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Abstract 

Background: Medication non-adherence represents a significant barrier to treatment efficacy.          

Remote, real-time measurement of medication dosing can facilitate dynamic prediction of risk            

for medication non-adherence, which in-turn allows for proactive clinical intervention to           

optimize health outcomes. We examine the accuracy of dynamic prediction of non-adherence            

using data from remote real-time measurements of medication dosing.  

Methods: Participants across a large set of clinical trials ( n = 4,182) were observed via a                

smartphone application that video records patients taking their prescribed medication. The           

patients’ primary diagnosis, demographics, and prior indication of observed         

adherence/non-adherence were utilized to predict (1) adherence rates ≥ 80% across the clinical             

trial, (2) adherence ≥ 80% for the subsequent week, and (3) adherence the subsequent day using                

machine learning-based classification models.  

Results: Empirically observed adherence was demonstrated to be the strongest predictor of            

future adherence/non-adherence. Collectively, the classification models accurately predicted        

adherence across the trial (AUC = 0.83), the subsequent week (AUC = 0.87) and the subsequent                

day (AUC = 0.87).  

Conclusions: Real-time measurement of dosing can be utilized to dynamically predict           

medication adherence with high accuracy. 
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Introduction 

Prediction of medication adherence has traditionally relied on static and group-based factors like             

medication tolerability, diagnosis, treatment length, and demographics. 1,2 With the development          

of technologies that automate the real-time measurement of medication dosing,3–6 there is an             

opportunity to utilize continuous data sources to dynamically predict medication adherence and            

proactively intervene if needed.  

Adherence can be impacted by multiple factors. This can include logistical reasons such as              

simple forgetfulness, complexity of regimen, complications with prescription refills, side effects,           

adverse effects, or lack of insurance coverage for a medication. 7–9 Adherence can also be              

impacted by the patient’s psychiatric/neurological status if the patient is experiencing           

hopelessness/helplessness (e.g. depression),10,11 lack of insight (e.g. schizophrenia), 12 or         

behavioral avoidance (e.g. mood & anxiety disorders) 13, and cognitive decline(e.g. Alzheimer's,           

traumatic brain injury).  

Many patients lack the access to care necessary to address factors affecting medication             

adherence as they emerge. Often, small bouts of non-adherence lead to long droughts in              

medication adherence. As a consequence, patients experience increases in symptom severity and            

treatment failure leading to hospitalizations and escalation of care.12,13 Clinicians need simple and             

straightforward ways to identify non-adherence and intervene in order to help patients stay on              

track of treatment regimens. Assistive technology can be effective in allowing hospitals to better              

focus their resources.  
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A number of technologies have emerged to directly track patient adherence by remotely             

measuring dose dosing. Methods include the use of pills that broadcast a signal when ingested14               

and technologies that remotely observe patients ingesting medication through video on their            

smartphone.15 The data sources collected provide continuous measurement of each dosing event.            

Such data sources allow for dynamic and individual-level risk prediction rather than static             

population-level prediction. Dynamic prediction of risk can allow for efficient deployment of            

known effective treatment resources. Optimizing for efficacy in the context of adherence is             

necessary due to the widespread and diverse nature of adherence issues in clinical treatment and               

limited resources to manage patient care.16   
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Methods 

Here, we test the accuracy of medication dosing data to predict medication non-adherence. We              

built and tested algorithms to predict adherence in the context of clinical research and population               

health. First, a cut-off for acceptable adherence was set at 80%, consistent with clinical              

standards17. Then, we tested the predictive accuracy of static (demographic, diagnosis, treatment            

length, ect.) and dynamic (dosing, clinic interventions, etc.) features. We examined the predictive             

accuracy across a study based on early dosing behavior (first week and first two weeks of                

dosing) and real-time prediction during a study (prediction of adherence next week, next day).              

These scenarios were designed to support decision-making in the context of clinical trials, where              

researchers have the option to remove study participants early on in a trial (first one or two                 

weeks) if they demonstrate non-adherence during a lead-in period.18 These same models can also              

be utilized by clinicians to estimate risk of non-adherence in outpatient therapy.  

Data collection 

Software platform 

For all analyses, data collected by the AiCure software platform ( www.aicure.com) was used. 5,19             

The smartphone-based platform uses computer vision technology for confirmation of medication           

adherence in clinical trials, allowing for real-time adherence monitoring. It can replicate or             

supplement directly observed therapy (DOT). The software includes a patient-facing mobile           

application, which sets reminders for prescribed medications per treatment regimen. At the            

designated time, the participant is prompted to follow an automated dosing protocol. The video              
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of the dosing captured through the smartphone front-facing camera is used to confirm medication              

ingestion using automated computer vision-based methods. This individual dose-level         

information is made accessible in real time to the clinician and site coordinators of the study                

using a clinician-facing web application.  

Human review of dosing videos provides additional verification to augment the computer            

vision-based measurement of adherence. The purpose of this review process includes           

verification/confirmation of medication dosing and labelling of any intentional         

non-adherent/deceptive behavior. Videos of medication not being taken as instructed, or where            

suspicious behavior was found during video review of the medication’s intake, are labelled with              

a set of flags for downstream adjustment of adherence. 

In addition to data on medication adherence, other study-related information was also collected,             

outlined in the predictive features section. The participants in this dataset consists of patients              

enrolled in clinical trials that have used the software platform between 2012 and 2019. Study               

participants with less than a week of data and studies with missing trial information were               

excluded. 

Definition of adherence 

The software’s measure of adherence is a binary indicator of whether or not a patient took all                 

prescribed medications during a given dosing event. Patients can have either one or several              

dosing events in a day. For all analyses conducted, medication adherence was consolidated by              

day. Hence, adherence was defined as follows: 
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aily adherence value D =  n medications expected
n medications taken with AiCure  

Additionally, human review included observations of non-adherent or deceptive behavior. This           

was used to adjust the daily adherence calculation. These observations were recorded through the              

use of ‘red’ or ‘orange’ alerts. A ‘red’ alert indicated strong visual evidence of intentional               

non-adherence, while an ‘orange’ alert indicated the presence of suspicious behavior but no             

visual confirmation of intentional non-adherence. The daily adherence value was then adjusted            

using these alerts:  

aily adjusted adherence value D =  n medications expected
n medications taken with AiCure − n medications with red or orange alerts  

This definition of adherence was used to build classification algorithms for prediction of             

medication adherence above or below an 80% threshold. The ‘adherent’ class (class 0) is defined               

as an individual with an average adherence of 80% or higher, while the ‘non-adherent’ (class 1)                

is defined as an individual with an average adherence below 80%. 

Predictive features  

In addition to medication adherence itself, additional study-specific characteristics were used as            

predictive features in the classification algorithms, outlined in this section. 

Condition 

Condition refers to the patient’s clinical condition or disease. This is indicated by the therapeutic               

area (e.g. schizophrenia, major depressive disorder, HIV, etc.) of the study. In cases where the               

therapeutic area of multiple studies share similar pathologies, these conditions are grouped            
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together under the broader definition as shown in Table 1. For example, opioid dependence and               

alcohol use disorder were both placed in the category of addiction.  

Interventions 

Interventions refer to efforts made by study coordinators to contact patients to address any              

non-adherence. Study coordinators and clinicians are able to continuously monitor the           

participants’ course of treatment and may choose to intervene in response to patients             

demonstrating low or non-adherence. As the reasons for non-adherence may range from simple             

forgetfulness to intentional non-adherence and adverse effects, interventions help resolve these           

issues. Clinicians can intervene through texts, emails, phone calls, and in-person visits. The type              

of intervention could contain valuable information as different modes may indicate different            

levels of escalation. The number of interventions received for each day a patient is enrolled in a                 

trial, both by type and in total, was used as a feature. Since data is only available when there is                    

an occurance of an intervention, we set the assumption that days with no records indicate 0                

interventions as a dichotomous yes/no item. 

Micro-reimbursements 

Micro-reimbursements incentivize patients to continue using the platform to report medication           

adherence by providing monetary benefit. Micro-reimbursement status is a binary indicator on            

whether the particular study offered micro-reimbursements to patients for reporting adherence           

through the software platform.  
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Trial length 

Trial length is the duration in weeks in which the treatment is expected to be completed. In cases                  

where the expected trial length can vary, the average length is used as an estimate. 

Dose Delay 

Dose delay is the length of time in minutes for a patient to begin a dosing event on the                   

smartphone application after an alarm has prompted them to do so. The delay is only calculated                

for completed dosing events. If the patient starts and completes the event before the alarm time,                

the dose delay is a negative value. The daily average values for dose delay are then quantized to                  

prevent overfitting when using continuous values with a broad range. The intervals used were <               

30 minutes, < 2 hours, < 4 hours, < 8 hours, and > 8 hours. 

Dose length 

Dose length is the length of time in seconds it took for the patient to complete a dosing event.                   

Longer durations may reflect difficulty in completing the medication dosing protocol and affect             

future behavior. Daily averages for dose length are quantized similarly to ‘dose delay’ to create               

the following intervals: < 30 seconds, < 2 minutes, < 5 minutes, < 10 minutes, and > 10 minutes. 

Model development 

The classification of adherence was divided into four distinct models to predict a target outcome               

at different time points within a clinical trial. The daily values for adherence, adjusted adherence,               

number of interventions, dose delay and dose length were used as dynamic features at varying               
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intervals depending on the model. The remaining features (condition, trial length, micro            

reimbursements) served as static predictors in all model types. Sub-datasets consisting of            

common features and daily features were created based on the intervals specified. 

The different classification types are as follows: 

1. Predicting remaining trial adherence based on the first week of the trial 

2. Predicting remaining trial adherence based on the first two weeks of the trial 

3. Predicting next week adherence based on the previous week in the trial 

4. Predicting next day adherence based on the previous week in the trial 

The classifier used for all model types was XGBoost (Extreme Gradient Boosting), which is a               

class of decision tree-based machine learning algorithms. The use of this algorithm was informed              

by a benchmark study testing for fast computation time and good model performance given              

structured data frames compared to other decision tree-based methods20. A decision tree            

represents the possible ways to reach a decision based on certain criteria. Random forest is a                

popular machine learning algorithm that uses an ensemble of decision trees, but chooses a              

random subset of features as its criteria. Instead of creating decision trees at random, trees can be                 

built sequentially to minimize errors from previous models while ‘boosting’ higher performing            

models using a gradient descent algorithm. 21 XGBoost was developed by combining this            

ensemble of techniques with even more added optimizations. With XGBoost, decision trees are             
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pruned based on a max depth parameter instead of continuously splitting nodes to improve              

computational performance and avoid overfitting.22  

Splitting of the data was done at the patient level, to ensure that no samples used during model                  

training and model validation came from the same patient. Each model was assessed through              

5-fold cross validation instead of a single split between training and test sets. This method split                

the dataset into 5 equal folds, each fold used as a holdout set to test the model trained on the                    

remaining 4 folds, essentially creating a model trained on 80% of patients and tested on 20% of                 

patients. This removes the assumption that the data split during training and testing share a               

similar distribution, and the model’s performance was evaluated for each fold. The performance             

metrics used to evaluate the classification model are detailed below, where TP: True Positives;              

TN: True Negatives; FP: False Positives; FN: False Negatives. 

Accuracy = TP + TN / (TP + TN + FP + FN) 

Precision = TP / (TP + FP) 

Recall = TP / (TP + FN) 

True Positive Rate = TP / (TP + FN)  

False Positive Rate = FP / (FP + TN) 

ROC and AUC. The Receiver Operating Characteristic (ROC) Curve shows the relationship            

between the true positive rate and false positive rate at certain thresholds of a binary classifier.  
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The performance of the classifier was summarized by the area under the ROC curve (AUC).               

With 5-fold cross validation, the AUC was calculated for each repeated iteration, and the average               

AUC was reported as the measure of classification performance. A grid search with cross              

validation was utilized to optimize the model, though only a few parameters in a small parameter                

space were tested (number of trees or estimators, maximum tree depth, and minimum child              

weight, learning rate; three different values for each parameter) to minimize search time.  
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Results 

Data collected  

The demographic and clinical characteristics of the patient cohort in the dataset are outlined in               

Table 1. The large proportion of missing values in demographic characteristics led to their              

exclusion as predictive features. Figure 1 (top) shows that the majority of patients in the dataset                

were adherent at a threshold of 80%, while Figure 1 (top) shows the breakdown of interventions                

by type, which was calculated by averaging daily adherence over the course of the trial at the                 

individual level. 

Table 1: Demographic information of participants. 

Item Participants 
n = 4,182 

Age, mean ± standard deviation 39.0 ± 11.7 

Sex, n (%) 
Male 
Female 
Unknown 

  
1,006 (24.1%) 
555 (13.3%) 

2,621 (62.6%) 

Race, n (%) 
White 
Black or African American 
Multiracial 
Asian 
Other 
Latino 
American Indian or Alaskan Native 
Native Hawaiian or other Pacific Islander 
Unknown 

  
461 (11.0) 
195 (4.67) 
25 (0.60) 
24 (0.57) 
22 (0.53) 
15 (0.36) 
4 (0.10) 
4 (0.10) 

3432 (82.1) 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 2, 2020. ; https://doi.org/10.1101/2020.05.27.20113597doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.27.20113597
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 

Condition, n (%) 
Schizophrenia 

Attenuated psychosis syndrome 
Cognitive impairment in schizophrenia 
Schizophrenia or schizoaffective disorder and negative      
symptoms 
Unspecified 

Major depressive disorder 
Major depressive disorder with anxious distress 
Depression and acute suicidal ideation behavior 
Unspecified 

Addiction 
Opioid dependence 
Opioid use disorder 
Alcohol use disorder 
Unspecified 

HIV 
Bipolar depressive disorder 
Attention-deficit hyperactivity disorder 
Healthy volunteers 
Post-traumatic stress disorder 
Hepatitis C 
Congestive Heart Failure 
Psoriasis 
Epilepsy 
Parkinson’s Disease 
Chronic Obstructive Pulmonary Disease 

  
970 (23.3%) 
36 (0.86%) 

538 (12.9%) 
34 (0.81%) 
362 (8.7%) 

777 (18.6%) 
20 (0.48%) 
21 (0.50%) 

736 (17.6%) 
632 (15.1%) 
25 (0.60%) 
5 (0.12%) 

25 (0.60%) 
577 (13.8%) 
86 (2.06%) 
27 (0.65%) 

1115 (26.7%) 
340 (8.13%) 
86 (2.06%) 
68 (1.63%) 
39 (0.93%) 
32 (0.77%) 
7 (0.17%) 
2 (0.05%) 
1 (0.02%) 
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Figure 1: Distribution of medication adherence across all participants (top) and distribution of             

intervention types used (bottom). 

Predictive models 

The models performed well with comparable values across the different prediction types.            

Performance metrics values were averaged across the five folds in Table 2. The holdout set sizes                

used to test the models trained on the first week and first two weeks of behavior were 863 and                   
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683 samples respectively. In contrast with the holdout set when testing models trained on              

previous week behavior, which were 6,623 samples for next week prediction and 45,312 samples              

for next day prediction. The increase in model performance was likely due to this increase in                

sample size.  

Table 2: Results from the four classification types averaged across 5-fold cross validation. TPR:              

True Positive Rate; FPR: False Positive Rate 

Adherence classification Accuracy AUC Precision Recall TPR FPR 

Remainder of study from the first 7 days 72.2% 0.80 0.76 0.74 0.74 0.25 

Remainder of the study from the first 14        
days 

76.6% 0.83 0.78 0.78 0.78 0.18 

The following week from the previous      
week 

81.3% 0.87 0.82 0.82 0.82 0.16 

The following day from the previous week 81.0% 0.87 0.84 0.82 0.82 0.17 

 

Since the parameters tested during grid search did not contribute a significant increase in              

performance during cross validation, the results presented in Table 2 and Figure 2 were achieved               

using the same set of hyperparameters for the four different model types. With the exception of                

the number of trees (n_estimators = 550), other parameters that differed from the classifier’s              

default were chosen to discourage overfitting: learning rate of 0.01, maximum tree depth of 5,               

and minimum child weight of 6. 

Figure 2 shows the Receiver Operating Curves (ROCs) of the four different model types with               

comparable results. The model using the first two weeks of behavior performed better than the               
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model using only the first week, and the AUC in the next week prediction is slightly better than                  

the AUC in the next day prediction. Due to the rounding of the AUC values, the two validation                  

results are effectively the same, but Figure 2 illustrates the slightly lower false positive rates in                

the next week prediction at the same recall value as the next day prediction. When predicting the                 

next week’s average adherence, the additional data points help normalize the mean, whereas             

prediction of adherence is more likely to fluctuate from one day to the next. 

To investigate the contribution of individual predictive features in the different adherence model             

types, we retrieved the feature importance from each of the cross validation folds and aggregated               

the results as seen in Figure 3. Feature importance was measured in terms of the average gain in                  

accuracy across all splits when using a particular feature. Average adherence (avg_adh) has the              

highest relative importance regardless of adherence model type, and average adherence and            

condition are consistently included in each model type’s highest importance predictors. Features            

with considerable importance also include the average adherence values in the last few days              

before prediction (avg_day7, avg_day6, avg_day13), and the adjusted average adherence          

(adh_adj_avg). 
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Figure 2: ROC curves with mean AUCs from cross-validation with specific recall thresholds of              

the four different model types. (a) Prediction of adherence across the trial based on the first week                 

(b) Prediction of adherence across the trial based on the first two weeks (c) Prediction of next                 

week adherence based on current week (d) Prediction of next day adherence based on current               

week. 
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Figure 3: Highest ranking features in importance of the four adherence model types.  
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Discussion 

Here, we observed that empirical measurement of medication dosing can provide a large source              

of data for prediction of medication adherence, which can be subsequently achieved with high              

accuracy.23 An additional week of data significantly decreased the false positive rate. This             

indicates that it may be recommended, both in the context of clinical trials and in traditional                

clinical care, to follow patients over two weeks. Additionally, we find that clinical condition              

provides predictive information indicating that different conditions contribute distinctly to the           

probability of treatment adherence. 

Results further demonstrate that as predictions become more dynamic (prediction of next week,             

next day), real-time measurement of dosing increases in importance and static features (e.g.             

condition) decrease in importance. Also, predictive accuracy increases and false          

positive/negative rates decrease when making dynamic predictions. The decreased relevance of           

condition in predicting adherence indicates that empirical measures of dosing greatly outweigh a             

particular type of disorder or illness such as infectious disease or psychiatric disorder. 

The current study presented with limitations that affect the generalizability of the derived             

models. Specifically, the data is primarily collected in the context of clinical trial research.              

Results may not generalize to real-world samples and models should be updated with real-world              

data. Further, the data collected is biased towards patients with mental health disorders. Model              

generalizability will require integration of data from other disorder subtypes. Finally, the data             

was exclusively collected using the AiCure platform. Rates of adherence may be affected by the               

tolerability or other confounds associated with the technology used to assess adherence. This             
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interaction between technology and behavior affects the generalizability of the results requiring            

further replication and integration of data from other platforms. 

In sum, results indicate that new technologies that directly monitor medication dosing can be              

utilized to build dynamic predictive models of adherence to treatment. These predictions have             

both research and clinical applications that ultimately can be utilized to greatly improve             

treatment engagement across clinical indications.  
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