Data sources for obtaining prevalence and joint distribution of the risk factors in the general 

adult population 

We utilized a variety of data sources to obtain the latest information on the prevalence of 

demographic variables and health conditions across the US cities. The resources include American 

Community Survey (ACS) of the US Census Bureau for age, gender and race (2017/2018 table, 

one-year estimates),23 Behavioral Risk Factor Surveillance System (BRFSS, 2017 survey) of the 

Centers for Disease Control and Prevention (CDC) for various health conditions and smoking,24 

National Health and Nutrition Examination Survey (NHANES) for estimating relative proportions 

of certain sub-categories of conditions that were not available in BRFSS,25 United States Cancer 

Statistics (2012-2016 incidence rates) maintained by the National Cancer Institute and the CDC to 

derive prevalence of hematological and non-hematological malignancies,26 and a database 

available from the Robert Graham Center on social deprivation index (SDI) derived from data 

available from the ACS (2011-2015 five-year estimates).27 Detailed derivations of each variable 

are described in the Supplementary Methods, Section 1.1. In addition, we accessed individual-

level data from the National Health Interview Survey (NHIS) of CDC.28 We extracted individual-

level data on the risk factors on 22,109 adults from the 2017 NHIS study. All of the required 

variables, except SDI, were available for individuals in the NHIS. For projections of risk for the 

US overall, we applied the most recent age distribution from the US Census Bureau 2019 data,29 

and information of the other risk-factors within age groups from the NHIS. 

 

US Medicare population 

We used 2018 data from the Centers for Medicare and Medicaid Services (CMS) to obtain the 

latest information on prevalence of chronic health conditions across US counties for the 65+ year 
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old Medicare population (the <65 year old Medicare population have missing information on age 

and thus were not included in the analyses).30 We utilized the data for 65+ year old individuals 

from 2017-18 NHANES25 and 2017 NHIS28 to estimate relative proportions of certain sub-

categories of the health conditions that were not available from the CMS. Prevalence of race and 

gender variables for the Medicare population were obtained from the ACS.31  

 

Statistical models and methods 

Similar to the OpenSAFELY study, we assume that the risk of COVID-19 death at time 𝑡	for an 

individual 𝑖 residing in location 𝑙, e.g. a city or a county, can be described by the proportional risk 

model 

𝜆!"(𝑋, 𝑡) = 𝜆"(𝑡) exp(∑ 𝛽#𝑋!#$
#%& ) = 𝜆"(𝑡)𝑅!"(𝛽), 

where 𝜆"(𝑡) denotes the baseline risk for location 𝑙 due to the underlying pandemic characteristics, 

and 𝑅!"(𝛽) = exp	(	∑ 𝛽#𝑋!#)$
#%&  denotes a multiplicative factor associated with risks due to 

various predisposing factors. Here 𝑡 refers to calendar time since some landmark, such as the day 

when the cumulative death reaches some minimum threshold. The average risk of the population 

at location 𝑙 can be defined as 

𝜆"'(𝑡) = 𝜆"(𝑡)𝐸"{exp	(∑ 𝛽#𝑋!#$
#%& )}, 

where 𝐸"  denotes the expectation (average) with respect to distribution of the risk factors in 

location 𝑙. The above formula allows linking individual-level relative risk models to pandemic 

scenario models and hence can produce estimates of absolute risk of individuals taking into 

account both individual-level risk-factors and community-level risk due to pandemic dynamics. In 

particular, a variety of pandemic models are available to produce estimates of population level risk 

𝜆"'(𝑡), e.g in the state of residence of an individual, over the course of a period of time in the future, 
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and such information can be used to calculate the baseline risk  𝜆"(𝑡) and hence the absolute risk 

denoted as 𝜆!"(𝑋, 𝑡) (Supplementary Methods, Section 2.1). 

 

We define the quantity 𝑅"(𝛽)=	𝐸"{exp(∑ 𝛽#𝑋!#$
#%& )} as an Index of Excess Risk (IER) for the 

population associated with the underlying risk-factor distribution in location 𝑙, and present the 

scaled version of IER as 𝑅"(𝛽)/𝑅5  , where 	𝑅5	denotes the weighted average of 𝑅"(𝛽)  across 

cities/counties with population sizes as the weights. Further, we examine the distribution of 𝑅!"(𝛽) 

across individuals within a location to identify the size of the underlying most “vulnerable” 

populations. For these evaluations, ideally one would require individual-level data for a 

representative sample of individuals from each location. However, in the absence of such data, we 

develop a framework to approximate the distributions using city/county-specific information on 

prevalence, and information on the co-occurrence of these factors, captured through the underlying 

odds-ratio parameters, from NHIS. Further, we assume a normal or mixture normal distribution of 

the underlying risk-scores within each location and use the individual-level data available from 

NHIS to evaluate the accuracy of the approximations for tail probability calculations (Extended 

Data Figure 1, Supplementary Methods Section 2). 

 

Model validation 

We conduct an independent validation of the risk projections using county-level mortality 

information from the CDC between June 7 and August 1, which did not contribute to the model 

development. Specifically, for each of the 256 counties that contain the 477 studied cities, we 

calculate a weighted IER with each city weighted by its population size. We then examine how 

strongly the county-level IER predicts the underlying death rates using two approaches. First, we 
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fit a negative binomial model where the log of death rates across the counties are modelled as a 

linear function of log(IER), and residual heterogeneity in the model is accounted for using a 

Poisson-Gamma random effects model. If the underlying individual-level risk model is correctly 

specified, then in this group-level model, one would expect the slope of log(IER) to be close to 

1.0. We further use weighted least squares to estimate a measure of explained variance (𝑅() of 

log(death rate) associated with log(IER). As a benchmark, we also estimate similar measures for 

two other likely predictors, log of population density32 and log of three-week prior infection rate.33 

We also conduct a conditional analysis to account for major regional differences in pandemic 

dynamics between the Northeast, Midwest, South, and West.34 All analyses are done using 

information on deaths over a moving window of two-week periods for the detection of potential 

temporal effects. Details can be found in Supplementary Methods, Section 2.5. 

 

Results 

Risks of mortality associated with various age groups in the US follow a very comparable pattern 

to that reported by the UK OpenSAFELY study (Figure 1). Relative to the respective white 

reference populations, African Americans in the US are at a higher risk compared to the Blacks in 

the UK. In contrast, Asian people in the US are at a lower risk compared to those in the UK. 

Further, in the US, the Hispanic population and non-Hispanic American Indian/Alaskan Native 

population are at substantially elevated risk compared to non-Hispanic white people. External 

covariate adjustment indicates that accounting for other risk factors, such as various pre-existing 

conditions that are more prevalent in various minority groups, only explains a small fraction of the 

racial differences in mortality rates (Extended Data Table 1). These adjusted estimates associated 

with the age and racial groups, together with estimates of risk associated with the other factors 
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from an underlying fully adjusted model reported in the UK OpenSAFELY study, are used to 

define risk-score for individuals in the US (Extended Data Table 1). 

 

Risk calculator 

We make available a web-based risk-calculator that allows an individual to input information on 

risk-factors and obtain estimates of individualized risk for COVID-19 mortality in both relative 

and absolute risk scales (Figure 2). The relative risks for individuals are reported based on the 

underlying risk-score benchmarked with respect to a “population average risk” defined as 

population weighted average risk (IER) across the cities. The calculator returns a numerical value 

for relative-risk and a color-coded categorization of risk into 5 categories. Further, for each person, 

information on risk-score is combined with projections available from pandemic forecasting 

models in their state of residence to report an absolute rate of mortality over a specified period of 

time.  

  

Distribution of risk in the US general adult population  

We evaluate the risk-score for individuals participating in the NHIS to explore the distribution of 

risk associated with predisposing factors in the general US adult population. Clearly, there is a 

very wide variation in risk across individuals in the US (Extended Data Figure 1). Overall, for the 

US adult population, we estimate that 16.8%, 11.0%, 4.3% and 1.7% of the individuals are at or 

above risk thresholds associated with elevated (≥1.2-fold), substantially elevated (≥2-fold), high 

(≥5-fold) and very-high (≥10-fold) risk categories, respectively (Table 1). The percentage of the 

populations exceeding these thresholds varies strongly by age. Only a small fraction (0.1%) of the 

individuals who are younger than 65 exceed the threshold for high risk. We further examine the 
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distribution of various other risk factors among individuals in the defined high-risk groups for the 

general population (Extended Data Figures 2-3) and the 65+ year old population (Extended Data 

Figures 4-5). As expected, male, Hispanic, African Americans, and individuals with obesity and 

various health conditions are more common in the various high-risk groups compared to the 

general NHIS population. We observe a similar trend for the 65+ old population. 

 

Projection of the distribution of risk across US cities, counties and states  

We observe a wide variation in risk due to predisposing factors across US communities (Figure 3). 

The IER varies around 10-fold across the cities and counties for the underlying adult- and 65+ year 

old Medicare- population, respectively (Supplementary Tables S1-S2). A number of major cities, 

including Detroit, Miami, Baltimore City, New Orleans and Philadelphia, rank very high according 

to this index. The proportion of individuals crossing various risk thresholds varies even more 

widely across these communities (Supplementary Tables S1-S2). For example, the percentage of 

the adult populations in cities which exceed the 5-fold risk threshold varies from 0.5 (Provo, UT) 

to 11.1 (Detroit, MI). Similarly, the percentage of the 65+ year old Medicare populations which 

exceed the same threshold varies from <1.5% (multiple counties in CO) to >55.0% (multiple 

counties in TX). Risk distribution for the 65+ year old Medicare population varies substantially 

across the states as well (Extended Data Figure 6, Supplementary Table S3). Our projections 

further show that high-risk groups will be disproportionately enriched for deaths across all the 

communities (Figure 3, Extended Data Figure 6, Supplementary Tables S1-S2). For example, the 

ratio of the proportion of deaths that are expected to arise from the ≥5-fold risk group to the 

proportion of the population targeted at the 5-fold risk threshold ranges in 6.7-35.2 across the US 

cities (Figure 3, Panel e). 
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An independent validation of risk projections using recent deaths in the US 

In a negative binomial regression analysis of recent deaths (between June 7 and August 1) in the 

cities over a moving window of two-weeks, we find the coefficient of log(IER) to be statistically 

highly significant throughout, with an average value of 0.96 (Supplementary Table S4), close to 

its ideal value of 1.0, indicating excellent calibration of the underlying individual-level model for 

the population (see Methods). Further, in a weighted least squares analysis, we find that log(IER) 

explains on average 15.9% of the variation of death rates (in the logarithmic scale) over this time 

period across the underlying counties (Figure 4). In comparison, population density and reported 

infection rate three-week prior explain on average 1.7% and 12.5% of the variance of the 

underlying death rates, respectively. In a conditional analysis that accounts for major regional 

differences in pandemic dynamics, we find that IER explains as much or more of the variance of 

death rates as three-week prior infection rates. 

 

Discussion 

In this article, we have developed a risk calculator for COVID-19 mortality for the general US 

population by combining multiple data sources. The tool is unique in the regard that it combines 

information from individual-level risk factors, as well as community-level risks, to project the 

absolute rate of mortality for different risk profiles. We have further applied this tool to data 

available from various national databases to identify high-risk cities/counties and estimate the size 

of the populations at various levels of risks within these communities. Our tools and results could 
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inform policy developments for equitable distribution of early vaccines and other scarce preventive 

resources. 

 

Promising preliminary results on immunogenicity and safety from Phase-I/II of a number of recent 

trials18,19 have raised the hope that vaccines could be ready for distribution by the end of this year. 

However, production of vaccines for wide distribution at a national and global scale will take 

months and years. In recognizing that vaccines, when becoming available, will be constrained by 

supply, a number of national and international bodies20,35 have called for the development of 

frameworks that will allow equitable distribution of vaccines, taking into account differential risks 

for individuals and communities associated with various factors including age, racial disparity, 

socioeconomic conditions, high-risk occupations, pre-existing conditions and community level 

risk for infection. Specifically, it has been noted that the allocation of scarce therapeutics and 

vaccines should be guided by “size, distribution and risk-profiles of the affected population”.36 

 

In this article, we have provided a detailed framework for developing risk tools by combining 

multiple data and information sources, and in using such tools to make projections of risks at both 

individual and population levels. We have shown how a risk tool can be applied to various 

population-based databases to estimate the size of high-risk populations at the community level 

that could be gradually prioritized for vaccination. Further, our framework allows evaluation of 

absolute risks taking into account population-level pandemic dynamics in a given time frame, and 

thus could be used to refine guidelines if the pandemic surges or ebbs disproportionately in certain 

regions. While we plan to extend the model in the future by incorporating additional risk-factors 

such as occupational exposures, we believe the estimates we currently provide for the size of high-
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risk populations for the cities, counties, states and US overall could be immediately useful for 

national and local policymakers in planning for vaccine distribution around the country. Currently, 

the Advisory Committee on Immunization Practices (ACIP) of the US CDC has developed a broad 

5-tier plan for vaccine distribution starting first with health care workers,37-39 but it will be 

imperative that these guidelines are refined based on the actual level of risk of individuals within 

and across different priority groups.   

 

In principle, a similar framework can also be useful for developing strategies for the global 

distribution of vaccines and preventive therapeutics. One could define various thresholds based on 

absolute risks that would be applied uniformly across countries to decide which individuals should 

be prioritized at various phases of vaccine dissemination. Then the projection tools we have 

developed can be applied to any available country-specific data on distribution of underlying risk-

factors to estimate the size of the target populations and accordingly available vaccines can be 

allocated across countries.  Currently, we are working with investigators from the Pan American 

Health Organization (PAHO) to identify such datasets and provide estimates of the size of various 

high-risk populations across countries in South America. The development of policy for efficient 

and impactful distribution of vaccines, however, will also depend on many other factors, including, 

but not limited to cost, overall social benefit, implementation issues and available infrastructures. 

   

Our risk tools and projections can also be useful for identifying high-risk groups who would benefit 

most from “shielding” efforts until they can be vaccinated. In the beginning of the pandemic, the 

National Health Service of the UK identified about 1.5 million individuals to be at extremely high 

risk due to selected conditions and provided them with assistance for food delivery and medical 
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services.40 In California, local and state government developed the Project Roomkey41 to provide 

free hotel rooms, meals and other services to asymptomatic homeless people who are at high risk 

due to their age or/and underlying conditions. In the future, as businesses, schools, and higher 

education institutes consider reopening, strategies need to be in place to identify and shield high-

risk individuals. Finally, general population risk tools can also help individuals understand future 

risk for serious outcomes, not only for themselves, but also for family members and friends, and 

thus could better motivate them to adhere to standard guidelines for infection prevention, such as 

handwashing and mask wearing. 

 

A few studies in the past have investigated the proportions of “high-risk” individuals for COVID-

19 related serious illness or mortality in the UK, the US and across nations globally.40,42-44 These 

studies have defined high-risk individuals based on prevalence of one or more risk factors without 

taking into account the relative contribution of these factors. Further, because of the broad 

definition used, they estimate that a very large fraction of the populations, 20% in UK and 16-31% 

globally, are at “high risk”. In contrast, we have defined different risk categories based on an 

underlying score that allows one to assign a more precise magnitude of risks to these categories. 

Further, our framework allows evaluation of future absolute risks for individuals and communities, 

incorporating information from pandemic forecasting models, and thus is uniquely suitable for 

planning vaccination and other prevention efforts across regions that may have wide variation in 

the infection dynamics.   

 

Our studies have several limitations. First, information on risk for the majority of the risk factors 

was derived from the UK-based OpenSAFELY study. However, we modified the model to make 
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it more suitable for the US population by incorporating population-based information on age and 

race associated rate of mortality and by performing external covariate adjustment to account for 

their correlation with other risk-factors. Further, we have empirically shown through independent 

validation analyses that the projected risks are well calibrated for the general US population and 

correlate strongly with recent death rates across counties in the US. There is, however, an urgent 

need for individual-level data from large population-based studies, akin to the UK OpenSAFELY 

study, with detailed information on both outcomes and risk factors in the US setting.  US-specific 

data are particularly needed to understand the risk associated with measures of social deprivation 

which have been shown to be an important risk factor independent of race/ethnicity and pre-

existing conditions. 

 

Another limitation of our current tools and projections is that they do not incorporate information 

associated with front line occupations that clearly pose higher risks for infection. The Office of 

National Statistics (ONS)45 in the UK has released data identifying several frontline occupations 

that are at increased risk of COVID-19 mortality. We have mapped these occupation categories in 

the NHIS dataset and have observed that various minority populations are over-represented in 

these groups (Supplementary Table S5). We, however, have not incorporated this risk information 

available from the UK to our risk tool as the level of virus exposures the individuals with these 

occupations received in the US may be different.46 In the future, we will explore data for validation 

of or/and re-estimation of risk of mortality associated with various occupation categories in the 

US setting. 
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In summary, we present a comprehensive and rigorous framework, and a set of associated tools, 

for assessing general population risks of COVID-19 mortality incorporating individual profiles, 

distributions of various risk-factors and population-level pandemic dynamics. Our risk projection 

results for the US cities/counties could be directly used for guiding strategies for equitable 

allocation of early vaccines and other preventive resources in the coming months. Further, our risk 

tool and the underlying statistical methodologies can be applied to carry out similar analyses 

internationally and thus inform prevention efforts globally. 

 

 

 

Web resources 

The web-based tool for individualized risk calculator and the interactive maps for viewing the 

city, county, state and national level risk projections in the US are at 

http://covid19risktools.com/. 

 

Data availability 

All data used in the manuscript are publicly available and can be accessed at 

https://github.com/nchatterjeelab/COVID19Risk/tree/master/data. 

 

Code availability 

The R codes for data management and analyses in this article can be accessed at 

https://github.com/nchatterjeelab/COVID19Risk. 
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Table 1. The estimated percentages of the NHIS population that exceed various risk 

thresholds, overall and with the 18-64 or 65+ age group. The age distribution was obtained 

from the most recent US Census Bureau 2019 data,29 and information of the other risk-factors 

within each age group was obtained from the NHIS.28 Risk thresholds are evaluated in reference 

to the average risk over all subjects. 

 Overall Age 18 - 64 Age 65+ 

Risk category Population 
size (%) 

% of deaths 
expected to arise 

from the risk 
category 

Population 
size (%) 

% of deaths 
expected to arise 

from the risk 
category 

Population 
size (%) 

% of deaths 
expected to arise 

from the risk 
category 

≥ 10-fold risk 5.6 M 
(1.7%) 30.5% 30.5 K 

(0.01%) 0.2% 5.5 M 
(7.9%) 30.5% 

≥ 5-fold risk 14.0 M 
(4.3%) 49.8% 0.3 M 

(0.1%) 1.6% 13.7 M 
(19.7%) 56.5% 

≥ 2-fold risk 36.2 M 
(11.0%) 71.2% 3.3 M 

(1.3%) 12.8% 32.8 M 
(46.9%)  85.5% 

≥ 1.2-fold risk 55.3 M 
(16.8%) 80.8% 9.9 M 

(3.8%) 28.1% 45.4 M 
(65.0%) 94.0% 
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Figure 1. Comparison of COVID-19 mortality risks associated with various age and 

race/ethnic groups between the US and the UK. a, relative risks of various age groups in the 

UK versus that of in the US. b, relative risks of various ethnic groups in the UK versus that of in 

the US. For UK, the relative risk is from age-sex adjusted model in Table 1 of the UK 

OpenSAFELY study.13 For US, the relative risk associated with race/ethnic groups is adjusted for 

both age and state whereas the relative risk associated with age is adjusted for state using Poisson 

regression model fitted to the CDC death count data.21 
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Figure 2. Risk calculator workflow. a, the general schema of the risk calculator which takes in 

the information on socio-demographic, lifestyle and predisposing conditions of an individual to 

estimate his/her relative risk compared to the average risk in the US adult population (age 18+). 

Further, based on the projected death rate in the state where the individual resides in, the tool 

evaluates the individual’s absolute risk of death due to COVID-19 during future time frame. b, the 

output from the risk calculator for two hypothetical profiles. 
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Figure 3. Distribution of the Index of Excess Risk (IER) for COVID-19 mortality and 

projections for the proportion of high-risk populations (≥5-fold compared to US average 

risk) across US communities. Left panel: results for the general adult population across 477 US 

cities; right panel: results for the 65+ Medicare population across 3,113 US counties. a, b: the 

distribution of IER (See Methods and Supplementary Methods, Section 2.3 for the definition of 

IER). c, d: histograms of the proportions of the underlying populations exceeding the 5-fold risk 

threshold. e, f: scatter plots for the proportions of the underlying populations exceeding the 5-fold 

risk threshold against the proportions of total deaths in the underlying populations that are expected 

to occur within the ≥5-fold risk group. Results for additional risk thresholds are provided in 

Supplementary Tables S1-S2. 
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Figure 4. Validation of the risk model using recent deaths (June 7 - Aug 1, 2020) in 477 US 

cities.  a, the explained variance (R2) of logarithm of death rate in a moving window of two-week 

periods by IER, population density and three-week prior infection rate (also aggregated over two-

week window), all transformed in logarithmic scale. b, the cumulative number of confirmed 

COVID-19 deaths during the corresponding two-week periods. 256 counties that contain the 477 

studied cities were included in the validation, where the county-level IER was calculated as the 

weighted IER with each city being weighted by its population size. During each two-week period 

only the counties with non-zero deaths and infections were included in the analyses. 
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Extended Data Figure 1. Distribution of risk-score across the general NHIS population (18+ 

year old, a) and across the 65+ year old NHIS population (b). Empirical distributions are 

compared with those based on mixture-normal or normal approximations. The risk-score is 

calculated based on age, gender, ethnicity and 12 different health conditions, but not social 

deprivation index (SDI) due to the absence of the relevant data in NHIS. The risk-score is centered 

using a reference value that corresponds to the average risk across the individuals in NHIS.  

 

 

 

 

 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 20, 2020. ; https://doi.org/10.1101/2020.05.27.20115170doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.27.20115170
http://creativecommons.org/licenses/by-nc-nd/4.0/


 29 

Extended Data Figure 2. Distribution of risk factors (age, smoking status, ethnicity, BMI, 

hematological and non-hematological cancer diagnosis) in the general NHIS population and 

among individuals in different risk groups. The risk score is calculated based on the 

demographic covariates and 12 different health conditions, excluding SDI which is unavailable in 

NHIS. The risk thresholds are defined with respect to the average risk of the NHIS population. 
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Extended Data Figure 3. Distribution of risk factors (sex, blood pressure, status of asthma, 

diabetes, stroke, arthritis, chronic heart disease, kidney disease and respiratory disease 

excluding asthma) in the general NHIS population and among individuals in different risk 

groups. The risk score is calculated based on the demographic covariates and 12 different health 

conditions, excluding SDI which is unavailable in NHIS. The risk thresholds are defined with 

respect to the average risk of the NHIS population. 
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Extended Data Figure 4. Distribution of risk factors (age, smoking status, ethnicity, BMI, 

hematological and non-hematological cancer diagnosis) in the 65+ years old NHIS and 

among individuals in different risk groups. The risk score is calculated based on the 

demographic covariates and 12 different health conditions, excluding SDI which is unavailable in 

NHIS. The risk thresholds are defined with respect to the average risk of the NHIS population. 
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Extended Data Figure 5. Distribution of risk factors (sex, blood pressure, status of asthma, 

diabetes, stroke, arthritis, chronic heart disease, kidney disease and respiratory disease 

excluding asthma) in the 65+ years old NHIS population and among individuals in different 

risk groups. The risk score is calculated based on the demographic covariates and 12 different 

health conditions, excluding SDI which is unavailable in NHIS. The risk thresholds are defined 

with respect to the average risk of the NHIS population. 
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Extended Data Figure 6. Projections for high-risk (≥5-fold risk compared to the US average) 

for the 65+ year old Medicare population across US states. a, histogram of the proportion of 

population exceeding the 5-fold risk threshold across states. b, scatter plot of the proportion of 

population exceeding the 5-fold risk threshold against the proportion of deaths among the 

population that are expected to occur within the ≥5-fold risk group. Results for additional risk 

thresholds are provided in Supplementary Table S3. 
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Extended Data Table 1. Model coefficient (log hazard ratio of COVID-19 death) for each 

category of the various risk factors. 

Variable type Variables 
Log-hazard ratio 

Notes 
UK OpenSAFELY US CDC  Fully adjusted 

Socio-demographic 

Age         

15-<45 - -2.996 -3.037 
Assumed the estimate 
for 18-<45 age group is 
the same as this group 

45-<55 - -0.968 -0.994   
55-<65 - 0 0 Reference category 
65-<75 - 0.952 0.751   
75-<85 - 1.898 1.613   

85+ - 2.997 2.733   
Race/Ethnicity 

 
      

White - 0 0 Reference category 
Black - 1.157 0.948   

Hispanic - 1.015 0.833   
Asian - 0.322 0.300   

American Indian/Alaska 
native 

- 0.542 0.536   

IMD quintile 
 

      
1 (least deprived) 0 - 0 Reference category 

2 0.174 - 0.174   
3 0.231 - 0.231   
4 0.425 - 0.425   

5 (most deprived) 0.531 - 0.531   
Sex         

Female  0 - 0 Reference category 
Male 0.657 - 0.657   

Behavioral  

BMI   
 

    
Not Obese 0  - 0   

Obese class I 0.247 - 0.247   
Obese class II 0.470 - 0.470   
Obese class III 0.824 - 0.824   

Smoking status         
Never 0 - 0 Reference category 

Ex-smoker 0.278 - 0.278   
Current -0.062 - -0.062   

  
  
  
  
  
  
  

  
  

Predisposing 
conditions 

  
  
  
  

Blood pressure         
Normal 0 - 0 Reference category 

Hypertension -0.030 - -0.030   
Respiratory disease 
excluding Asthma 

0.582 - 0.582   

Asthma 0.049 - 0.049   
Chronic heart disease 0.239 - 0.239   

Diabetes         
Controlled 0.385 - 0.385   

Uncontrolled 0.802 - 0.802   
Non-hematological cancer         

<1 year 0.519 - 0.519   
1-5 year 0.191 - 0.191   
≥5 year 0.020 - 0.020   
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Hematological cancer         
<1 year 1.194 - 1.194   

1 - 5 year 1.230 - 1.230   
≥5 year 0.610 - 0.610   

Stroke/Dementia 0.560 - 0.560   
Kidney disease 0.565 - 0.565   

Rheumatoid arthritis 0.157 - 0.157   
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