Safety-Stock: Predicting the demand for supplies in Brazilian hospitals during the COVID-19 pandemic

Oilson Alberto Gonzatto Junior¹, Diego Carvalho do Nascimento¹, Cibele Maria Russo¹, Marcos Jardel Henriques¹, Caio Paziani Tomazella¹, Maristela Oliveira Santos¹, Denis Neves², Diego Assad², Rafaela Guerra², Evelyn Keise Bertazo², José Alberto Cuminato¹ and Francisco Louzada^{1,*}

¹ Department of Applied Mathematics and Statistics, Institute of Mathematical and Computer Sciences, University of São Paulo, São Carlos Campus, Brazil ² Bionexo, São Paulo, Brazil

Correspondence*: * louzada@icmc.usp.br

2 ABSTRACT

1

Background: Many challenges lie ahead for COVID-19, not only related to the acceleration of the pandemic, but also to the prediction of the hospital's personal protective equipment to accommodate the explosive demand. Due to the situation of uncertainty, the hospital administration encourages the excess stock of these materials, causing excess products in some hospitals, but shortages in others. Although three main factors limit the number of patients seen at a hospital: the number of beds available, the number of equipment, and, above all, the number of health professionals available at the hospital, per shift.

10 Objective: In this scenario, a challenge is to build an easy-to-use expert system to predict the 11 demand for personal protective equipment in hospitals during the COVID-19 pandemic, with 12 updating in real-time.

Methods: We propose naive statistical modeling, which combines historical data on the consumption of personal protective equipment by hospitals, current protocols for their uses and epidemiological data related to the disease, in order to build predictive models for the demand for personal protective equipment in Brazilian hospitals during the pandemic. We then embed our modeling in the free Safety-Stock expert system, that can provide the safety stock for

18 a particular hospital.

19 Results: The Safety-Stock provides prediction of consumption/demand for personal protective 20 equipment over time, indicating the moment when the hospital reaches maximum consumption,

21 the estimate of how long it will work in this state, and when it will leave it.

22 Conclusion: With our predictions, a hospital may have estimated, based on its stock levels and 23 possible new purchases, its needs related to a specific personal protective equipment, which 24 allows for the adoption of strategies to control and keep the stock at safety levels to the demand,

24 allows for the adoption of strategies to control and keep the stock at safety levels to the demand, 25 mitigating risk of stock-out. As a direct consequence, it enables interchange and cooperation

- 26 between hospitals, aiming to maximize the care during the pandemic.
- 27 Keywords: COVID-19 Pandemic, Outbreak, Healthcare Supply Chain, stock-out mitigating risk, easy-to-use free expert system. NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

Gonzatto et al. Safety-Stock: Predicting the demand for supplies during the COVID-19 pandemic

1 INTRODUCTION

As of May 24, 2020, more than 5.4 million confirmed positive cases of COVID-19 worldwide, with 345,000 global deaths and more than 360,000 confirmed cases in Brazil (15). Hospital systems around the world have been overwhelmed by the volume of cases, including shortages of personal protective equipment (PPE), critical medical supplies and increasing costs (7). In this scenario of scarce hospital resources, a challenge is to build an easy-to-use expert system to predict the demand for PPE in hospitals during the COVID-19 pandemic.

Indeed, due in large part to the increase in demand, technological solutions for the management of processes in the health area are necessary, using historical data from hospital supplies. Factors such as price increases and difficulties in purchasing critical supplies without long terms require intelligent maintenance of the stock so that there is no shortage of supplies in hospitals. It is worth noting that the supply chain represents the second largest expense for hospitals (1).

In this paper, we propose naive statistical modeling, which combines historical data on the consumption of PPE by hospitals, current protocols for their uses, and epidemiological data related to the disease, in order to build predictive models for the demand of a hospital for PPE in Brazilian hospitals during the pandemic. We then embed our modeling in an free expert system, hereafter Safety-Stock, that presents predictions of consumption/demand for PPEs overtime in real-time. The Safety-Stock indicates the time when the hospital reaches its maximum consumption, estimates how long it will work in this state and when it will leave it. The structure of our modeling is graphically summarized in Figure 1.

With our prediction, a hospital may estimate, based on its stock levels and future purchases, its needs related to a specific PPE, which allows the adoption of strategies to keep stock levels that are adequate to the demand, mitigating risk of stock-out. As a direct consequence, it enables interchange and cooperation between hospitals, aiming to maximize the care during the pandemic.

The paper is organized as follows. Section 2 is dedicated to the materials and methods, which were considered here, including data and statistical modeling. The Safety-Stock description and the results of applying our modeling for several different Brazilian hospitals are presented in Sections 3. Some final comments in Section 4 complete the paper.

2 MATERIAL & METHODS

54 Our modeling uses prediction parametric models to meet the PPE demand of a hospital, provided based on 55 the estimated epidemic curve, as well as characteristics related to the hospital, as well as other variables, 56 such as hospitalization rate, frequency of emergency care, number of beds available.

Indeed, we propose a mathematical/statistical model that expresses the expected relationship of the consumption of a given PPE over time, with the epidemiological characteristics of the region and also with the internal characteristics of a particular hospital. For this, we take into account three fundamental fronts: the recent historical record of hospital consumption of a PPE; the maximum possible level of consumption of a PPE; the magnitude of the stay in a maximum consumption regime. Each of these characteristics requires the observation of different sources of information and generates meaningful interpretations for the model's construction.

64 The information used, in the modeling process, was obtained from three perspectives, which reverberates 65 the relationship across which point in time will the hospital started working on a maximum consumption 66 regime (for each PPE) and for how long it will remain under this pandemic regime.

Gonzatto et al. Safety-Stock: Predicting the demand for supplies during the COVID-19 pandemic

Figure 1. Overview of the structure used in the proposed modeling. The process adopted by the algorithm is to estimate the number of infected patient which will demand some assistance and combined with the hospital capacities and characteristics, predict the PPE related with the COVID-19 pandemic.

Indeed, for the development of the proposed approach, the following characteristics related to the hospitalare considered:

- List of PPE and other healthcare supplies, such as hand sanitizer, waterproof aprons, sterile gloves,
 procedure gloves, surgical mask, and N95 masks and caps.
- Availability of these supplies in stock at the hospital (units of the items available to be used).
- Forecast of weekly consumption: this demand is calculated considering the expected number of hospitalizations of the hospital and the consumption of inputs per hospitalization, or the consumption of inputs according to the hospital's occupancy rate (offer as calculated, as we consider the curve). In addition to consumption, it is necessary to know how these data are calculated, and the hospital must check their calculation.
- The available beds separated or not by the type of case (mild, severe, and critical). For each type of
 bed, the average number of days of hospitalization will be used (for simulation over a longer period).
 The hospital will provide both the number of beds and the average occupancy.
- Value of the safety stock (minimum stock of each input or as calculated by the hospital).
- Initial conditions: what is the hospital occupation and days that each bed will be occupied (hospital estimate).

Besides, the curves related to demand estimated by the city of Brazil were constructed using a growth model to meet demand from the worst-case situation. We also used information related to the hospital concerning PPE and its infra-structure for occupation. Moreover, we consider the prediction of the demand for hospitalizations and the number of health staff.

The statistical model that parameterizes these data simulates the use of resources about consumption, and aims to obtain an indication of the safety stock for each PPE, considering the possibility of having a certain amount. Further details of the statistical modeling can be found in Appendix A.

3 **RESULTS**

We developed the Safety-Stock, an easy-to-use expert system, which combines different elements
informed by the hospital under analysis. It is freely available in https://cemeai.shinyapps.io/
bionexo_covid19/ (in Portuguese). The pieces of information needed for feeding the platform are

Gonzatto et al. Safety-Stock: Predicting the demand for supplies during the COVID-19 pandemic

divided into three dimensions: *consumption and stock information*, which are hospital general information,
such as, location (state and city), PPE general classes, weekly consumption, current stock level; *disease behavior in the hospital under study*, which are hospital pandemic dynamic data, such as percentage of
hospitalized infected patients, percentage of ICU hospitalized patients, the average length of stay, number
of beds and occupancy rate; and *forecast of scenarios related to demand*, which are hospital demand
prediction data, such as prediction horizon, security percentage, and maximum consumption.

99 The first step is to estimate the death growth related to each region. A growth curve function is adopted to 100 predict the number of deaths in the city where the hospital lies. For instance, the three-parameters logistic 101 (11, chap. 6) or the Gompertz function (14). Figure 2 panels (a) show each cumulative number of death, 102 exemplified by five cities in Brazil: Belo Horizonte (MG), Recife (PE), Curitiba (PR), Porto Alegre (RS) 103 and São Paulo (SP).

Then, based on the process described in Appendix C, we obtain the behavior for regional demand for each city (Figure 2 panels (b)), which expresses a particular behavior concerning the dynamics of the disease. The fraction of such curve that fits a specific hospital depends on the market-share associated with it, and the cut-line that represents its current capacity (in terms of the number of free ICU beds) considers the total number of beds and the respective occupancy rates (Figure 2 panels (c)). With this step, we determine the cut-line that gives us an indication of when the hospital situation begins to regularize.

Subsequently, a simulated hospital structure, described in Appendix B, in response to demand focused exclusively on the COVID-19 pandemic, is considered. This simulated hospital's composition was an essential element for estimating the threshold that relates to the maximum consumption of PPE, the number of beds available, the size of the health team, and the used protocol. With this step, we defined a technically standardized level for maximum consumption, on which we established some variation in its surroundings to contemplate possible changes in the protocol due to the pandemic situation.

The next step consists in adjusting the conditioned model to the information obtained in the previous steps. Thus, we established a forecast for the weekly PPE consumption of a hospital under analysis through models considering some possible scenarios. Figure 3 presents the estimate in which the pandemic presents a potential risk to the hospital situation as a result. The generated scenarios consider the historical consumption of a PPE in particular, the theoretical premises for the use of PPE based on the magnitude of the hospital, and the effects of the pandemic observed in its region. The gray margin exposes the forecast horizon.

Still, in Figure 3, each consumption limit line also indicates the security of the available stock in terms of 123 the number of weeks that the current stock would last if there were no new entries. The red dashed lines 124 125 represent upper limits for consumption, considering the growth trend of previous records and different total consumption levels, the transparent red margins represent the 2.5% and 97.5% limits for predicted curve. 126 The blue dot denotes the current stock position. The transparent blue margins represent the minimum and 127 maximum stock limits. The yellow line showed the date when the first case of COVID-19 was identified in 128 its municipality. The vertical line in light-blue represents a cut-line from which we believe that the hospital 129 situation will return to normal. The transparent margin around it expresses the uncertainty involved in this 130 expectation. 131

This value for maximum consumption will be given as input to the model (submitted in the Maximum consumption field), and it will be recalculated, making the specific analysis to hospital reality (3b). The red line is the upper limit for consumption, where growth occurs with the intensity outlined by the historical record and considering its consumption protocol.

Figure 2. Pandemic dynamic estimation for five cities in Brazil. The selected cities are Belo Horizonte (MG), Recife (PE), Curitiba (PR), Porto Alegre (RS) and São Paulo (SP). The top five figures represent the cumulative death rate per region. The five center figures express the expected dynamics of the disease. The bottom five figures represent the market-share fraction expected to be attended by the analyzed hospital.

This growth ceases from the moment the hospital situation begins to regularize (in the present example,
we believe that around 08/27/2020). The construction of this cut-line takes into account the situation of the
hospital in facing the pandemic.

The board of the hospital's under analysis, in the face of the pandemic, may use the cut-line as an aid in decision making, estimated by the considered approximations and assumptions, supporting the hospital's regularization situation by the following steps:

- Based on the death count due to COVID-19. We obtain an estimate for this behavior, and, from it, we
 add other sources of uncertainty, such as under-reporting factors.
- 144 2. Conditioning the real death curve, we consider the estimated relationship between the death and145 infected curve, added by a randomness factor.

Figure 3. Dynamic estimation towards a PPE, considering the simulated hospital. The black line and dots represent the consumption history available in the spreadsheet. The dashed lines (horizontal) in black represent possible consumption limits. Left-hand panel (a) display the different PPE level demands based on the hospital capacities, meanwhile right-hand panel (b) display the chosen option according, e.g. to the supply chain manager. Online platform print, which is available in Portuguese.

Figure 4. Pandemic dynamic per region based on the analyzed hospital. Left-hand panel plots the death growth, center panel related to the region's demand curve, and right-hand panel display the daily estimation demand of the hospital. Online platform print, which is available in Portuguese.

- 146 3. Subsequently, via the infected curve, estimates of the fraction of hospitalized and, of those hospitalized,147 those who need ICU admission.
- 4. From the curve of intensive care unit inpatients, we considered the average number of days in
 the intensive care unit, and, given this consideration and the randomness involved, we took an
 approximation, even if gross, of the curve of recoveries.
- 151 5. The difference between the intensive care unit inpatients curve and the recoveries curve leads us to a152 hospital demand curve for intensive care unit beds.
- The fraction of the curve that applies to the hospital under analysis is considered an estimate by marketshare. In the first panel (left) in the Figure 4 estimates the death dynamics of the Brazilian municipalities (extracted by the website brasil.io), later this growth curve helped in the corrected estimation bypassing the underreporting of COVID-19, see more details in the appendices. The central panel is related to the region's demand curve, and finally, the right panel adds the daily demand of the hospital (being a fraction of the region answered by market-share).

Gonzatto et al. Safety-Stock: Predicting the demand for supplies during the COVID-19 pandemic

159 The total sum will represent the Forecast Horizon can be increased by a percentage defined in the % 160 security field. The fragmentation of this forecast according to the percentage of consumption of each item 161 individually, in the last 30 days.

As an auxiliary tool, the expected demand for each group of commonly used items in the pandemic will be broken down into individual products (with different references). This table can be exported and aims to consider the different scenarios that relate to the maximum consumption.

Perhaps an essential point of the Safety-Stock is the accumulated record of hospitals that need to be helped, and those that can help others. This initiative can be materialized with an indicator that tells us if the hospital can help, or needs help, after analyzing the situation of lack or over-stock for each general class of PPE or the need to purchase more supplies.

To learn about the Safety-Stock flow of information, interested readers can refer to Appendix D, where we illustrate the flow of information that runs internally in expert system, according to Figure 5.

4 FINAL COMMENTS

Prediction modeling was developed by combining historical hospital data and the disease growth curve. The idea is to provide a safety stock, avoiding a possible lack of PPE during the COVID-19 pandemic. The developed the Safety-Stock, which provides to the hospital managers a prediction for the consumption of several PPEs, taking into account the expected number of patients that arrive in the emergency room with COVID-19 symptoms, as well as the expected percentage of those that need intensive care. As a result, the safety stock of PPEs can be estimated. Consequently, it may be rearranged among geographically close hospitals, preventing attendance restrictions, and avoiding unnecessary expenses.

178 The proposed approach is naive in different ways. For instance, we chose to assume a random structure 179 based on a symmetric probability distribution for the errors, both in the adjust of the consumption curve (C_t) and the death curve (Y_t) . The choice of such distributions may not be the most appropriate one. We use 180 181 some indirect results. In other words, the raw data directly accessed in the statistical estimation processes 182 correspond to the recent history of the consumption of any PPE and the death record in a particular city. All other information carries subjectivities and uncertainties that we cannot quantify in light of the 183 184 analyzed data. Although, the theoretical support of the studies that provided such information allowed us to 185 understand the observed average behaviors as premises in our modeling. Finally, the considered growth models are simple. 186

187 All of these points can be refined and addressed in future studies. For instance, assign a possibly 188 asymmetric probability distribution for the errors, joint statistical modeling the various information, with 189 data directly accessed by us, and consider other growth models and then use statistical selection among 190 different models.

On the other hand, naivety also has some attractive advantages. Scalability is one of them since complex 191 models commonly require computationally intensive methods, many of them need a more substantial 192 amount of information to express good results and the computational processing time is considerably 193 longer. In this sense, our naive approach allows the use and diffusion of the proposed methodology on a 194 broader spectrum of possibilities, such as the use of our expert system with updating in real-time. Another 195 interesting point is that researchers from other areas can clearly understand the methodology, and its results 196 can be effectively internalized. Besides, the integrated set of small independent solutions, such as the 197 proposal presented here, can serve as a basis for more in-depth investigations by expressing insights that 198 are difficult to perceive in individual analyzes. 199

Gonzatto et al. Safety-Stock: Predicting the demand for supplies during the COVID-19 pandemic

Figure 5. Safety-Stock information flow.

Moreover, results obtained with the Safety-Stock were exposed to some PPE managers of some Brazilian hospitals. The degree of agreement with the reality of their practical activities encourages us the continuity of the development, maintenance, and dissemination of our research and free expert system.

Gonzatto et al. Safety-Stock: Predicting the demand for supplies during the COVID-19 pandemic

CONFLICT OF INTEREST STATEMENT

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

ACKNOWLEDGMENTS

The research was carried out using the computational resources of the Center for Mathematical Sciences Applied to Industry (CeMEAI), funded by FAPESP (grant number 2013/07375-0). José Alberto Cuminato and Francisco Louzada are supported by the Brazilian agency CNPq (grant number 302954/2015-4 and 301976/2017-1, respectively).

APPENDIX A – STATISTICAL METHODOLOGY

209 Consumption/demand curve. In principle, we consider a random variable C_t denoting the *consumption of a* 210 given PPE over time t, normally distributed with mean μ_t and variance σ^2 .

The adopted statistical model aims to parameterize the growth behavior of the demand for a product, followed by a (possibly) period of constant high demand, then accompanied by a decline in demand. Thus, μ_t is assumed as a five parameters function given by

$$\mu_t = f(t; a, b, c, d, e) = \begin{cases} a + (d - a) \exp\left\{-\frac{(c - t)^2}{b}\right\}, & \text{if } t \le c, \\ d & , & \text{if } c < t \le e, \\ a + (d - a) \exp\left\{-\frac{(t - e)^2}{b}\right\}, & \text{if } t > e & \text{or } c \ge e, \end{cases}$$
(1)

where a denotes the magnitude of basic consumption, here assumed to be constant, b denotes the intensity of growth/decrease in consumption over time, c denotes the point in t that the maximum consumption is reached, d denotes the magnitude of maximum consumption, e denotes the point in t that consumption begins to decrease.

According to the variation of parameters a, b, c, d and e, some possible behaviors for the mean of the proposed model can be observed in Figure 6.

The described proposal that relates the model C_t with the consumption curve with the regional epidemiological characteristics and interior features of a particular hospital takes into account three fundamental aspects. The recent historical record of hospital consumption of a given PPE, The maximum consumption level of the PPE, How long the hospital stays on the maximum consumption level. Each of these features requires the observation of distinct information sources and generate meaningful interpretations for the model building, as follows.

- The recent historical record of hospital consumption of a given PPE provides information of the
 baseline demand before the COVID-19 pandemic (represented by the model parameter *a*) and evidence
 of changing in the consumption regime (represented by the model parameter *b*);
- 226 2. The maximum level of PPE consumption considers the maximum capacity and the totality of the hospital staff dedicated to COVID-19 patients care (this maximum level is represented by the parameter *d* of the model and, as it is a fixed and particular characteristic of each hospital and PPE, it is set as a known parameter). This information is determined based on the procedure described in Appendix B;

Gonzatto et al. Safety-Stock: Predicting the demand for supplies during the COVID-19 pandemic

Figure 6. Some possibly behaviors of mu_t for fixed values of a = 1, e = 20 and b = 0.5, 1.0, 1.5, 10, c = 10, 15, 20, 25 and d = 2, 3, 4.

3. The time spent on the maximum consumption regime (whose endpoint in t is represented by the e parameter of the model) is determined by the use of hospital information and the region around it. It is estimated indirectly and is subsequently used in the model for the consumption curve, C_t , as a fixed parameter (just like the parameter d). The determination of the e parameter, defined as known in the model for C_t), is done as described in Appendix C.

The combined use of information obtained from these three perspectives makes the theoretical model adopted to relate the epidemiological characteristics of the region, as well as demand features of the supply chain of the hospital under study.

In this sense, as the parameters, d and e are determined indirectly (see Appendices B and C) therefore considered known in the curve expressed by μ_t , the parameters a, b and c must be estimated by some estimation process.

241

Estimation Process. We define the random structure, based on a set of observations from recent consumption history $C = (C_{t_1}, \ldots, C_{t_n}), C_{t_i} = f(t_i; a, b, c) + \varepsilon_i$, where $\varepsilon_i \stackrel{iid}{\sim} N(0, \sigma^2)$, for $i = 1, \ldots, n$.

Gonzatto et al. Safety-Stock: Predicting the demand for supplies during the COVID-19 pandemic

244 The parameters $\theta = (a, b, c) e \sigma^2$ are estimated by considering the log-likelihood function, given by

$$\ell(\boldsymbol{\theta}, \sigma^2) = -\frac{n}{2}\log\sigma^2 - \frac{1}{2\sigma^2}\sum_{i=1}^n \left[c_{t_i} - f(t_i; \boldsymbol{\theta})\right]^2 = -\frac{n}{2}\log\sigma^2 - \frac{1}{2\sigma^2}\operatorname{RSS}(\boldsymbol{\theta}),$$
(2)

245 where $RSS(\theta)$ denotes the residual sum of squares.

If we use non-informative or sufficiently vague a priori information for the parameters, we have that an estimator for θ and σ^2 can be obtained by maximizing (2), which occurs with the minimization of RSS(θ) (θ is independent of σ^2). In addition, $\partial \ell / \partial \sigma^2 = 0$ has a solution given by $\hat{\sigma}^2 = \text{RSS}(\hat{\theta})/n$, while $\hat{\theta}$ is the least squares estimator of θ (9). The standard error of the estimators can be obtained based on the Fisher Information matrix and the prediction intervals are determined using the Delta Method (4).

APPENDIX B – SIMULATED HOSPITAL DATA

In order to evaluate the proposed model, a simulated hospital environment was considered, based on ANVISA, the Brazilian Health Regulatory Agency (2). This simulation serves as a general example for the hospitals in which the model will be applied, and its characteristics (staff and material consumption) were defined using data provided by experts.

The hospital allocates its patients into three categories: Inpatient Units (IU), Intensive Care Units (ICU), and Emergency Room (ER). IU patients are in a non-critical state, while UTI patients are in a critical state, demanding more human resources and materials. The number of hospital beds is divided between both units, and IU beds can be turned into ICU if needed. ER patients are on hold to be transferred to either IU or ICU. Therefore they are not considered to be occupying hospital beds.

The allocation of doctors, nurses, and physiotherapists is shown in Table 1. The number of IU and ICU needed staff is given based on the number of occupied beds, except for doctors for IU patients, which is given by the number of total hospital beds, regardless of their occupation. Column IU/RRT shows the staff allocated to IUs as Rapid Response Team (RRT). In these columns, the numbers represent the staff needed for 12-hour shifts, while numbers on the ER column represent the daily staff needed for a unit with an average of 10.000 treatments per month, which also work on 12-hour shifts.

Tuble 1. Stall allocation in the simulated hospital.						
Staff	IU	IU/RRT	ICU	ER		
Doctors	1 / 10 total beds	1 / 100 beds	1 / 10 beds	20		
Nurses	1 / 6 beds	1 / 100 beds	1 / 8 beds	10		
Physiotherapists	1/20 beds	1 / 100 beds	1 / 10 beds	-		

 Table 1. Staff allocation in the simulated hospital

IU e ICU: values for a 12-hour shift; ER: daily values for an unit with 10.000 monthly treatments.

Table 2 shows the consumption of critical material per professional during a 12-hour shift. These values estimate what is used taken from a series of premises and observations on real hospitals.

The consumption of other essential materials needs to be estimated by other means. The use of Hand Sanitizer varies from hospital to hospital since it can be replaced by regular soap. In this case, it is assumed the daily use of 20mL for each IU and ICU patient and 5mL for each ER suspected patient (which is estimated as 50%). Doctors, nurses, and physiotherapists use N95 Masks, at a rate of 1 each 14-day period or ten shifts, thus depending on the staff rotation rather than hospital occupancy.

Gonzatto et al. Safety-Stock: Predicting the demand for supplies during the COVID-19 pandemic

Table 2. Waterial consumption in the simulated hospital.					
Material	Doctor	Nurse	Physiotherapist		
Surgical Mask (unit)	6	6	6		
Waterproof Apron (unit)	1	2	2		
Hospital Cap (unit)	1	1	1		
Procedure Gloves (pair)	5	10	10		
Sterile Gloves (pair)	2	-	20		

Table 2. Material consumption in the simulated hospital.

Average values per professional in a 12-hour shift.

Lastly, as a premise, the obtained values are increased by 40% to consider material usage from cleaning and technical staff, visitors, and incoming patients, as well as hospital waste.

APPENDIX C – CALCULATING THE END OF THE PLATEAU

For the determination of a cut-line, from which the number of beds available in the hospital becomes again higher than the daily demand of patients in ICU (represented by the parameter e in the model (1)), we used the information of the number of notified deaths accumulated over time (here denoted by the random variable Y_t) and other hospital information as described below.

The growth curve of Y_t can be estimated by a nonlinear growth curve model, such as the Logistic model (11, chap. 6), Gompertz, Richards (14), Von Bertalanffly (6), among others. The selection between the most appropriate model for each region can be made based on some statistical criteria such as AIC, AICc, BIC (see, for instance, 16). The estimation process is analogous to what is described in Appendix A.

From the estimated curve for Y_t , we consider a brief simulation study to approach the *hospital demand* curve. We incorporate other sources of uncertainty, such as underreporting factors and lethality rates, among others. The characterization of such sources of uncertainty has theoretical support in studies already published, which support the average behavior defined here as a known premise. This approach may represent a current limitation of the study since we do not contemplate the joint analysis of all the factors involved, which can be incorporated for future studies, though such information has already been obtained and validated by other sources.

- 290 Thus, the steps performed are the following:
 - The reported deaths curve (Y_t) is a fraction of the actual deaths (Y_t^*) , which means that

 $Y_t = P_{RD} \times Y_t^*$, where $P_{RD} \sim Beta(\alpha_1, \beta_1)$.

The probability distribution of P_{RD} (proportion of reported deaths) has been defined so that we consider the parameters α_1 and β_1 to be known, such that $\mathbb{E}(P_{RD}) = \alpha_1/(\alpha_1 + \beta_1) = 0.4$ and SD(P_{RD}) = $\sqrt{\alpha_1\beta_1/[(\alpha_1 + \beta_1)^2(\alpha_1 + \beta_1 + 1)]} = 0.05$. Such assumptions take into account the researchers such as (12, 3) which indicate that the number of *real deaths* is around 2.6 times the number of *reported deaths*.

• We understand that the *real deaths* curve (Y_t^*) is proportionally related to the *infected* curve (I_t) , as follows,

 $Y_t^* = P_{\text{ID}} \times I_t$, where $P_{\text{ID}} \sim \text{Beta}(\alpha_2, \beta_2)$.

The probability distribution of P_{ID} (proportion of infected-to-death) was defined considering known α_2 and β_2 , such that $\mathbb{E}(P_{ID}) = \alpha_2/(\alpha_2 + \beta_2) = 0.0037$ and $SD(P_{ID}) = \sqrt{\alpha_2\beta_2[(\alpha_2 + \beta_2)^2(\alpha_2 + \beta_2 + 1)]} = 0.0001$. The distribution parameter of the random variable P_{ID}

Gonzatto et al. Safety-Stock: Predicting the demand for supplies during the COVID-19 pandemic

- was set based on the results of (13, 5) which pointed out that the actual lethality rate of the disease is around 0.37%;
 - The *hospitalized* (H_t) and *hospitalized in ICU* $(H_{ICU,t})$ curves are assumed to correspond to fractions of the curve of *infected*, as follows

$$H_t = P_{IH} \times I_t$$
, where $P_{IH} \sim \text{Beta}(\alpha_3, \beta_3)$.

and

$$H_{ICU,t} = P_{H_{ICU}} \times H_t$$
, where $P_{H_{ICU}} \sim \text{Beta}(\alpha_4, \beta_4)$.

Similarly, the probability distribution of P_{IH} (proportion of infected-to-hospital) and $P_{H_{ICU}}$ (proportion of hospitalized-to-ICU) are defined as $\mathbb{E}(P_{IH}) = \mathbb{E}(P_{H_{ICU}}) = 0.25$ and $SD(P_{IH}) = SD(P_{H_{ICU}}) =$

- 303 0.05. This is justified since (8, 5) show that approximately 25% of the infected need some hospital
- care, and 25% of those need a ICU.
 - The *recovered* curve (R_t) , from ICU situation, was approximated by the translate of the difference between *hospitalized in ICU* curve $(H_{ICU,t})$ and the *real deaths* curve (Y_t^*) , as follows (17)

 $R_t \approx (H_{ICU} - Y^*)_{t+D_{ICU}}$, where $D_{ICU} \sim Poisson(\lambda)$.

- The probability distribution set to D_{ICU} (days in ICU) takes into account that $\mathbb{E}(D_{ICU}) = \lambda = 14$, since (10) indicated that the clinical recovery for patients in ICUs is approximately two weeks.
 - In addition, we understand that the difference between the *hospitalized in ICU* curve $(H_{ICU,t})$ and the *recovered* curve (R_t) of the ICU situation approximates the *regional demand* curve (RD_t) for ICU beds. Therefore

$$RD_t \approx (H_{ICU} - R)_t$$

• Finally, we assume that the *hospital demand* curve (HD_t) is a fraction of the *regional demand* curve (RD_t) , weighted by market-share (MS) associated with a particular hospital. Therefore

$$HD_t = MS \times RD_t.$$

The multiplier MS was not considered as a random variable. Its value is determined by the number of beds in the hospital and the number of beds available in the region close to the hospital, whose information is collected directly from a Brazilian health database called DataSUS.

Now, once we approximated the *hospital demand* curve (HD_t) , we have established a cut-line for the hospital's service capacity. This is done by considering the number of IU and ICU beds (named as IU_B and ICU_B , respectively) and their occupancy rates (named as OR_{IU} and OR_{ICU} , respectively). Since around 20% of IU beds can be upgraded to act as an ICU bed, the cut-line is given by

$$CL = ICU_B \times (1 - OR_{ICU}) + 0.2 \times IU_B \times (1 - OR_{IU}).$$

Thus making $HD_t = CL$, we identify the cutoff point, $t^{(1)}$, which indicates that the ICU service capacity has been exceeded (if applicable) and the point at which it has returned to normal is $t^{(2)}$.

The point $t^{(2)}$ and all the uncertainty associated with it, via the variability of P_{RD} , P_{ID} , P_{IH} , $P_{H_{ICU}}$, and D_{ICU}, result in a range of possible time points, where the hospital situation is expected to return to normal.

Gonzatto et al. Safety-Stock: Predicting the demand for supplies during the COVID-19 pandemic

The average value of these estimates is set as the cut-line represented by the parameter e of the model (1) (assumed known in this stage of the modeling).

APPENDIX D – SAFETY STOCK TOLL INFORMATION FLOW

In this appendix, we illustrate the flow of information that runs internally on the Safety-Stock (Figure 316 5). All input data is listed in the INPUT DATA panel. The remaining processes are divided into four 317 large blocks: 1) The END OF THE PLATEAU panel outlines the cut line estimation process from which 318 we understand that the hospital situation begins to regularize. 2) The SIMULATED HOSPITAL DATA 319 panel represents the stage of determining the maximum consumption level used as a reference in the later 320 stage. 3) The INFORMATION INTEGRATION panel shows the flow of joining the information obtained 321 previously, for the construction and presentation of the solution. 4) Finally, the SAVE INFORMATION 322 panel condenses the records that must be saved in the online database. 323

In the INPUT DATA panel, a categorization of the entries can be seen. The first one deals with the 324 datasheet loaded by the user of the Safety-Stock and corresponds to the identification information (of 325 the region, hospital, and PPE class), the historical consumption record, and the stock requirements. All 326 other information is provided via the Safety-Stock screen. Some of them deal with empirical aspects about 327 the disease's behavior in the region of the hospital (or the hospital itself), such as the average number 328 of days that a patient remains in the ICU, or other epidemic information that is particularized in specific 329 health centers. All the above information is defined by default (regarding recent medical literature) at the 330 331 beginning of the user's section. However, it can (and should) be modified to meet the specific practical reality of that hospital. 332

Other necessary entries deal with some small configurations about the forecast stage of the model, such as the forecast horizon and the safety percentage added.

The second frame, END OF THE PLATEAU, link the flow of information used to determine the cut line 335 represented by the parameter e of the model (1). Considering the region selected by the user, a module of 336 the Safety-Stock searches online for the death record in that region, updated daily. Besides, there is a query 337 in the dataSUS database about the number of beds available in the given location. Another module adjusts 338 a growth curve to the data collected for cumulative death number. Some transformations will be made in 339 order to obtain the hospital demand curve. The transformations are made with the aid of some multipliers 340 (which weigh the death curve, P_{IH}, P_{HCU}, P_{ID}, among others), and a factor that translates the curve over 341 time (D_{ICU}). The multipliers are obtained by a module via random simulation, considering the exposed in 342 Appendix 4. Having access to the hospital's demand curve in another block of code, we determined some 343 possible dates for the plateau's end, considering the cut line obtained based on the entries associated with 344 the number of beds and respective occupations. 345

In the third panel, SIMULATED HOSPITAL DATA, the reference for maximum consumption level is
obtained by a module that makes use of information on the number of total beds, and the product class.
The dimension of this plateau takes into account all aspects listed in Appendix 4.

The fourth table expresses the joint use of the information obtained in Tables 1 to 3. The *maximum consumption* stipulated by the user indicates which stage of the analysis he is. If this entry is NULL then it means that the consumption curve adjustment model considers a range of plateaus based on the reference plateau (obtained in third 3). On the other hand, if the user has already defined the *maximum consumption*, the model fits a single curve, associated with that consumption, at the end of the analysis, this will be the curve used to make and save the predictions. Other modules are in charge of generating the prediction

Gonzatto et al. Safety-Stock: Predicting the demand for supplies during the COVID-19 pandemic

table and the graph that outlines the adjusted model compared to the observed data and other relevantinformation.

357 The last panel summarizes the information that will be exported to the company's database responsible

358 for an intermediate between hospitals that self-declared as potential helpers (for the loan or exchange of 359 PPE) and those who declared that they need help.

REFERENCES

- Abdulsalam, Y. and Schneller, E. (2019). Hospital supply expenses: An important ingredient in health services research. *Medical Care Research and Review* 76, 240–252. doi:10.1177/1077558717719928.
 PMID: 29148349
- 363 2.[Dataset] Anvisa (2020). Orientações para serviços de saúde: Medidas de prevenção e controle que devem ser adotadas durante a assistência aos casos suspeitos ou confirmados de infecção pelo novo coronavírus (sars-cov-2). http://portal.anvisa.gov.br/documents/ 33852/271858/Nota+T%C3%A9cnica+n+04-2020+GVIMS-GGTES-ANVISA/ ab598660-3de4-4f14-8e6f-b9341c196b28. Accessed: 2020-25-05
- 368 3.[Dataset] Burn-Murdoch, J., Romei, V., and Giles, C. (2020). Global coronavirus death toll could be
 60% higher than reported. Financial Times Coronavirus. https://www.ft.com/content/
 6bd88b7d-3386-4543-b2e9-0d5c6fac846c?utm_source=Nature+Briefing&
 utm_campaign=527dbb4637-briefing-dy-20200428&utm_medium=email&utm_
- 372 term=0_c9dfd39373-527dbb4637-43284197 (Accessed: 2020-27-05)
- 4. Casella, G. and Berger, R. L. (2002). *Statistical inference*, vol. 2 (Duxbury Pacific Grove, CA)
- 5.[Dataset] CDC (2020). Interim clinical guidance for management of patients with confirmed coronavirus disease (covid-19). http://www.cdc.gov/coronavirus/2019-ncov/hcp/ clinical-guidance-management-patients.html. Accessed: 2020-25-05
- 6 .Dey, R., Cadigan, N., and Zheng, N. (2019). Estimation of the von bertalanffy growth model when
 ages are measured with error. *Journal of the Royal Statistical Society: Series C (Applied Statistics)* 68,
 1131–1147
- 7.[Dataset] Grimm, C. A. (2020). Hospital experiences responding to the covid-19 pandemic: Results of
 a national pulse survey march 23-27, 2020
- 382 8.Guan, W.-j., Ni, Z.-y., Hu, Y., Liang, W.-h., Ou, C.-q., He, J.-x., et al. (2020). Clinical characteristics
 383 of coronavirus disease 2019 in china. *New England Journal of Medicine* 382, 1708–1720
- 384 9 .Migon, H. S., Gamerman, D., and Louzada, F. (2014). *Statistical inference: an integrated approach* 385 (CRC press)
- 10.[Dataset] Organization, W. H., Organization, W. H., et al. (2020). Report of the who-china joint mission
 on coronavirus disease 2019 (covid-19)
- 388 11 .Pinheiro, J. and Bates, D. (2006). *Mixed-effects models in S and S-PLUS* (Springer Science & Business
 389 Media)
- 12.[Dataset] Ruprecht, T. (2020). Entrevista: por que o número de mortes por coronavírus está
 subestimado. Veja Saúde Abril Mídia S A. https://saude.abril.com.br/medicina/
 entrevista-por-que-o-numero-de-mortes-por-coronavirus-esta-subestimado/
 (Accessed: 2020-27-05)
- **13** .Streeck, H., Hartmann, G., Exner, M., and Schmid, M. (2020). Vorläufiges ergebnis und
 schlussfolgerungen der covid-19 case-cluster-study (gemeinde gangelt). *Preprint published online on*,
 04–09

Gonzatto et al. Safety-Stock: Predicting the demand for supplies during the COVID-19 pandemic

- **14** .Tjørve, K. M. and Tjørve, E. (2017). The use of gompertz models in growth analyses, and new gompertz-model approach: An addition to the unified-richards family. *PloS one* 12
- **15** .[Dataset] University, J. H. (2020). Covid-19 dashboard by the center for systems science and
 engineering (csse) at johns hopkins university (jhu)
- 401 16 .Wong, C. and Li, W. K. (1998). A note on the corrected akaike information criterion for threshold
 402 autoregressive models. *Journal of Time Series Analysis* 19, 113–124
- 403 17 .Zhou, F., Yu, T., Du, R., Fan, G., Liu, Y., Liu, Z., et al. (2020). Clinical course and risk factors for
- 404 mortality of adult inpatients with covid-19 in wuhan, china: a retrospective cohort study. *The Lancet*405 395, 1054 1062