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Abstract

Objectives: This work aimed at modeling the progressions of COVID-19 cases in time in

relation to meteorological factors in large cities of Brazil, Italy, Spain, and USA, and finding the

viability of SARS-CoV-2 virus in different weather conditions based on models.

Methods: New models constructed showing the relationship of the I ′ (the number of infected

individuals divided by the total population of a city) with the independent variables -time, tem-

perature, relative humidity, and wind velocity. The regression models fitting in the data were

statistically validated by : 1) plot of observed and predicted response; 2) standardized residual

plots showing the characteristics of errors; 3) adjusted R̄2 value; 4) the p value for the parameters

associated with the various independent variables; and 5) the predictive power of the model beyond

data points.

Results: Models indicate that 1) the transmission of COVID-19 could be relatively high ei-

ther for elevated temperatures with lower relative humidity or for lower temperatures with higher

relative humidity conditions; 2) disease transmission is expected to be reduced more with higher

wind velocity; 3) the rate of increase in the number of COVID-19 cases increases in one model

with a constant rate and in the other two with varying rates in time. These transmission features

seem to have connections with the structural components of the SARS-CoV-2 virus. Under suit-

able meteorological conditions, the partial natural disappearance of COVID-19 pandemic could be

possible.

Conclusion: New models for I ′ may be considered to understand the viability of the virus in

the environment and future transmission of COVID-19.
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1. Introduction

The highly pathogenic coronavirus disease 2019 (COVID-19) has become a pandemic after

its initial outbreak in Wuhan, Hubei province of China, during December, 2019. According to

the recent report of the World Health Organization, the disease has spread to six continents

and 210 countries and as on 10 August 2020, there have been 19,687,156 confirmed cases of

COVID-19, including 727,435 deaths (WHO, 2020). The causative organism for COVID-19

is severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a genus belonging to

family Coronaviridae. Clinically, patients with COVID-19 develop respiratory symptoms,

which is very similar to other respiratory virus infections. Multiple symptoms may be

involved with COVID-19, including respiratory (cough, shortness of breath, sore throat,

rhinorrhea, hemoptysis, and chest pain), gastrointestinal (diarrhea, nausea, and vomiting),

musculoskeletal (muscle ache), and neurologic (headache or confusion) types. More common

signs and symptoms are fever (83% - 98%), cough (76% - 82%), and shortness of breath

(31% - 55%) (Wu et al. 2020). Historically, coronaviruses gained prominence during the

outbreak of severe acute respiratory syndrome (SARS) during 2002-2003 with severe acute

respiratory syndrome coronavirus (SARS-CoV) as the causative agent. The virus infected

8098 individuals with a mortality rate of 9% across twenty-six countries worldwide. In

contrast, the incidence of COVID-19 infection has crossed more than 4.42 million to date

worldwide, indicating increased transmission ability of SARS-CoV-2 (Cheng et al.,2007;

Walls et al., 2020).

According to recent evidence, SARS-CoV-2 virus is primarily transmitted between people

through respiratory droplet, direct contact with infected people and indirect contact with

surfaces in the immediate environment or with objects used on the infected person (Chan

et al., 2020; Li et al., 2020; Liu et al., 2020). Some scientific studies have provided the

initial evidence for the viability of SARS-CoV-2 virus in aerosols for hours, suggesting their

plausible airborne transmission (van Doremalen et al., 2020). Besides, their human trans-

missibility can be influenced by the environment in which pathogen and host meet (Pica

and Bauvier 2012). Like other influenza virus infections, relative humidity and temperature

are expected to affect the incidence of COVID-19 particularly through airborne respiratory

droplets (Casanova et al., 2010; Pica and Bauvier, 2012; Lowen and Steel, 2014). The tem-

perature and relative humidity could affect the physicochemical characteristics of infectious

droplet including, pH and salt concentration of droplets as well as viral membrane lipid and
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surface proteins and thus influencing their transmission (Lowen and Steel, 2014; Yang and

Marr, 2012). Apart from temperature and relative humidity, the wind velocity also could

play a role in the transmission of the virus.

In most of the earlier works related to the spreading of the epidemic, the rate of increase of

the number of infected individuals has been studied in relation to the various meteorological

determinants (Wang et al., 2020; Prata et al., 2020; Sajadi et al., 2020). However, the

rate would vary between cities because of their differences of total population, area and

population density. Hence, in the present communication a different approach has been

followed to study the spreading of COVID-19 by considering homogeneous mixing in the

populations of various major cities (Spain, Italy and the USA) along with the meteorological

determinants and population density. Under this consideration, the relevant quantity is the

proportionate mixing of the number of infected individuals I, within the total population

N of a city, denoted as I ′ which is equal to I
N

. In this work, in the context of infection due

to SARS-CoV-2 virus, we have found the relationship between I ′ with temperature, relative

humidity, wind velocity and time.

COVID-19 cases in the major cities of four countries have been considered for the statis-

tical analysis and building models. The major cities have higher number of COVID-19 cases

and with respect to large population size, almost homogeneous mixing of the population

may be expected. On the other hand, small cities have different heterogeneous issues of

the population, like change in population density, social behavior and movement of people

could be more manifested, which are complicated to be taken into account for the statistical

analysis. As our primary concern is to find the response of the SARS-CoV-2 to different

meteorological factors as well as the global properties of the spreading of the virus over space

and time, the major cities with a higher population are expected to be more appropriate for

the statistical analysis of the data on number of infected cases.

In section 2, the data sources and their collection time period are mentioned. In section

3, regression models are built up from the statistical analysis of the data on the number

of infected persons in various cities, the related meteorological data and the time elapsed

after the initial reporting of infected cases. Mainly based on standardized residual plots and

p values of numerical coefficients of different independent variables, we have found out the

most suitable model in which the proportionate mixing I ′ could depend on temperature,

relative humidity, wind velocity, and time in a statistically significant way. In section 4,
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the results of the statistical analysis corresponding to various models have been presented

with the help of different contour plots, which show the combination of temperature, rel-

ative humidity and wind velocity for favourable or unfavourable COVID-19 transmission.

Also it has been shown that how the number of infected cases for a particular population,

could evolve with time under various meteorological conditions. In section 5, it has been

discussed through illustrative example, how models indicate the possibility of the partial

natural disappearance of COVID-19 due to the change in the meteorological factors in the

environment. In section 6, the connections of transmission characteristics and viability of

virus under different meteorological conditions, with the structural components of the SARS-

CoV-2 virus, are discussed. Finally, in section 7, based on models, concluding remarks with

some precautionary measures have been mentioned.

2. Data sources and time period of data collection

All data used for analysis were available in public databases. The data on the number

of COVID-19 infection cases of several major cities in Spain, Italy, and the USA (Countries

with relatively severe COVID-19 outbreak) from the following sources - (1) Data of Spain

(URL: https://www.mscbs.gob.es/profesionales/saludPublica/ccayes/alertasActual/nCov

-China/documentos/Actualizacion 122 COVID-19.pdf) were collected from the database

of the Centro de Coordinaćı on de Alertas y Emergencias Sanitarias (CCAES), Spain.

The center is responsible for coordinating information management and supporting the

response to national or international health alert or emergencies, (2) Data of Italy (URL:

http://www.salute.gov.it/portale/nuovocoronavirus/dettaglioContenutiNuovoCoronavirus.

jsp?area=nuovoCoronavirus&id=5351&lingua=italiano&menu=vuoto) were collected from

the database of The Ministry of Health (Italian: Ministero della Salute), which is a govern-

mental agency of Italy and is led by the Italian Minister of Health. (3) Data on different

cities of USA (URL: https://usafacts.org/visualizations/coronavirus-covid-19-spread-map/)

were collected from USAFacts, which is a not-for-profit, nonpartisan civic initiative pro-

viding the most comprehensive and understandable source of government data available

in the US. Data on cumulative COVID-19 positive cases, population, and population den-

sity for Sau Paulo, Rio de Janeiro, and Brasilia, Brazil, were collected from Wikipedia

(https://en.wikipedia.org/wiki/COVID-19 pandemic in Brazil/Statistics). Meteorological

data for all above-mentioned locations were collected from the World Weather Online
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database (URL: www.worldweatheronline.com).

We have considered data of the cities Madrid, Catalonia and Pais Vasco-Basque in Spain

during the period 4th March, 2020 to 14th March, 2020 before lockdown/travel restrictions

and 15th March to 29th March after lockdown/travel restrictions. We have considered data

of the cities Milan, Bologna and Venice in Italy during the period 26th February, 2020 to

9th March, 2020 before lockdown and 10th March to 31st March after lockdown. We have

considered data of the cities of New York, San Francisco, Atlanta, Seattle, Chicago and

Los Angeles in the USA during the period 2nd March, 2020 to 14th March, 2020 before

travel restrictions/stay at home order orders. Data of the cities of New York, Chicago, Los

Angeles in USA were also considered during the period 16th March to 31st March after travel

restrictions/stay at home orders. We have considered data of the cities of Brazil as follows:

Sau Paulo during the period 26th February, 2020 to 23rd March, 2020, Rio de janeiro during

the period 5th March, 2020 to 1st April, 2020 and Brasillia during the period 7th March,

2020 to 5th April, 2020.

3. Regression Models for I ′

Although we have considered data of different cities both before and after lockdown/travel

restrictions, the global features of the spreading of COVID-19 in relation to climatic con-

ditions should be examined before the implementation of restrictions when there were no

human interventions on the transmission of the virus. However, assuming that the early

parts of restrictions were not so stringent in the selected large cities, the combination of

both before and after restrictions data have been considered for statistical analysis. But

while interpreting any results from the analyses of the combined data, one needs to be

careful about this assumption.

In building up regression models, our approach is different from the conventional models

like SIR models (Anderson and May,1979; Jong et al., 1995; Dietz 1985). S, I and R

correspond to the number of susceptible, infected and recovered individuals, respectively.

In some modified models, the number of deaths due to the viral infection has also been

considered. As the aim of this work is to determine the influence of the meteorological

factors on the spreading of virus infection, we are mainly concerned with the number of

infected individuals I. The models of transmission are related to the number of infected

cases at early stage when the role of virus is highly important. At early stage of transmission
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of virus, the number of recovered persons or the number related to mortality are much smaller

than the number of infected individuals and also these numbers are more related to health

of the infected persons, health facilities etc., and are not related to the virus explicitly.

Although these numbers do influence S in the early period of the pandemic (which we are

considering), they can be easily ignored because of being relatively much smaller than I.

In finding the connection of the spreading of the virus with the meteorological factors and

time, the proportionate mixing I ′ = I/N will be considered as a parameter for the spreading

of virus and, instead of I, the evolution of the parameter I ′ will be studied. This has the

advantage as the upper limit of the quantity I ′ is normalized to unity for a total population

N in any city. It is legitimate to assume that the evolution of I ′ in different cities will follow

almost same dynamics with respect to the variation of meteorological factors and time.

So same regression model for I ′ is expected to be valid for different cities and in building

such model, different data of different major cities on the number of infected cases may be

considered all together for statistical analysis.

We have not considered a priori any specific form for evolution of I ′ with time Ti, like

conventional model that takes into account an exponential increase in the number of infected

cases with respect to time. The reason behind this is that in the SIR models, the rate

of increase in the number of infected persons I with time Ti will be proportional to the

proportion of infectious contacts (I/N). The model assumes that further infections occur

due to the direct contact with the infected people and one follows the principle of mass

action in chemistry where the proportionate mixing I/N stands for the concentration of

some substance. But the spread of viral infections is due to the contacts of a large number

of viruses with the population N and may be compared to some extent, with the scattering

of large number of elementary particles. This is because infections will be happening due

to virus which could be in the air, which could be on the surface of some material, which

could be due to the large number of viruses coming from the nasal and respiratory droplets.

Furthermore, viruses from one infected person, may infect a large or a few number of people

depending on the contacts with the numbers of individuals. The rate of increase in the

number of infected individuals should not be considered to be proportional to the number

of already infected persons I. So considering the viral infection problem as the one similar

to the law of mass action in chemistry may not be correct and the rate of increase may not

be proportional to I/N . In that case, the exponential time dependence which is a solution
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to I coming from the first order differential equation in I and time Ti in which dI
dT i

is

proportional to I, may not be correct. For these reasons, in building up regression models,

in the time evolution part of I ′, we have explored other possible functional forms with time Ti

as variable. However, we have also explored the possibility of exponential time dependence,

although that is not necessarily equivalent to considering that dI
dT i

is proportional to I and

will be explained further in the later part of the paper.

In the absence of our understanding of the relationship of I ′ with time Ti at this point of

discussion, I ′ is considered to be depending on two different functions of time : F1(Ti) and

F3(Ti). Also I ′ is expected to depend on various meteorological factors like temperature

(T in 0C), relative humidity (H in percentage) and wind velocity (W in Km/hr) and for

that another function F2(T,H,W ) is considered which has no explicit Ti dependence and

are separate from F1(Ti) and F3(Ti). The metorological factors T, H and W may or may

not vary with time and but have no explicit time dependence. In terms of these functions

I ′ is written as

I ′ = F2(T,H,W ) F1(Ti) + F3(Ti) . (1)

These functions could be related to the interactions of virus with individuals and with envi-

ronment, viral replication processes and so on. The reason for considering such dependence

is as follows. All the terms in the right hand side, should be proportional to Ti. This is

because at Ti = 0, I ′ is assumed to be zero or very small. In the product of the two functions

F1 and F2, it is expected that each additive terms should have Ti or its higher power as

a factor, but T, H and W may or may not be present. F3(Ti) is another time dependent

but independent of meteorological variables. Also because of above reason, both F1(Ti) and

F3(Ti) are restricted in the sense that they almost vanish when Ti = 0. The rate R of

increase of I ′ with time can be written, as the total derivative for which R = Rtot is written

as

Rtot =
dI ′

dT i
=
dF1(Ti)

dT i
F2(T,H,W ) +

dF2(T,H,W )

dT i
F1(Ti) +

dF3(Ti)

dT i
. (2)

where T, H and W are assumed to vary smoothly with time Ti. However, under the

assumption that T, H and W are not changing with time Ti (which is in general not true,

but may be considered as an approximation for a few days when the values of T, H and W
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are not changing significantly ) we can write R as partial derivative for which R = Rpart is

written as

Rpart =
∂I ′

∂T i
=
∂F1(Ti)

∂T i
F2(T,H,W ) +

∂F3(Ti)

∂T i
. (3)

One may note that in our discussion, dF1,3(T i)
dT i

= ∂F1,3(T i)
∂T i

. We will refer R as Rpart in general.

On the right-hand side of the above equations all terms are related to the properties of

the spreading of virus. To identify these features from our statistical analysis, data on the

number of infection cases of different cities were taken by considering I ′ = I/N corresponding

to different T, H, W, T i values. From the proper fitting with data points, we will determine

the three functions F1, F2 and F3.

TABLE I. Three Regression models

Model Best Fit Relationship for I ′; p values of coefficients
Adjusted

R̄2

Model(A)
I ′ = (5.54765 × 10−7 T + 6.14892 × 10−8 H − 9.70146 ×

10−9 T H)Ti2
0.584545

p values: 0.000607788, 1.54061× 10−8, 0.0000169868,

Model(B)
I ′ = (4.59159× 10−8 T − 9.46134× 10−10 T H + 1.00967×

10−9 H1.5)Ti2.6
0.629524

p values: 0.0125458, 0.000387766, 4.16713× 10−11

Model(C)
I ′ = (2.46481 × 10−7 T − 5.02565 × 10−9 T H + 5.2107 ×

10−10 H2 − 2.88696× 10−9 W 2 + 2.7413× 10−9 Ti2) Ti2
0.672678

p values: 0.00382538, 0.000162158, 2.8341× 10−7,

0.0382248, 3.26429× 10−6

Different regression models with the relationship of I ′ with T , H, W and Ti. p values of the

numerical coefficients are given in the same order as the order of the coefficients in the fitted

equations.

To smoothen the local fluctuations in the data (like the number of cases recorded after

a day or the variations of temperature, relative humidity or wind velocity) over a short

period, which should not appear as a global effect, all the data were averaged over a period
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of three days. These averaged data points were tried to fit with various possible functional

forms of F1, F2 and F3. We have considered various forms for these functions including

linear, bi-linear, tri-linear, non-linear and other simpler forms. In this work, three models

are presented as shown in Table I : In Model A, F1 depends on Ti2 and F2 depends on

both T and H and F3 is absent. F2 depends linearly in T and H with positive coefficients.

Then there is bilinear term TH with negative coefficients. This is expected to be related

to the condition showing the lack of stability of the virus under certain temperature and

relative humidity subject to the strength of the linear terms in T and H. There are three

parameters evaluated statistically considering best fit with the data and their p values are

shown in Table I. In Model B, F1 depends on Ti2.6 and F2 depends on both T and H and

F3 is absent. F2 depends linearly in T with positive coefficients but depends on relative

humidity as H1.5. Then there is bilinear term TH with negative coefficients like Model A.

There are three parameters evaluated statistically considering best fit with the data and

their p values are shown in Table I. In Model C, F1 depends on Ti2 and F2 depends on T ,

H and W and F3 depends on Ti4. F2 depends linearly in T with positive coefficients but

quadratically on H and W . Then there is bilinear term TH with negative coefficients like

other two models. There are five parameters evaluated statistically considering best fit with

the data and their p values are shown in Table I.

Next, we discuss the validation of the regression models in fitting the data. In obtaining

these three models we have taken care of : 1) Plot of observed and predicted response 2)

Standardized residual plots showing the characteristics of errors in the model with respect

to observed data 3) adjusted R̄2 value which indicates the goodness of fit, 4) the p value for

the parameters appearing as coefficients with the various variables in F1, F2 and F3 which

indicates what is the probability of the values of those parameters not to be so and 5) the

predictive power of the model beyond data points. Here, by predictive power, it is meant

that at some moderate temperature, I ′ should not vanish for all H or W , as such things have

not been observed. In some cases, the first three points are well-satisfied for some functional

forms of F1, F2 and F3 but the point 5 is not satisfied and those cases were discarded. These

three models satisfy point 5. Also, in obtaing these three models, we have imposed the

condition p < 0.05 for all numerical coefficients as shown in Table I, for the model to be

statistically significant. In subsequent discussions, based on the first four criteria, we will

discuss merits and demerits of these three models. For statistical analysis, Mathematica
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(URL: https://www.wolfram.com/mathematica) has been used.
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FIG. 1. Observed versus predicted values of I ′ for Model A and of I ′/T i2 for Model B and C are

shown in upper part of Figure. The Standardized residual plots for three models are shown in the

lower part of the Figure.

The best fit for the model will be determined by minimizing the weighted sum of squares

of the deviation between the data and the fit. The weighted sum of squares is given by

n∑
i=1

wi(yi − ŷi)2 (4)

where yi is the observed and ŷi the fitted values of the response (which is I ′ for Model A and

I ′/T i2 for Model B and C) corresponding to the number of infected cases and n is the total

number of data points. It has been expected that ŷi is in general function of Ti, T, H, W

and some parameters (aj where j is the number of parameters) appearing as coefficients of

the variables Ti, T, H, W . If the weights wi are same for all data points then it may be

considered as 1. The hat matrix H is given by ŷ = Hy where ŷ is the predicted response
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vector and y is the observed response vector. H is a n× n matrix where n is the number of

data points. The i-th standardized residuals is the scaled form of the residuals and is given

by (yi − ŷi)/(
√
σ̂2(1− hii)/wi where σ̂2 is the estimated error variance including the i-th

data point for standardized residuals, hii is the i-th diagonal element of the hat matrix H

and wi is the weight of the i-th data element. To check the validity of the models, we will

consider standardized residuals plots for different models as shown in Figure 1. Residuals

give a measure of the pointwise difference (yi − ŷi) between the observed yi and the fitted

values ŷi of the response corresponding to the number of infected cases. These are not true

errors but estimated errors. For statistical analysis, two criterias for errors are (1) they

are normally distributed and in that case, standardized residuals are preferably within ±2

in 95% cases (2) They are uncorrelated, which is expected to reflect in the standardized

residual plots. These may not be totally independent for some F1 which is function of Ti.

In that case, heteroscedastic feature will be seen in the standardized residuals. To make

that somewhat homoscedastic, the consideration of some weights wi 6= 1 could be useful. As

for example, with the type of function considered for I ′ for model A (as shown in Table I)

without different weights for different data points, the standardized residuals are found to

be highly heteroscedastic. To avoid that (as required by the criterias for errors mentioned

above), for model A, wi = 1/T i2i have been considered. However, for model B and C,

wi = 1. In Table I, corresponding to each model, the Adjusted R̄2 is shown which represents

the goodness of fit with data and will be considered for comparing models. R2 is the ratio

of the model sum of squares to the total sum of squares. The Adjusted R̄2 is given by

1− (n−1)
(n−np)

(1−R2) where np is the number of parameters and with increase in np, Adjusted

R̄2 is reduced.

In the upper part of Figure 1 the predicted versus observed I ′ is shown for Model A.

The points which are nearer to the straight line are better fit as the points on the straight

line corresponds to the equality of observed and predicted values. For higher values of

I ′ the fit is not so good. For Model A, if no different weights are considered, then there

is too much heteroscedastic feature in the corresponding standardized plot. Although after

considering weights wi = 1/T i2i for different data, heteroscedasticity is reduced but still little

bit it is there as seen in standardized residual plot for Model A. Removing some outliers or

changing the functional form , does not help much when we consider also the p values for the

parameters to be at least lesser than 0.05 and adjusted R̄2 greater than 0.50. Considering

12
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various possible functional forms of F1, F2 and F3, it is found that there should be at least

overall a factor of Ti2 in fitting I ′. Also it could be that because of this factor, the error in F2

and F3/F1 is getting magnified while considering the error in I ′. So instead of I ′, best fit for

I ′/T i2 has been tried in case of Model B and C and then better homoscedastic standardized

residual plots have been found. In that sense, Model B and C are better than model A.

However, we have to remove a few outliers also to achieve this homoscedastic feature. The

observed versus predicted I ′/T i2 plots in Figure 1 for Model B and C are better keeping in

mind that the scales are different from that shown for Model A. The adjusted R̄2 is better

for Model C in comparison to other two models as shown in Table I. Combining all these

points, model C seems to be better than other two models. However, it is to be kept in

mind that more data points have been considered for model A. So we will discuss all these

models further.
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FIG. 2. Mean prediction band for I ′ at 90% confidence level for different models at T = 300C ,

H = 40% and W = 10 Km/hr. Blue line corresponds to best fit values.

In Figure 2, the mean prediction band for I ′ has been shown for different models for

different time at 90% confidence level. However, other variables such as T , H and W have

been fixed at T = 300C , H = 40% and W = 10 Km/hr. For higher number of days, the

band width is shortest for Model C and then comes Model A and then B so far widths are

concerned. Model A and B are independent of W . For Model C, even if W is considered

40 Km/hr instead of 10 Km/hr, the band width for Model C is found to be smaller in

comparison to Model A and B. This is found to be true even at 99% confidence level and

also with the variation of T and H values. So Model C is also better in the sense that it has
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lesser uncertainty in the prediction of I ′ as long as W is not above about 40 Km/hr.

In all these models I ′ varies as Ti2 or with higher powers of Ti and ∂2I′

∂T i2
is always non-zero.

For that, the rate of increase in the number of COVID-19 cases increases with at some rate.

This will be further explained at the end of the result in section 4. For F1, the exponential

form eC1T i (where C1 is a parameter) has also been tried. In such case, one could write

dI′

dT i
∝ C3I

′ which is somewhat like SIR models considered extensively. But that kind of F1

does not give proper satistical validity of the model so far data is concerned. So it seems

difficult to get SIR kind of models for the transmission of COVID-19.

In this study on transmission of COVID-19, we are concerned with the number of infected

individuals. At present, there is no evidence of gendered impact on this number of infected

individuals, although there seem to be some impact on the number of mortality due to

the disease (Clare Wenham, Julia Smith, Rosemary Morgan, on behalf of the Gender and

COVID-19 Working Group†, March 6, 2020 https://doi.org/10.1016/S0140-6736(20)30526-

2). So our analysis is not expected to have gendered impact. The distribution of population

in different age groups in Spain, Italy and the USA do not differ much. Based on World

Bank Data in 2017, the percentage of population in age group of 0-14, 15-64 and 65+ in

years may be considered about 15%, 65% and 20% respectively for these three countries.

For Brazil, these are are about 21%, 70% and 9%. If the number of infected individuals

in different age groups follow the same distribution then one may conclude that the age of

individuals is not playing any role in the infection due to SARS-CoV-2 virus. However, it

seems that for the age group 0-14 years the number of infected cases is much lower than

15% for all these three countries. So it could be expected that there is different infection

rate in different age groups in different countries, But due to lack of availability of data of

number of infected persons based on age groups, in different cities, we have refrained from

doing the analysis based on age groups. We have not analysed the data of infected cases

where lock-down/travel restrictions have been imposed quite early like the case of India.

Depending on the nature of restrictions, probably I ′ (as shown by the models in Table -I)

is to be scaled in such cases by some overall factor.

4. Results for different models

The number of infected cases for a population of 5 × 106 is shown in contour plots in

Figure 3, 4 and 5 at different temperatures and relative humidities corresponding to model
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FIG. 3. Contour plots of number of virus-infected persons with temperature and relative humidity

for Model A in the first 20 days and 40 days after the initial cases of infection. Total population

is 5× 106. Different colors in the legend shows ranges of the number of infected cases.

A, B and C respectively. One may compare different zones of temperature and relative

humidity where the virus is expected to cause more or less infection or no infection. To get

the number of cases, I ′ has been multiplied by the total population N . In Figure 3, 4 and

5, we have considered I ′ in first 20 days and first 40 days after initial infection. The plots

are shown considering the same temperature and relative humidity for the entire period.

We have discussed the variations of temperature and humidity in Section 5. Due to the

variations in the environment in different places, the number of cases will be different than

what has been shown. However, these figures will give the understanding of how virus is

viable under different weather conditions.

In Table 1, it is seen that F2 in Model A depends on T and H only. Wind speed W

does not play any role. There is no F3 part in I ′. In Model A, in Figure 3, for lower

temperature around −100C, viral infections are expected for relative humidity above about

35 %. The unshaded regions in Figure 1 correspond to absence of viral infections for the

corresponding temperatures and relative humidities. The infections are not expected in the

unshaded region in Figure 3, for temperature from −20C to −100C and relative humidity 0

to 35%. For higher temperature, the viral infections are not expected in the unshaded region

for temperature from 160C to 450C and relative humidity 65 to 95%. Higher infections are

expected for higher temperature and lower humidity corresponding to right lower side of

15

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 17, 2020. ; https://doi.org/10.1101/2020.05.26.20113985doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.26.20113985
http://creativecommons.org/licenses/by-nd/4.0/


both plots in Figure 3 and lower temperature and higher humidity corresponding to left

upper side of both the plots. These features are true even with the increase in number of

days in this model.
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FIG. 4. Contour plots of number of virus-infected persons with temperature and relative humidity

for Model B in the first 20 days and 40 days after the initial cases of infection. Total population

is 5× 106. Different colors in the legend shows ranges of the number of infected cases.

In Table 1, it is seen that F2 in Model B depends on T and H only. Wind speed W does

not play any role like Model A. There is no F3 part in I ′. However, the total number of cases

as shown in Figure 4, is relatively lesser than that in Model A. In Model B, in Figure 4, for

lower temperature around −100C, viral infections are expected for relative humidity above

about 30 %. The viral infections are not expected in the unshaded region in Figure 4, for

temperature from −20C to −100C and relative humidity 0 to 30%. For higher temperature,

the viral infections are not expected in the unshaded region for temperature from 220C to

450C and relative humidity 60 to 95%. Similar to model A, in model B also, higher infections

are expected for higher temperature and lower humidity corresponding to right lower side

of both plots in Figure 4 and lower temperature and higher humidity corresponding to left

upper side of both the plots. These features are true even with the increase in number of

days in this model.

In Table 1, it is seen that unlike earlier two models, F2 in Model C depends on T , H

and also wind speed W and I ′ in Model C, depends on F3 also. In both the contour plots

in Figure 5, wind speed is fixed at W = 10 Km/hr. The total number of cases as shown in
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FIG. 5. Contour plots of number of virus-infected persons with temperature and relative humidity

for Model C in the first 20 days and 40 days after the initial cases of infection. Total population is

5× 106. The wind speed w = 10 Km/hr has been considered. Different colors in the legend shows

ranges of the number of infected cases.

Figure 5, is relatively lesser than those in other two models. In Model C, in Figure 5 for

the left hand side plot for 20 days, for lower temperature around −100C, viral infections

are expected for relative humidity above about 25 %. Infections are not expected in the

unshaded region in Figure 5 for the left hand side plot for 20 days, for temperature from

−40C to −100C and relative humidity 0 to 25%. For higher temperature, infections are not

expected in the unshaded region for temperature from 240C to 450C and relative humidity

60 to 95%. Similar to model A and B, in model C also, higher infected cases are expected

for higher temperature and lower humidity corresponding to right lower side of left plot in

Figure 5 and lower temperature and higher humidity corresponding to left upper side of the

left plot for the first 20 days. But unlike other two models, these features change with time,

as can be seen from the right hand side plot in Figure 5. This is due to the presence of

purely time dependent part F3 in case of Model C. Gradually the unshaded regions become

smaller with increase in time and later on do not exist. So viral infections are possible for

wider range of humidity and temperature in Model C with the increase of time after initial

infection.

For Model C, the effect due to the variation of wind velocity in the range 0 to 25 Km/hr
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(Model C) after 20 days (Model C) after 40 days

FIG. 6. Allowed region in 3D space of temperature, relative humidity and wind velocity in different

models for which number of virus infected persons are greater than 100 in first 20 days after the

initial spreading. Total population is 5× 106.

is shown in Figure 6. The regions for no viability of viral infections, related to lower temper-

ature and lower relative humidity and also related to higher temperature and higher relative

humidity; becomes larger for higher wind velocity. This can be seen in both left and right

plots corresponding to 20 and 40 days respectively. Probably it happens because virus are

blown away more by the stronger winds even to the areas where hosts do not come into

contact with the virus easily. However, the total unshaded region decreases with time. So

viral infections are possible for wider range of humidity and temperature as well as wind

velocity in Model C with the increase of time after initial infection.

The rate of increase of number of infected cases is equal to rate of increase of I ′ times N .

The rate of increase of I ′ for different models can be written as

∂I ′

∂T i
= 2 F2(T,H,W ) Ti (for Model A) ;

= 2.6 F2(T,H,W ) Ti1.6 (for Model B) ;

= 2 F2(T,H,W ) Ti+ 4× 2.7413× 10−9 Ti3 (for Model C) . (5)

F2 in above equation are different for different models as follows from the relationship for

I ′ shown in Table I. In Figure 7, the rate of increase of I ′ written as ∂I′

∂T i
in equation (5)

is shown for different models for temperature 300C and relative humidity 50% and wind

speed W = 10 Km/hr. One can see that for Model A, ∂I′

∂T i
is increasing linearly with time.
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FIG. 7. Plot of ∂I′

∂T i versus Ti for temperature 300C, relative humidity 50% in models A, B and C.

For model C, wind velocity is 10 Km/hr.

For other two models it is non-linear. But this increase is faster in Model C at a later

time in comparison to other two models for the chosen temperature, relative humidity and

wind speed. For Model A, the rate of increase of ∂I′

∂T i
with time is 2F2. For Model B it is,

2.6 × 1.6 F2 Ti
0.6 and for Model C, it is 2F2 + 12 × 2.7413 × 10−9 Ti2. So for particular T

and H values, this is constant in Model A. However, in Model B and in Model C, it is also

varying with time as can be seen in Figure 7.

5. Statistical model-inspired rise and fall in the spreading of COVID-19
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FIG. 8. Variations in spreading of SARS-CoV-2 in terms of the variations of I ′ according to Model

B due to T = 200 C and H = 50 % in first 20 days; T = 300 C and H = 40 % in the next 10 days

and T = 350 C and H = 85 % after 30 days.
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In Figure 8, considering model (B), an illustrative example of rise and fall of I ′ which also

means the rise and fall of the spreading of the virus, has been presented. Here, the variation

of temperature and relative humidity with time Ti has been considered. For simplicity, we

have assumed the changes in temperature and relative humidity are almost instantaneous.

In this example, in the first 20 days, T = 200 C and H = 50 % and in the next 10 days it is

T = 300 C and H = 40 % and after 30 days it is T = 350 C and H = 85 %. To plot I ′ in

these three time periods the following functions for I ′ has been used:

I ′1 = F2(T1, H1)Ti
2.6 ;

I ′2 = F2(T2, H2)Ti
2.6 + {F2(T1, H1)− F2(T2, H2)} 202.6 ;

I ′3 = F2(T3, H3)Ti
2.6 + {F2(T1, H1)− F2(T2, H2)} 202.6

+ {F2(T2, H2)− F2(T3, H3)} 302.6 (6)

in which I ′1 is to be considered with Ti varying from 0 to 20, I ′2 is to be considered with Ti

varying from 20 to 30 and I ′3 is to be considered with Ti varying from 30 onwards.

From Figure 4 for Model (B), one can see that for (T2, H2) , the number of infected cases

is more than that for (T1, H1). So in Figure 8, there is steeper rise in I ′ during 20 to 30

days than that during 0 to 20 days. The (T3, H3) is in the region where viral infections are

not viable in Figure 4. F2 is actually negative in this region which should be interpreted as

the fall in the spreading of the virus with which I ′ is related. Once the weather is in such

no viable (unshaded) region for the SARS-CoV-2 viral infections for some days, one might

expect that COVID-19 could go away. In Figure 8, the period after 30 days, corresponds to

a fall in the spreading of the virus. We have considered that the function F2 (which indicates

the interactions of virus with the environment), will remain the same during this period.

Figure 8 is an illustrative example of how large cities could be partially free from COVID-19

in a natural way due to the change in the meteorological factors in the environment. This

is possible in Model A also. But in Model C this can happen only in very early stage but

later on it is not expected as the unshaded region will not be found later as shown in right

plot in Figure 5. The possiblity of a fall in COVID-19 cases has been discussed due to

only meteorological factors. But this could also be due to the development of immunity to

SARS-CoV-2 in the human body. No analysis on that aspect has been done here.
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6. Connection of transmission characteristics with the structural components of

the SARS-CoV-2 virus

The statistical analysis through function F2 indicates a complex interaction between

COVID-19 infection and meteorological parameters. The infection is expected to enhance

under two different combinations of environmental conditions i.e. lower temperature-higher

humidity and higher temperature-low to ambient humidity as found in Figures 3-5. Such

nature of interaction can be explained by the physicochemical characteristics of respiratory

droplets or aerosol and the structural features of the virus itself. The enveloped virus

SARS-CoV-2 has a positive sense, single-stranded RNA genome which encode four important

structural proteins, namely spike glycoprotein (S), envelope protein (E), matrix glycoprotein

(M), and nucleocapsid protein (N). The S glycoprotein is surface exposed and mediates the

viral entry into host cells. It comprises two regions S1 and S2, where S1 is responsible for

binding to the receptor of the host cell and S2 is for the fusion of the viral and cellular

membrane. Although both SARS-CoV, SARS-CoV-2 attach the host cells through the

binding of receptor-binding domain (RBD) of S1 region to the angiotensin converting enzyme

2 (ACE2) (Schoeman and Fielding, 2019; Walls et al, 2020), the pandemic impact of the later

happens to be more severe with continuous worldwide increase in the number of infection

cases and mortality.

Several factors including, the structural features of virus for persistence in the environ-

ment and for human contact might be associated with the severe infection of SARS-CoV-2.

Recently, an experimental study based on Cryo-EM structure of the SARS-CoV-2 spike

protein in prefusion conformation has suggested higher binding affinity of SARS-COV-2

with human ACE2 than SARS-COV (Wrapp et al., 2020). Another study on the protein-

protein interaction and molecular dynamics simulations of RBD-ACE2 complex for SARS-

CoV-2 and SARS-CoV showed significantly lower binding free energy of the SARS-CoV-2

RBD-ACE2 interaction (-50.43 kcal/mol) compared with SARS-CoVRBD-ACE2 interaction

(-36.75 kcal/mol) and thus suggesting higher binding affinity of SARS-CoV-2RBD-ACE2

interaction (He et al., 2020). Ou et al., (2020) analyzed the SARS-CoV-2RBD mutations

worldwide and found the equilibrium dissociation constant of three RBD mutants to be

two orders magnitude lower than the prototype Wuhan-Hu-1 strain indicating remarkable

increase in the infectivity of the mutated viruses.

Apart from the increased binding affinity of SARS-CoV-2 to ACE2, the severity of
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COVID-19 can also be determined by the stability of the virus in the environment. Al-

though most of the studies on the effect of meteorological factors on the COVID-19 have

speculated the decline in infection with an increase in environmental temperature and hu-

midity (He et al., 2020; Wang et al., 2020), the number of infection cases in reality is

increasing sharply with the rise in temperature. Present study has also indicated such in-

crease at higher temperature as the general feature of the models (Table I) particularly for

lower humidity. The persistence of the virus at higher temperatures can be explained in

the context of the stability of the spike protein because it is a critical component deter-

mining the infectivity. A lengthy molecular dynamics simulation of trimeric spike proteins

of SARS-CoV-2 and SARS-CoV has shown that the spike protein of SARS-CoV-2 has sig-

nificantly lower total free energy (-67,303.28 kcal/mol) than the spike protein of SAR-CoV

(-63,139.96 kcal/mol). Similarly, the free energy of the RBD of SARS-CoV-2 spike protein

is relatively lower than that of SARS-CoV. The results thus explained increased stability

of SARS-CoV-2 spike protein at higher temperature (He et al. 2020). Several studies have

been carried out on the effect of relative humidity on the survival and infectivity of en-

veloped and non-enveloped viruses (Benbough 1971; Shaman and Kohn; Pica and Bouvier,

2012; Yang and Marr, 2012; Marr et al. 2019). When the virus is released into the en-

vironment as part of a respiratory fluid droplet, relative humidity of environment controls

the amount of water evaporated from the droplet until equilibrium with the surrounding air

is maintained/reached (Prussin et al., 2018). The respiratory viral droplets or aerosol on

exposure to lower to ambient relative humidity environment are subject to evaporation due

to the vapour pressure gradient between its surface and air. As evaporation proceeds, the

water vapour pressure at droplet surface decreases. The presence of lipid membrane in the

enveloped viruses has been evidenced to protect their capsids from damage due to change in

humidity leading to survival at lower humidity conditions (Benbough, 1971; Yang and Marr,

2012). Hence, a considerable higher infection level of SARS-CoV-2 at low to ambient relative

humidity and higher temperature as predicted in the present study could be related to the

presence of structural features of the viral envelope and relatively stable spike protein with

significantly lower free energy. Moreover, at lower relative humidity and higher temperature

the respiratory droplet will undergo evaporation at a higher rate and the desiccated state

of droplet will remain unaffected by the changes in temperature, causing higher infection

rates. Infection can be further enhanced due to higher mobility of the smaller droplets under
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high temperature and low humidity which can readily enter the human host. As predicted

in this study, the experiments conducted by Prussin et al. (2018) showed that at 370C

temperature Phi6, a surrogate of influenza and coronaviruses, had the highest infectivity at

20-40% relative humidity. This happens in all the models as shown in Figures 3-5. However,

in the same experiment the virus showed a significantly higher level of infection throughout

the entire range of relative humidity at lower temperature of 14 and 190C. Particularly for

Model B and C, this happens for lower temperatures 10 to 200C throughout the entire range

of humidity as seen in the left plots in Figure 4 and 5 in the first 20 days although with some

variation in the level of infection in comparison to that found for surrogate of influenza and

coronavirus.

On the other hand, our statistical analysis also showed an increase in viral infection at

low temperature and high relative humidity as observed earlier for seasonality of influenza

virus infection, which occurs at a significantly higher level during winters when average

outdoors daily temperatures remains lower and relative humidity is higher (Lowen and Steel,

2014). The finding is also supported by the results of Prussin et al. (2018) reporting higher

infectivity of Phi6 at lower temperature (10−200C) when relative humidity was kept constant

at 75%. However, according to models in this work, for relative humidity at 75%, increase

in viral infection occurs at further lower temperature than that found for influenza virus.

It is below 00C in Model A, and in Model B and C, below 100C as seen in Figures 3-5 in

first 20 days. Probably at higher humidity with appropriate droplet size SARS-CoV-2 could

remain wet by keeping it at slightly higher temperature with respect to the lower surface

temperature of the droplet and thus remains viable for infection.

However, our study indicates a complete reduction in infectivity of the virus under lower

temperature and lower humidity condition. Under such condition, probably SARS-CoV-2

virus could not remain wet inside the droplets which are of smaller size and the lipid and

the protein structure inside the virus gets deformed resulting in a reduction in viability.

Furthermore, the predicted decrease in viral infectivity at a higher temperature and

higher humidity in our models could be due to the reduced rate of evaporation of respi-

ratory droplets at higher humidity, which consequently makes them highly susceptible to

higher temperature resulting in non-viability of SARS-CoV-2 for infection. Furthermore,

corresponding aerosols with bigger size falls down to the surface and loses the mobility.

This also could be a reason for the reduction in the viability of infection of SARS-CoV-2 at
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both high temperature and high humidity as indicated by the models.

7. Conclusion

Based on statistical significance, three models may be considered to understand the future

outcome of COVID-19 throughout the world and among them Model C seems better. We

have not considered the data of all COVID-19 affected countries. However, based on Figure

1, it seems that data of different cities of four countries, can be considered in a single

framework of a statistically validated regression model for the evolution of I ′. Furthermore,

as I ′ is normalized to 1 for any place, it is expected that such models would give a reasonably

good estimate for the evolution of I ′ for the major cities of other countries.

Based on the general features of all the models, it appears that higher precautionary

measures would be required in the cities during the summer season with higher tempera-

ture and lower relative humidity, and during winter with low temperature and high relative

humidity. On the other hand, the viability of SARS-CoV-2 seems to be reduced at higher

temperatures with higher humidity and at a lower temperature with lower humidity con-

ditions in the environment, as depicted by the unshaded regions of Figures 3-5. However,

Model C indicates this feature to be valid in the early infections only and may not continue

for prolonged period.

Based on models there is some non-zero rate of increase of ∂I′

∂T i
with time, which indicates

some acceleration in the spread of the virus. This is related to the function F2 in Model A

and functions F1, F2 in Model B and F2 and F3 in Model C. These features are expected to

be valid for the spreading of other types of viruses which infect the human host. However,

further studies on exploring such acceleration and the relationship of F2 with the structural

features of SARS-CoV-2 would be worthwhile.
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