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Abstract 

 

A variety of predisposing factors have been associated with serious illness and death from COVID-

19. Understanding the distribution of risks associated with these factors by local communities can 

provide important opportunities for targeting interventions. We characterize the distribution of risk 

for COVID-19 mortality for populations at large across 442 US cities, by utilizing recently 

published estimates of risk associated with age, gender, ethnicity, social deprivation and 12 health 

conditions from a very large UK-based study, combined with the information available on 

prevalence and co-occurrence of these factors in the US through a variety of population-based 

public databases. We estimate that across all the cities, an underlying weighted risk-score can 

identify a total of approximately 12.65 million, 4.09 million and 1.34 million individuals who are 

at 2-, 5- and 10-fold higher risk, respectively, compared to the average risk for the US population. 

The percentage of population which exceed the respective risk thresholds varies across the cities 

in the range (1st-99th percentile), 3.6%-20.1%, 0.7%-8.0% and 0.1%-3.2%, respectively. The 

percentage of deaths within a city that are expected to occur above these risk-thresholds varies in 

the range of 20.1%-53.5%, 8.5%-38.2% and 2.9%-25.4%, respectively.  Our analysis can provide 

guidance to national and local policy makers regarding resources needed to protect the most 

vulnerable populations in these communities, and how much utility such interventions may have 

in reducing the total population burden of death.  
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Introduction 

The first case of SARS-CoV-2 infection in the US was reported on January 20th, 2020, in the state 

of Washington 1,2, and to date the pandemic has led to nearly 100,000 COVID-19 deaths - making 

US by far the most affected country globally. There is, however, major variation in rates of 

infections and underlying deaths across US states, counties and cities. Various local population 

characteristics, such as mitigation measures 3,4, population density and mobility patterns 5,6 define 

background risks of illness and death across the regions. Further, epidemiologic studies 7-16 are 

providing evidence for pre-disposing factors that can put individuals at differential risks of serious 

illness and mortality. 

 

In the US, both the number of reported daily infections and the number of reported daily deaths 

have recently reached peak, but the post-peak decline of these numbers has been slow 17. During 

the first phase of the pandemic, US and other countries have relied on broad and strict intervention 

measures, such as country/state-wide lockdowns and travel restrictions. However, as it becomes 

evident that the pandemic is likely to last for months and possibly years to come, mitigation efforts 

in the future will rely on both broad but more relaxed measures, such as social distancing, and 

more strict intervention for targeting towards high-risk populations and individuals.  Clearly, a 

large fraction of deaths has occurred among individuals of old age, and in US and other western 

countries, community living in nursing home settings has been a major source of risk for these 

individuals. Further, serious illness and death have been shown to be more common among male, 

various minority populations, and individuals with selected health conditions 10,14. As lockdown 

and travel restrictions are lifted, measures will need to stay in place to protect these high-risk 

individuals through “shielding” 18 and prioritization for scarce preventive resources 19,20.  As future 

planning for such effort requires understanding the size of “high-risk” populations, a few studies 

have now emerged to provide such information for UK 21, US 22 and globally by nations and 

regions 23. All of these studies, however, define high-risk group in a broad fashion based on risk-

factor prevalence, without specific definition of the level of the underlying risk. 

 

In this article we report results from our study for estimating the size of general populations who 

are at various levels of risk for COVID-19 mortality due to predisposing factor across a large 
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number of US cities.  We use recently published results from a large UK-based study on risk of 

mortality associated with a variety of predisposing factors, which could influence risk of infection 

or fatality or both 14. We define a risk-score based on multivariate adjusted risk estimates and 

combine it with information on prevalence and co-occurrence of these factors from data sources 

available from various national agencies. We use a series of novel methods to obtain estimates of 

proportion of individuals within each city who exceed different risk-thresholds. We also provide 

projections for the number of deaths that are expected to arise within the defined high-risk groups, 

as a percentage of the total number of deaths in the underlying city populations.  

 

 

Results 

We observe wide variation in the underlying risk-score values across individuals who participated 

in National Health Interview Survey (Supplementary Figure 1). The value of the risk-score at the 

99th and 1st percentile of the distribution corresponds to a risk ratio of approximately 8-fold among 

the age-group 18-39, and 305-fold among the age group 40+.  Overall, we observe that 12.3%, 

4.4% and 1.4% of individuals are at or above risk-thresholds associated with elevated (>2-fold), 

high (>5-fold) and very-high risk (>10-fold) categories (Table 1). A small, but not negligible, 

fraction of the population exceeds the threshold for extremely high-risk (25-fold). The percentage 

of the populations exceeding these thresholds vary strongly by age. In particular, only a small 

fraction (<3%) of individuals who are younger than 70 exceed the threshold for high-risk. In 

contrast, majority of the people who are 80 years or older are at high-risk, and a quarter of them 

are at very high-risk. We further examine the distribution of various other risk factors among 

individuals in the defined high-risk groups (Supplementary Figures 2-3). As expected from the 

nature of risk-factor association, male, Hispanic and African Americans, and individuals with 

obesity and various health conditions are more common in the different risk groups compared to 

the general NHIS population. In addition, some factors, such as former smoking and hypertension, 

which were not identified to be strong risk-factors in the UK study, appear to be more prevalent in 

the high-risk groups because of their association with strong risk-factors, such as age and type-2 

diabetes. 
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We observe substantial variation in prevalence of all the risk-factors across the different cities 

(Supplementary Figures 4-5). We evaluate the Index of Excess Risk for COVID-19 (IER-C19) 

mortality, a measure of aggregated risk in a locality associated with the prevalence of the 

underlying factors (Figure 1). We observe an almost 8-fold risk ratio between the highest and the 

lowest ranked city according to this index. Five cities with the highest values of the index are 

Hemet (CA), Detroit (MI), Youngstown (OH), Shreveport (LA) and Deerfield Beach (FL), and 

five cities with the lowest values of the index are Provo (UT), Frisco (TX), Fishers (IN), West 

Jordan (UT) and Allen (TX). A number of large cities in the US east coast tend to rank high in this 

index. Notably, Detroit and Ann Arbor, two cities only separated by 43.4 miles within Michigan, 

rank in the two extremes with almost 4-fold difference in average risk. 

  

The proportion of individuals in different risk categories varies widely across cities (Figure 2, 

Supplementary Figure 6, Supplementary Table 1). Our analysis identifies 93 cities which have at 

least 5% of individuals at high-risk category (>5-fold risk). These same cities have at least 14.2% 

and 1.6% of individuals who could be classified at elevated (>2-fold) and very-high (>10-fold) 

risk groups.  The number of individuals in the high-risk categories depends heavily on the 

underlying population sizes. In the New York City, we estimate that there are 1228K, 413K and 

139K individuals who exceed these risk-thresholds for elevated, high and very high-risk categories. 

A number of other major population centers, including Los Angeles, Chicago, Philadelphia, 

Houston, San Antonio and Detroit, have at least 64K people, in each city, who can be classified at 

the >5-fold risk category. The number of individuals who are in the elevated- and very- high-risk 

categories across these cities varies in the range of 150K-517K and 27K-53K, respectively.  

 

Our analysis also identifies 78 cities which have less than 2% of individuals in the high-risk 

category (>5-fold).  A number of these cities are known for large University associated populations, 

including Cambridge (MA), College Station (TX), Iowa City (IA), Ann Arbor (MI) and Madison 

(WI). Other notable cities included in the list are Boulder (CO), Columbia (MO), Fort Collins (CO), 

Provo (UT) and Salt Lake City (UT). In this list, the large cities that have population size >400K 

include Seattle (WA), Austin (TX), Raleigh (NC), Colorado Springs (CO) and San Jose (CA). The 

estimated number of individuals in these cities who exceed the risk-thresholds for the elevated, 

high and very high-risk categories ranges between 29K-79K, 7K-19K and 2K-5K, respectively.  
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The projected number of deaths that are expected to arise at or above various risk thresholds shows 

how deaths in the underlying populations arise disproportionately from a relatively small fraction 

of the population (Figure 3, Supplementary Figure 7, Supplementary Table 2). There are 94 cities, 

including major cities like New York, where we estimate that more than 25% of the total deaths 

are expected to have risen from a relatively small fraction (<5%) of high-risk individuals. We 

estimate that in the New York City, 43%, 27% and 16% of the deaths occurred within 14.2%, 4.8%, 

and 1.6% of the populations at the highest risk.  Based on estimates of the total number of excess 

deaths due to COVID-19 in NYC until May 2 24, we project that the absolute numbers of deaths 

attributable to these high-risk categories are 10358, 6637 and 3859, respectively.  

 

 

Discussion 

In this article, we have characterized distribution of risk associated with a set of predisposing 

factors for COVID-19 death across a large number of US cities. We have utilized information on 

recently published estimate of risk of mortality associated with these factors from a large UK study 
14, prevalence of the same factors from multiple population-based data sources, individual-level 

data available on a nationally representative study, and novel statistical methods to estimate size 

of populations exceeding precisely defined risk-thresholds. Our results identify cities, including 

major metropolitan hubs, that have concentration of high-risk individuals. These results can 

provide guidance to local and national agencies for planning more targeted intervention efforts for 

high-risk individuals.  

 

Mitigation efforts for the pandemic in most countries to date have focused on broad and strict 

intervention measures through series of lockdowns and travel restrictions. Additional efforts for 

targeting high-risk individuals have been generally limited. In England, about 1.5 million 

individuals who are at extremely high risk due to selected conditions were identified based on 

national health records, and were provided with government assistance for food delivery and 

medicine services 21. In California, local and state government developed the Project Roomkey 25 

to provide free hotel room, meal and other services to asymptomatic homeless people who are at 
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high risk due to their age or/and underlying conditions. In the future, as the statewide lockdowns 

are lifted, more initiatives for shielding high-risk individuals, starting with those who may be 

particularly susceptible to exposures, such as front-line workers and older population living in 

community settings, will be needed.   

 

A few recent studies have investigated the proportions of “high-risk” individuals for COVID-19 

related serious illness or mortality in the UK, US and across nations globally 21-23. Further, the 

New York Times has recently produced a county-level map for the US to describe prevalence of 

some of these risk-factors 26. These studies have defined high-risk individuals based on prevalence 

of one or more risk-factors, without taking into account the relative contribution of these factors. 

Further, because of the broad definition used, they estimate that a very large fraction of populations, 

20% in UK and 16-31% across nations globally, are at “high-risk”. In contrast, we have defined 

different risk-categories based on an underlying score that allows one to assign more precise 

magnitude of risks to these categories. As a result, we have been able to show that it is possible to 

identify smaller groups of high-risk individuals which lead to disproportionately large number of 

deaths across different US cities. Efforts for any targeted interventions, such as government 

assistance for “shielding”, may not be economically viable if the definition of high-risk group 

becomes too broad.  

 

Our analysis also shows that a large fraction of total deaths will occur outside of small high-risk 

groups. In NYC, for example, we estimate that 43% and 27% of deaths are expected to arise from 

14.2% and 4.8% of the population who are at the highest risk. The estimate implies that a majority 

of deaths will occur outside of these risk groups. In particular, we observe that the current set of 

risk-factors have very limited ability to identify individuals who are younger than 60 at high risk 

groups (see Table 1) and yet current data suggest that a substantial fraction of deaths will arise 

from such younger age groups.  Thus, targeted intervention for elevated and high-risk individuals 

through shielding and other efforts, cannot be a substitute for broader community level 

intervention through social distancing and other measures. Further, research is urgently needed for 

identifying additional risk-factors, including genetic predisposition and other biomarkers, which 

can better identify younger individuals who are likely to face serious illness and mortality. 
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In this article, we investigate the potential excess risks faced by cities, and individuals within cities, 

due to various predisposing factors. The absolute risks of these communities and individuals, 

however, heavily depend on the underlying local characteristics of the epidemic driven by key 

factors such as population density, mobility patterns and social distancing. Estimates available 

based on excess death, for example, indicate a mortality rate for the NYC from COVID-19 about 

283 per 100K individuals during the period of March 13-May 2 27,28. According to our estimate, 

the rate of death in the high-risk group (>5-fold) is expected to be about 1620 per 100K individuals. 

Now, consider a hypothetical scenario where the pandemic returns with double its intensity later 

this year. Thus, over a similar period of time, such a resurgence will lead to a death rate due to 

COVID-19 of 566 and 3240 per 100K individuals, in the overall city and in the high-risk group, 

respectively. The increase in absolute risk due to doubling the intensity of the pandemic in these 

two groups will be 283 vs 1620 per 100K individuals, indicating a much more adverse impact on 

the individuals in the high-risk group. In general, our framework can be used to model absolute 

risk of different risk-groups under various types of pandemic scenarios typically evaluated by the 

forecasting models 29. 

 

While we present the most sophisticated analysis of its kind, our study has several limitations as 

well. We lacked individual-level data at the level of cities and thus proposed a series of 

approximations to estimate the distribution of risk. We estimate co-occurrence rates of various 

risk-factors based on underlying prevalence and odds-ratio measures of aggregation estimated 

from the nationally representative NHIS. Further, we use the individual-level data available from 

the NHIS study to evaluate the accuracy of the mixture normal approximation for estimating the 

proportion of high-risk individuals (Supplementary Figure 1). In the future, accuracy of the 

approximation may be further improved by using alternative distributional assumptions. 

We assumed that the degree of association of COVID-19 death with various predisposing factors 

observed in the large UK study will be generalizable to the US population 30-33. While a number 

of US-based studies 12,27 using case series have reported overrepresentation of many of these 

factors among patients with severe illness, no large scale population-based epidemiologic studies 

are available to report precise risk associated with these factors in the US setting. In general, 
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relative-risks associated with major predisposing factors for various outcomes, including 

communicable 33,34 and non-communicable diseases 32, tend to be similar between US and UK. 

The New York City Health Department publishes population-based estimates of rate of 

hospitalization and death by age, gender and ethnic groups 35. We found that the crude (unadjusted) 

rate ratios for deaths reported in NYC with these factors are fairly consistent with those reported 

in the UK study. In our analysis, we consider a risk-score defined by the predisposing factors with 

weights obtained from the fully adjusted model published by the UK study. The risk-score, 

however, does not consider potential interactions between various predisposing factors and thus 

may over-/under-estimate risk for certain combination of these factors. In the future, as results 

from more complex models that include additional risk-factors and their interactions become 

available, our estimates can be further refined within the framework we have defined.  

 

The Ethnic characteristics of the UK and US population are substantially different. We observed 

that the crude ratio of COVID-19 death rate for blacks compared to whites in UK is very similar 

to that observed for the African American population compared to non-Hispanic whites within the 

NYC. The UK study further reports an increased risk for Asians or British Asians. In contrast, in 

NYC, the Asian population appears to be at a comparable risk as non-Hispanic whites. The 

difference is likely to be due to different countries of origin and socioeconomic conditions for 

these groups across the two countries. In our analysis, we assigned the risk of Asian in the US 

population to be the same as that of non-Hispanic whites. For the Hispanic population, which is 

absent in the UK, we obtained age-adjusted rate ratio for death compare to non-Hispanic whites 

based on data available from the NYC 36,37, and included an additional component of risk due to 

Hispanic origin. We could not find comparable risk estimates for other minority populations such 

as American Indians, Asian Indians and mixed races, and thus could not include a component of 

risk due to such ethnic origins. Nevertheless, it is likely that other predisposing conditions, such 

as age, gender and various health conditions will have similar link with risk of death in these 

populations.  

 

The UK study reported a strong gradient of risk of COVID-19 death associated with the Index of 

Multiple Deprivation (IMD), an area-level measure of social deprivation. The study noted that the 
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association of COVID-19 death with IMD remains strong (a risk ratio of 1.70 between 5th vs 1st 

quartile) even after adjusting for ethnicity and the known comorbidity conditions. In our analysis, 

we used an alternative county-level measure of Social Deprivation Index (SDI) that is available in 

the US setting and assigned each US city with the SDI measure of the corresponding county to 

which the city belongs. We assigned the same degree of risk across the different quintiles of SDI 

as those observed for IMD in the UK study. Both IMD and SDI capture the same major 

components of deprivation, namely income, education, employment and housing conditions. Some 

of these characteristics are known to confer similar risks across UK and US for broad health 

outcomes such as disability adjusted life years 38. The two variables, however, have some unique 

components, such as ownership of cars in SDI, that may lead to additional risks for COVID-19 

death. Future population-based epidemiologic studies are urgently needed to characterize risk of 

COVID-19 infection, serious COVID-19 illness and mortality in relationship to various ethnic 

groups and social deprivation in the US setting. 

 

In summary, in spite of some limitations, we present a very comprehensive and rigorous analysis 

of distribution of risk for COVID-19 death across large number of US cities. While these 

projections can be further refined as better model and data become available in the future, the 

current results can provide guidance to national and local policy makers regarding size of high-

risk populations who may benefit most with more targeted intervention efforts. In addition, the 

novel methodological framework we develop and the open-source code we make available will 

allow similar rigorous analysis of risk across other countries using relevant datasets. 

 

 

 

Methods  

Definition of COVID-19 risk-score 

The risk-score for an individual is defined as a weighted combination of various socio-

demographic characteristics and predisposing health conditions, with weights defined by the 

relative magnitude of the contribution of these factors to the risk of death due to COVID-19. We 

define the risk-score primarily using information from a very large UK-based studies involving a 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 29, 2020. ; https://doi.org/10.1101/2020.05.27.20115170doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.27.20115170
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10 

population of >17 million individuals among whom more than 5000 COVID-19 deaths were 

reported 14. The risk-factors included age, gender, ethnicity, an area-wide measure of social 

deprivation and 12 different health conditions. We define the COVID-19 death risk-score for an 

individual as 𝑅𝑆! =	∑ 𝛽"𝑋!"#
"$% , where 𝑋!"’s denote binary variables indicating the categories the 

𝑖th individual belongs to across different risk-factors.  We use information available from Table 

A1 of the paper from the UK study 14 to define the level of different risk-factors and extract the 

corresponding log-hazard ratio values from the fully adjusted model to define the weights. We, 

however, adjust the risk-score to account for different ethnic composition of the US and UK 

populations and account for a component of risk for Hispanic population using information on 

age-adjusted mortality rate available from the NYC 36,37. We note that in this definition, the “risk 

of mortality” refers to that of the general population, and not among infected population. Thus, the 

predisposing factors can increase risk of COVID-19 death due to their effect on rate of infection 

or/and rate of death among infected individuals. More details on definition of the risk-score can 

be found in Section 1 of the Supplementary Notes. 

 

Data sources for obtaining prevalence and joint distribution of the risk-factors 

US Census Bureau - American Community Survey: 

American Community Survey (ACS) is a yearly basis survey that collects information on 

demographic, social, economic, and housing topics throughout the United States and Puerto Rico 
39. We obtain the prevalence of demographic variables across cities. Specifically, we extract 

information on age and gender from the 2017 table 40, and the latest information available on 

ethnicity from the 2018 table 41 .  

 

Behavioral Risk Factor Surveillance System (BRFSS): 

The Center for Disease Control, US, has developed the BRFSS for conducting telephone survey 

to collect data on various heath related factors for US residents across states, cities, and 

Metropolitan/Micropolitan Areas. We use the BRFSS “500 Cities: Local Data for Better Health, 

2019 release” 42 to extract the prevalence on behavioral risk factors including obesity, smoking 

status, high blood pressure, and chronic health indicators including diabetes, asthma, chronic heart 
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disease, stroke/dementia, kidney disease, rheumatoid/ lupus/ psoriasis. The 2019 release is based 

on the 2017 questionnaire data.  

 

United States Cancer Statistics: 

The statistics are based on data collected from different cancer registries by the Centers for Disease 

Control Prevention (CDC) and the National Cancer Institute (NCI) 43. We use the 2012-2016 data 

to obtain 5-year incidence rates at county level and overall 5-year survival rates for different cancer 

sites. In our study, the cancer site-specific prevalence is calculated from the incidence rate after 

adjusting for the survival rate. We assume the cancer prevalence in each city to be the same as that 

of the corresponding county to which the city belongs.  

 

Robert Graham Center and American Community Survey: 

As a proxy for the Index of Multiple Deprivation (IMD) used in the UK study, we consider an 

analogous measure, Social Deprivation Index (SDI), used in the US setting. SDI is an area wide 

measure of 7 demographic characteristics, including the indicators for less than 12 years schooling, 

crowding, no car, non-employed, poverty, renter occupied, and single-parent family. The measure 

is derived by Robert Graham Center using 5-year estimates based on 2011-2015 data from the 

American Community Survey (ACS) 44.  

 

National Health Interview Survey (NHIS): 

We accessed individual-level data from the NHIS of CDC. The study collects yearly cross-

sectional questionnaire-based information on various health related factors for representative 

population of the United States 45. We extracted risk factor information on about 20,000 adults 

from the 2017 NHIS data. All of the required variables, except SDI, were available for individuals 

in NHIS. We use the NHIS data to investigate the distribution of risk-score (excluding SDI) across 

the general US population, estimate co-occurrence of pairs of factors using the underlying odds-

ratio parameters, and evaluate accuracy of mixture normal approximation for risk-score 

distribution. 

 

 Statistical Models and Methods 
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Similar to the UK study, in our analysis, we assume that the risk of COVID-19 death at time 𝑡	for 

an individual 𝑖 residing in location 𝑙, e.g. a city, can be described by the proportional risk model 

 

𝜆!&(𝑋, 𝑡) = 𝜆&(𝑡) exp(∑ 𝛽"𝑋!"#
"$% ) = 𝜆&(𝑡)𝑅!&(𝛽), 

 

where 𝜆&(𝑡) denotes the baseline risk for location 𝑙 due to underlying pandemic characteristics.  

Here 𝑡 refers to calendar time since some landmark, such as the day when cumulative death reaches 

some minimum threshold. The average risk of the population at location 𝑙 can be defined as 

 

𝜆&'(𝑡) = 𝜆&(𝑡)𝐸&{exp	(∑ 𝛽"𝑋!"#
"$% )}, 

 

where 𝐸&  denotes the expectation (average) with respect to distribution of the risk factors in 

location 𝑙.  

 

We define the quantity 𝑅&(𝛽)= 	𝐸&{exp(∑ 𝛽"𝑋!"#
"$% )}  an Index of Excess Risk (IER). If two 

locations have same baseline rate of deaths, then the ratio of this index across them will correspond 

to their rate ratio associated with death and a value of IER>1 will correspond to excess death due 

to difference in risk-factor distribution across the two places. In our analysis, we present the scaled 

version of IER as 𝑅&(𝛽)/𝑅6 , where	𝑅6	denotes the weighted average of 𝑅&(𝛽) across cities with 

population sizes as the weights. Further, we examine the distribution of 𝑅!&(𝛽) across individuals 

within a location to identify size of the underlying most “vulnerable” populations. For these 

evaluations, ideally one would require individual-level data for the set of risk-factors 𝑋 =

{𝑋%, … . . 𝑋#} for a representative sample of individuals from each city. However, in the absence of 

such data, we develop a framework to approximate the distributions using city-specific information 

on prevalence, and individual-level data from a representative sample of the whole US population 

available from the NHIS study. Specifically, we use data from NHIS to estimate degree of co-

occurrence of the different risk-factors and to evaluate the accuracy of mixture normal 

approximation for tail probability calculations (see Supplementary Figure 1). Further details of the 

methods can be found in Section 2 of the Supplementary Notes. 
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Code Availability 

All codes for data management and the analyses in this article can be accessed at 

https://github.com/nchatterjeelab/COVID19Risk. 
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Figure 1: Distribution of the Index of Excess Risk (IER) for COVID-19 mortality across 
442 US cities. The index is defined based on risk of mortality for the population at large 
associated with age, gender, ethnicity, social deprivation index and 12 different health 
conditions.  The index is standardized using a reference value that corresponds to average risk 
across the cities weighted by their population sizes. Results are shown using histogram (A) and a 
US geographic map (B). See Methods and Supplementary Notes for the definition of IER. 
 
 
 
Figure 2: Distribution of the proportion and number of individuals at different risk-
thresholds across 442 US cities. The risk thresholds are defined with respect to average of risks 
across all the cities weighted by population sizes. The results are obtained using information on 
prevalence and co-occurrence of the predisposing factors from various national database, and 
mathematical approximations for the distribution of underlying risk-score using mixture normal 
distributions. See Methods and Supplementary Notes for details. Results for additional risk-
thresholds are shown in Supplementary Figure 6. 
 
 
 
Figure 3: Projections for the proportion of deaths expected to occur at various risk-
thresholds across 442 US Cities. Histogram of the proportions across the cities (left panel) and 
scatter plots for them again the corresponding proportion of general populations exceeding the 
risk-thresholds (right panel) are shown. The projections are based on the underlying mixture 
normal distribution of the risk-scores in the general population and assuming the association 
parameters used are valid for the general US population. Results for additional risk thresholds 
are shown in Supplementary Figure 7. 
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Table 1. The percentages of NHIS population that exceed various risk-thresholds, overall 
and by age group. Risk-thresholds are evaluated in reference to the average risk over all subjects. 
The analysis does not include the measure of social deprivation index (SDI) which is unavailable 
in NHIS. 

 
 
 
 

Overall 12.31 7.93 4.39 1.43 0.21
Age 18-39 0.00 0.00 0.00 0.00 0.00
Age 40-49 0.06 0.01 0.00 0.00 0.00
Age 50-59 2.09 0.87 0.40 0.00 0.00
Age 60-69 15.83 7.40 2.35 0.27 0.05
Age 70-79 59.70 36.67 16.95 4.02 0.15
Age 80+ 100.00 79.57 56.98 23.77 4.43

25-fold Risk 
(Extremely 

High)

2-fold Risk      
(Elevated)

3-fold Risk 
(Substantiall
y Elevated)

5-fold Risk           
(High)

10-fold Risk          
(Very High)
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