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Abstract

The recent emergence of the COVID-19 pandemic has posed an unprecedented healthcare
challenge and catastrophic economic and social consequences to the countries across the world.
The situation is even worse for emerging economies like India. WHO recommends mass scale
testing as one of the most effective ways to contain its spread and fight the pandemic. But, due
to the high cost and shortage of test kits, specifically in India, the testing is restricted to only
those who are symptomatic. In this context, pooled testing is recommended by some experts
as a partial solution to overcome this problem. In this article, we explain the basic statistical
theory behind the pooled testing procedure for screening as well as prevalence estimation.
In real world situations, the tests are imperfect, and lead to false positive and false negative
results. We provide theoretical explanation of the impact of these diagnostic errors on the
performances of individual testing and pooled testing procedures. Finally, we study the effect
of misspecification of sensitivity and specificity of tests on the estimate of prevalence, an issue,
which is debated a lot among the scientists in the context of COVID-19. Our theoretical
investigations lead to some interesting and precise understanding of some of these issues.
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1 Introduction

Since its detection in the Wuhan province of China at the end of December 2019, the COVID-19
pandemic, caused by the virus SARS-CoV-2, has created catastrophic social, economic and health
consequences for countries around the world. For an emerging economy like India, it poses a
formidable challenge to the policy makers to contain its spread at a level so that the health care
infrastructure is not overwhelmed. At the time of writing this article, in India, the number infected
is around 150,000 and more than 4300 deaths have occurred due to COVID-19. A large part of the
country is under ‘lockdown’. Given its unprecedented economic and social consequences, the pol-
icy makers are now desperately looking for an exit route to bring the economy back to normalcy.
Effective implementation of social distancing, mass testing, contact tracing and quarantining is
essential to contain the spread of the virus. Given that a large percentage of COVID-19 cases are
asymptomatic, and are responsible for spreading the virus1–3, it has been advised by the World
Health Organization (WHO) that the most effective way to control the spread of the disease is
to test as many people as possible. This was found to be effective in containing the spread of
the virus in countries like South Korea, Singapore and China4–6. However, the high cost and
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the short supply of testing kits7 are the main impediments for a country like India in conducting
mass testing. In order to ramp up the testing efforts, some experts8–11 are recommending the use
of pooled testing technique, a technique originally proposed by Dorfman12 to increase the speed,
and reduce the cost, of screening the US army recruits for syphilis during the Second World War.
Recently the Indian Council for Medical Research (ICMR) has given its approval13 and issued
detailed guidelines14 for carrying out pooled testing for screening purposes.

It is interesting to observe that most experts recommend use of pooled testing only for the
screening purpose. However, the data collected by pooled testing can also be effectively utilized
for the estimation of prevalence of the virus, which is a later development in pooled testing re-
search15. This fact is not as widely known as the use of pooled testing for screening purpose in
the general scientific community. As observed by many16,17, the estimation of prevalence of the
SARS-CoV-2 virus is crucial for an accurate estimation of fatality rate. The initial estimate of
fatality rate given by WHO18 was scandalously high, because it was based only on deaths among
symptomatic patients. Later, it was revised downward after taking into consideration the fact that
a significant percentage of the infected population is asymptomatic, and hence remain undetected.
If 80% of the cases are asymptomatic, then the fatality rate computed only from the symptomatic
cases would be five times higher than the true fatality rate. Such misinformation may create an
unnecessary panic in the minds of the policy makers, which may lead to wrong decisions. Recently,
a few planned serology surveys were carried out for the estimation of the prevalence of the SARS-
CoV-2 virus (e.g., Sempos and Tian19), and the results suggest that the overestimation of fatality
rate in the population may be between fifty to eighty five times of the original fatality rate. These
results created waves in the scientific community. We will revisit these results in Section 4.

This article mainly serves two purposes. First, we present the statistical theory of the pooled
testing procedure for screening, and also for the estimation of prevalence using basic probability
theory20. Next, we discuss some practical issues arising out of the fact that these tests are imper-
fect. In other words, the tests may yield false positive and/or false negative results. Naturally, it
raises an important practical question: what is the impact of these diagnostic errors on screening
as well as on prevalence estimation? We study these effects using some hypothetical scenarios and
discuss its implications in the context of COVID-19 pandemic.

The rest of the article is divided as follows. In Section 2 we present the statistical theory of
pooled testing. In Section 3 we discuss the consequences when the test is imperfect. In Section
4, we discuss the estimation of prevalence using pooled data, and compare it with the estimation
procedure with individual data. Finally, we conclude with some remarks in Section 5.

2 Dorfman pooled testing technique

Pooled testing was originally introduced by Dorfman12 in infectious disease studies to reduce the
cost and increase the speed of data collection. Typically, for an infectious disease, a sample of
blood or urine is tested for presence or absence of the disease. Rarer the disease, more effective is
the pooled testing technique. Dorfman’s technique runs as follows. Suppose n samples of blood
are to be tested for presence or absence of a disease. A sample is either positive (disease present)
or negative (disease absent). We attach a Bernoulli variable Y to each sample. We assume Y = 1
if the sample is positive, and Y = 0 if it is negative. Instead of testing the samples individually,
the samples are pooled into J groups of sizes n1, ..., nJ . Let Yij denote the Y -value for the i-th
sample in the j-th group. The samples in each group are pooled and tested. Instead of observing
Yij , in the pooled testing set-up, we observe Y ∗

j = maxi=1,...,nj
Yij . It is further assumed that,

Y ∗
j = 0, if and only if all samples in the j-th group are negative, i.e., Yij = 0, i = 1, ..., nj and
Y ∗
j = 1, if and only if at least one sample in the j-th group is positive, i.e., Yij = 1, for at least
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Figure 1: Process diagram of Dorfman’s algorithm for pooled testing

one i = 1, ..., nj . If for a group, the test outcome is positive, then the samples in the group are
individually tested to detect the positive samples, and hence the diseased individuals. If the result
is negative for a group then no further testing is required. Thus, for a positive test outcome, the
number of tests required is one more than the group size, and for a negative test outcome, a single
test is enough. If the chance of a positive test outcome for a group is small, in other words, the
prevalence of the disease is low, then the average number of tests required would be much smaller
in a group testing set-up than individual testing. Thus, it leads to considerable savings in the cost
and time of testing. The process diagram is presented in Figure 1 for a group of size k.

Now, suppose that the prevalence of a disease is p, and assume without loss of any generality
nj = k, i.e., all groups are of equal size, and consequently n = Jk. Notice that, P (Y ∗

j = 0) =

(1− p)k and P (Y ∗
j = 1) = 1− (1− p)k. Further, suppose Nj denotes the number of tests for the

j-th group. Clearly, it is equal to k + 1 if Y ∗
j = 1, and 1 if Y ∗

j = 0. Thus the expected number of
tests for the j-th group is

E(Nj) = (k + 1)− k(1− p)k. (1)

If p is small then E(Nj) is close to 1 even for a sufficiently large group size k, and thus leading to
a substantial saving in time and cost than individual testing. Notice that the technique is mainly
useful when the prevalence is low.

The simplicity of the idea, and its easy implementation, has led to its wide applicability in
different fields (see Roy and Banerjee15 and the references therein). Its use in the screening
of sexually transmitted disease like chlamydia, gonorrhoea21 and HIV22,23 is worth mentioning.
American Red Cross and the European Blood Alliance routinely use it to screen donated blood
for infectious diseases24,25. Given the huge shortage of test kits around the world, researchers
worldwide are recommending the use of pooled testing for COVID-198,26–28.

3 Pooled testing for screening when the test is imperfect

Dorfman12 proposed the pooled testing technique assuming the test to be perfect, i.e., the chance
of a false positive or a false negative test result to be zero. However, in reality, tests are far from
perfect. In testing for the SARS-CoV-2 virus, two types of tests are mainly in use. “The first
is a reverse-transcription polymerase chain reaction test, or RT-PCR. This is the most common
diagnostic test used to identify people currently infected with SARS-CoV-2. It works by detecting
viral RNA in a person’s cells – most often collected from their nose. The second test being used
is called a serological or antibody test. This test looks at a person’s blood to see if they have
produced antibodies for the SARS-CoV-2 virus. If a test finds these antibodies, it means a person
was infected and made antibodies in response”29. How accurate are these tests? The accuracy of a
test is measured by two numbers: sensitivity and specificity attached to it. If a test has 5% chance
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of a false negative (positive) outcome, its sensitivity (specificity) is 95%. Although in laboratory
setting it is observed that RT-PCR test has high sensitivity and specificity, in the real world testing
condition the sensitivity and the specificity are usually much lower because the testing conditions,
the method of sample collection, and the sample preservation technique are far from perfect. For
example, in real world testing condition the sensitivity of RT-PCR test ranges between 66% to
80%29. Thus, out of three infected people on the average one may test negative. The sensitivity
and specificity of the antibody tests are also found to be very high in laboratory setting, but, then
again, in real world condition the accuracy is bound to suffer.

Using the same notations as above, we now find E(Nj) assuming that the sensitivity and
specificity of the test are Se and Sp, respectively. Notice that for the j-th group, we now ob-

serve Ŷ ∗
j instead of Y ∗

j , a surrogate (or proxy) for Y ∗
j , where P (Ŷ ∗

j = 1|Y ∗
j = 1) = Se and

P (Ŷ ∗
j = 0|Y ∗

j = 0) = Sp. A simple probability calculation then yields P (Ŷ ∗
j = 1) = P (Y ∗

j =

1)Se + P (Y ∗
j = 0)(1− Sp) = Se + (1− p)k(1− Sp − Se), and hence,

E(Nj) = 1 + k[Se + (1− p)k(1− Sp − Se)]. (2)

The expected number of tests for n people would then be J × E(Nj), and hence compared to
the individual testing, the reduction in the number of tests achieved by using group testing is
J(k−E(Nj)). This reduction is a measures of the efficiency of the pooled testing procedure. Also,
notice that for Sp = Se = 1, Equation (2) reduces to (1).

For a perfect test, there is no chance of misclassification of an infected as non-infected or vice
versa, and hence the efficiency of pooled testing procedure is measured only by E(Nj). However,
for an imperfect test, E(Nj) is not enough to judge the efficiency of the pooled testing procedure.
One also needs to measure the sensitivity and specificity of the pooled testing procedure, and most
importantly, the probabilities of the diagnostic errors.

Let T+ and T− denote the events that an individual is tested positive and negative, respec-
tively, by the pooled testing procedure. Further, let I (Ic) denote the events that an individual is
infected (uninfected). Then one can easily check that the sensitivity, say, SD

e , and specificity, say,
SD
p , of the Dorfman’s pooled tesiting procedure, are given by

SD
e = P (T+|I) = S2

e , (3)

and
SD
p = P (T−|Ic) = 1− (1− Sp)[Se + (1− Sp − Se)(1− p)k−1], (4)

respectively. The proofs of (3)-(4) are given in the appendix.
Notice that SD

e depends only on Se while SD
p depends on all three parameters Se, Sp and p. As

stated above, SD
e and SD

p provide useful information about the performance of the pooled testing
procedure. However, the posterior or inverse probabilities P (Ic|T+) and P (I|T−), called the False
Positive Predictive Value (FPPV) and the False Negative Predictive Value (FNPV) respectively,
are often critical for assessing the performance of the test in the real life situation. These are
measures of diagnostic errors. The FPPV and the FNPV represent the proportion of misclassi-
fied individuals among those who are tested positive, and among those who are tested negative,
respectively. In the context of testing for sera samples of HIV virus, Litvak (22) proposed that
the five key elements to be used to capture the overall performance of a pooled testing procedure
should be: E(Nj), S

D
e , SD

p , FPPV and FNPV .
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Now, using Bayes’ Theorem (20), one can easily show that

FPPV =
(1− p)(1− SD

p )

(1− p)(1− SD
p ) + pSD

e

, FNPV =
p(1− SD

e )

p(1− SD
e ) + (1− p)SD

p

. (5)

Notice that, for individual testing FPPV and FNPV , denoted henceforth FPPVI and FNPVI
respectively, are obtained by substituting SD

e and SD
p by Se and Sp, respectively, in (5).

In Tables 1a and 1b, we furnish the values of E(Nj), S
D
e , SD

p , FPPV , FNPV , FPPVI and
FNPVI for some appropriately chosen values of the sensitivity (Se), the specificity (Sp) and the
prevalence (p). The “Eff” (efficiency) column gives the percentage reduction in the expected num-
ber of tests achieved by using the pooled testing than the individual testing. Evidently, with
increase in p, and decrease in Se and Sp, the efficiency reduces. The value of SD

e (= S2
e ) is always

less than, or equal to, Se. However, for a given set of values of p, Se and Sp, the value of SD
p

is always more than Sp, and for smaller values of Sp this effect is substantial. Thus, the pooled
testing procedure may lead to a significant improvement of the specificity, especially when the
specificity of the individual test is low. Further, it is interesting to observe that even a slight
decrease in Sp leads to a substantial increase in the value of FPPV for any given values of p and
Se. On the other hand, a change in the value of Se has negligible effect on the value of FPPV
for any given values of p and Sp. Also, with increase in p, FPPV decreases for any given values
of Se and Sp. Most importantly, compared to the individual testing, the pooled testing leads
to a substantial reduction in the value of FPPV , which is extremely important from the point
of view of its application in practice. Still, FPPV can take very high values even for pooled
testing for a low prevalence disease with low specificity (Sp). While this is undesirable, this com-
pares favourably to individual testing. In contrast, for the range of values considered in the tables
for p, Se and Sp, the impact of changes in the values of these parameters has little effect on FNPV .

Notice that in case both the sensitivity and the specificity of the test are low, say, for example,
Se = 0.8 and Sp = 0.7, even with 10% prevalence, 68% (77%) of the pooled (individual) testing
results would be false positive, which is extremely high. A recent meta-study by a group of medical
professionals from the Johns Hopkins University30 demonstrated that over a different varieties of
RT-PCR tests, which are the most commonly used tests for SARS-CoV-2, a best case scenario is
an Se ≈ 0.8. Another meta-study31 has looked at thirty seven different external quality assessment
studies of different medical assays, and found that in some cases, the specificity was as low as 0.83.

For testing for the SARS-CoV-2 virus, the above observations suggest that at the initial phase
of the pandemic when the prevalence is low, (less than 10%,) pooled testing may lead to a sub-
stantially lower rate of false positive cases than individual testing, especially if a low specificity
test is used. Admittedly, pooled testing leads to a slightly higher rate of false negative cases com-
pared to individual testing, but as observed from Tables 1a and 1b, that effect is usually negligible.

Finally, it may be noted here that the impact of the two diagnostic errors are asymmetric. In
case of more false positive cases, more people are to be quarantined leading to a lot of economic,
social and emotional turmoil. On the other hand, in case of more false negative results, more
infected people will be released in the population causing the disease to spread faster. Considering
the costs of the errors, the policy planner has to make a trade-off.
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4 Estimation of prevalence using pooled testing data

In this section, first we present the theory of estimation of prevalence of a disease from the test
data using basic probability theory20. Next, we study the impact of misspecification of sensitivity
and specificity on the estimate of prevalence.

An accurate estimation of the prevalence of SARS-CoV-2-virus, being critical for assessing
the lethality of the pandemic, is crucial for the policy makers to make strategic decisions. Re-
cently, Ioannidis32, a Stanford medicine professor, lamented in a highly critical opinion piece on
COVID-19: “Three months after the outbreak emerged, most countries, including the U.S., lack
the ability to test a large number of people and no countries have reliable data on the prevalence
of the virus in a representative random sample of the general population.” Ioannidis argued that
in the absence of such data, the estimate of fatality rate is bound to be a substantial overestimate
of the true fatality rate if a significant percentage of COVID-19 cases are undetected. It is now
well known that a significant percentage of COVID-19 cases are asymptomatic. Raman R Gan-
gakhedkar, chief epidemiologist, ICMR, reported “Of 100 people with infection, 80 do not have
symptoms,”33. A lab in Iceland34 has suggested that 50% of the infected are asymptomatic. In a
Boston homeless shelter, out of 400 guests staying there, 146 tested positive for COVID-19, but all
were reported to be asymptomatic35. If, for example, 80% of the cases are really asymptomatic,
then the estimate of fatality rate would naturally be five times the true fatality rate. While the
reported percentage of asymptomatic cases vary from place to place, all agree that it is significant.
Considering the possibility of substantial underestimation of infected cases in the absence of test
data, Ioannidis has contended that the virus could be less deadly than people think, and destroy-
ing the economy in the effort to fight with the virus could be a “once-in-a-century-evidence-fiasco”.

A recent research paper published by a team of Stanford medical scientists16 lends support
to Ioannidis’ contention. By estimating the prevalence of SARS-CoV-2 virus among the residents
of Santa Clara County of California using antibody test data of a “properly selected” sample of
3300 residents, it predicted that between 50 to 85 times more residents of the county were actually
infected than what appeared in the official tallies36. The authors claimed that “their data helps
prove · · · if undetected infections are as widespread as they think, then the death rate in the
county may be less than 0.2%, about a fifth to a tenth other estimates.” The publication of this
research paper immediately created waves in social media, in press, and in policy circles; if indeed,
this number is not far from the truth, then the COVID-19 fatality rate is not very different from
common flu. Realizing the findings’ serious policy implications, especially its lending support to
the view of lifting the lock down, some scientists immediately issued a caveat about the accuracy
of the estimate. They expressed concerns about the flaws in the sample selection method (through
Facebook advertisements), the statistical analysis carried out, and the reliability of the antibody
test37,38.

We now discuss the methodology used by the Stanford group16 for prevalence estimation based
on individual serological testing data. Let us denote the probability of a positive test result for an
arbitrarily chosen individual by π. Clearly, for a sample of size n, the estimate of π is simply the
proportion of people being identified as positive out of the sample. But we know from the previous
section that

π = P (Positive result) = (1− p)(1− Sp) + pSe. (6)

Plugging in the proportion of positive test results obtained from the sample, say π̂, for π in (6),
we obtain

p̂ =
π̂ + Sp − 1

Se + Sp − 1
. (7)
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However, for estimating prevalence using Dorfman’s algorithm, we simply need to replace Se

and Sp in (6) by SD
e and SD

p respectively (cf. (Equations 3)-(4)). Thus, we have

π = (1− Sp)(1− Sp − Se)(1− p)k + (1− Sp)Se(1− p) + pS2
e , (8)

or, equivalently,
π = (1− Sp − Se)[(1− Sp)(1− p)k − pSe] + (1− Sp)Se. (9)

Hence, plugging in an estimate of π obtained from the test data to (8) and then solving it
numerically for p we get an estimate of p, say p̂D. This estimate is consistent for p (i.e., close to p
as the sample size n gets very large).

As noted in Section 3, both RT-PCR and antibody tests have high sensitivity and specificity
in lab settings, but in a real world situation, these values may be substantially lower than those
obtained in lab settings. Suppose SP

e and SP
p are respectively the sensitivity and the specificity

values as perceived, and used by the scientist for estimating the prevalence from Equation (7) or
(8), whereas ST

e and ST
p are respectively the true sensitivity and specificity values in the field. In

real-life situations, it is often the case that ST
e (ST

p ) is substantially less than SP
e (SP

p ), because the
scientist’s perceived values are usually influenced by the values under the lab setting. Thus, given
the true value of π, the solution to Equation (7) or (8) for p is equal to the true prevalence pT if
Se and Sp are replaced by ST

e and ST
p . On the other hand, given the true value of π, replacing Se

and Sp by SP
e and SP

p in (7) and (8), would yield a solution pP which is expected to deviate from
the true prevalence pT . We study the effect of the misspecification of sensitivity and specificity
values on the estimate of prevalence by evaluating the bias (pT − pP ).

In Tables 3a-3b, we report the values of the bias (pT −pP ) resulting from the individual testing
as well as Dorfman’s pooled testing, denoted by biasI and biasD, respectively, for different values
of p, SP

e , SP
p , ST

e and ST
p . The following patterns are visible from the table:

(i) With increase in the prevalence p, the bias is decreasing. Initially, it reduces from positive
to zero and then becomes negative. We report the bias for four different values of p: 0.01, 0.02,
0.05 and 0.1.

(ii) The effect of misspecification of Se and Sp are asymmetric in nature. Misspecification of
Se has a little effect on the bias. However, the misspecification of Sp has a significantly large effect
on the bias. Also, more is the deviation from the true values more is the effect on bias.

(iii) The most interesting observation is, compared to the individual testing, pooled testing
reduces the bias due to misspecification of Se and Sp substantially. This is extremely important
to know given the fact that misspecification of Se and Sp are quite common.

In Table 2, we report the values of π, the probability of testing positive, for the individual test-
ing as well as for the Dorfman testing procedure, for different values of p, Se and Sp. Let πI (cf.
Equation (6)) and πD (cf. Equation (8)) denote the π value corresponding to the individual and
Dorfman testing procedure, respectively. Notice from Table 2 that, like the observation (ii) made
above, the value of π is significantly influenced by Sp, but not so by Se. Also, it is important to
note that, for a given value of Sp (say, 0.9) reduction in Se (say, from 1 to 0.7) results in reduction
of π, though not a significant reduction. Thus, we may conclude that misspecification of Sp (Se)
has a large (negligible) effect on the value of π, and consequently, on the estimates of prevalence ob-
tained by solving Equations (6) or (8), as the case may be. So, for accurate estimation of prevalence
it is very important to specify the value of Sp correctly, while misspecification of Se has little effect.

Finally, we explain a subtle connection between the numbers reported in Tables 3a-3b and
Table 2 with a specific example. Consider the case when prevalence p is equal to 0.01, and the
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true sensitivity (ST
e ) and specificity (ST

p ) are both equal to 0.9. From Table 2, we observe that the
corresponding value of π (cf. Equation (6)) for individual testing is equal to 0.11. Suppose now
the perceived sensitivity (SP

e ) and specificity (SP
p ) are equal to 1. To obtain the biased prevalence

p corresponding to the perceived sensitivity and specificity, we plug in 0.11 for π on the left hand
side of Equation (6), and Se = Sp = 1 on the right hand side. The solution can be obtained from
Table 2 by observing the value of p corresponding to Se = Sp = 1 and πI = 0.11, which is clearly
0.11. Thus the resulting bias due to misspecification is 0.11 − 0.01 = 0.10, which is reported in
Table 3a. By using a similar argument we can find the bias for pooled testing which is 0.01 using
Table 2.

5 Concluding Remarks

In this article, we have discussed the statistical theory behind Dorfman’s pooled testing technique
used for screening. We have explained the method of estimation of prevalence from individual
testing and pooled testing data. Most importantly, we have provided theoretical insights into the
practical issues that are being discussed in the scientific community, arising out of the fact that
the tests for the SARS-CoV-2 virus are imperfect. The theoretical results show that pooled testing
is not only preferable for reducing time and cost of screening, it also helps in significant reduction
of misclassification among those who are tested positive. Our results also show that for prevalence
estimation, pooled testing is always preferable to individual testing, especially when the specificity
of the test is low. It helps in reducing the bias of the prevalence estimate significantly. Finally, it
is worth mentioning that our observations are valid for low values of prevalence, possibly less than
or equal to 10%.

In this connection, as a final remark, we may conclude that for estimating the prevalence
of SARS-CoV-2 of Santa Clara County, California16, the Stanford scientists collected data by
conducting individual antibody tests on the 3300 subjects. Instead, had they used pooled testing
technique, it would have been possible to collect the test data from a much larger sample for a
similar cost and time. Also, as mentioned in the paper, given that the prevalence is low (estimated
as 2.8%), adopting pooled testing technique would have made all the more sense in the context of
their study.

Appendix

A Computation of SDe and SDp

In the context of the Dorfman test, SD
e , the probability that a positive person can come positive

is the the probability that both the pooled test as well as the individual test comes correct, which
is S2

e .

To compute the misclassification probability that a person is non-diseased and is found to be
diseased, we first note that a non-diseased person, say Person j, can either be a part of a pool con-
stituted entirely of non-diseased individuals (Case A) or a pool containing some diseased individu-
als (Case B). The probability of Case A is (1−p)k, and the probability of Case B is (1−p)−(1−p)k.

Now, for Person j to be found to be diseased in Case A, the pooled test, and subsequently the
individual’s test, will both erroneously give positive result, the probability of which is (1−Sp)2 for
the original Dorfman algorithm. On the other hand, in Case B, the pooled test will be positive,
but this time correctly, while the individual’s test will still be erroneously positive, the probability
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of which is Se(1 − Sp). Putting all together, the probability that a non-diseased person is found
to be diseased is [(1− Sp)2(1− p)k + Se(1− Sp)((1− p)− (1− p)k))]/(1− p) = (1− Sp)Se + (1−
Sp)(1− Sp − Se)(1− p)k−1. Hence, SD

p is 1− (1− Sp)Se + (1− Sp)(1− Sp − Se)(1− p)k−1.
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Table 1a: Optimal group size (k∗), efficiency in terms of reduction in test numbers as percentage
of number of individuals tested (Eff), pooled testing sensitivity (SD

e ) and specificity (SD
p ) false

positive predictive value (FPPV ) and false negative predictive value (FNPV ) corresponding
to different prevalence rates (p), sensitivities (Se) and specificities (Sp) for Dorfman’s algo-
rithm. False positive predictive value (FPPVI) and false negative predictive value (FNPVI)
for individual tests are given within parentheses to facilitate comparison.

Test p k∗ Eff SD
e SD

p FPPV FNPV
Quality (%) (FPPVI) (FNPVI)

0.01 11 80.44 1 1 0 (0) 0 (0)
Se= 1 0.02 8 72.58 1 1 0 (0) 0 (0)
Sp= 1 0.05 5 57.38 1 1 0 (0) 0 (0)

0.10 4 40.61 1 1 0 (0) 0 (0)
0.01 11 79.65 0.98 0.999 0.09 (0.50) 0.0002 (0.0001)

Se= 0.99 0.02 8 71.87 0.98 0.999 0.07 (0.33) 0.0004 (0.0002)
Sp= 0.99 0.05 5 56.83 0.98 0.998 0.04 (0.16) 0.0010 (0.0005)

0.10 4 40.30 0.98 0.997 0.02 (0.08) 0.0022 (0.0011)
0.01 11 76.07 0.98 0.993 0.41 (0.83) 0.0002 (0.0001)

Se= 0.99 0.02 8 68.47 0.98 0.991 0.30 (0.71) 0.0004 (0.0002)
Sp= 0.95 0.05 5 53.74 0.98 0.989 0.18 (0.49) 0.0011 (0.0006)

0.10 4 37.67 0.98 0.985 0.12 (0.31) 0.0022 (0.0012)
0.01 11 71.59 0.98 0.981 0.65 (0.91) 0.0002 (0.0001)

Se= 0.99 0.02 8 64.22 0.98 0.978 0.52 (0.83) 0.0004 (0.0002)
Sp= 0.90 0.05 5 49.87 0.98 0.973 0.34 (0.66) 0.0011 (0.0006)

0.10 4 34.39 0.98 0.966 0.24 (0.48) 0.0023 (0.0012)
0.01 12 62.69 0.98 0.943 0.85 (0.95) 0.0002 (0.0001)

Se= 0.99 0.02 9 55.75 0.98 0.936 0.76 (0.91) 0.0004 (0.0003)
Sp= 0.80 0.05 6 42.41 0.98 0.924 0.59 (0.79) 0.0011 (0.0007)

0.10 4 27.83 0.98 0.917 0.43 (0.65) 0.0024 (0.0014)
0.01 13 53.86 0.98 0.886 0.92 (0.97) 0.0002 (0.0001)

Se= 0.99 0.02 9 47.42 0.98 0.879 0.86 (0.94) 0.0005 (0.0003)
Sp= 0.70 0.05 6 35.05 0.98 0.863 0.73 (0.85) 0.0012 (0.0008)

0.10 5 21.74 0.98 0.839 0.60 (0.73) 0.0026 (0.0016)
0.01 11 80.07 0.90 0.999 0.10 (0.51) 0.0010 (0.0005)

Se= 0.95 0.02 8 72.47 0.90 0.999 0.07 (0.34) 0.0020 (0.0010)
Sp= 0.99 0.05 5 57.74 0.90 0.998 0.04 (0.17) 0.0051 (0.0027)

0.10 4 41.67 0.90 0.997 0.03 (0.09) 0.0107 (0.0056)
0.01 11 76.49 0.90 0.993 0.43 (0.84) 0.0010 (0.0005)

Se= 0.95 0.02 8 69.07 0.90 0.992 0.31 (0.72) 0.0020 (0.0011)
Sp= 0.95 0.05 5 54.64 0.90 0.989 0.19 (0.50) 0.0052 (0.0028)

0.10 4 39.05 0.90 0.985 0.13 (0.32) 0.0109 (0.0058)
0.01 11 72.01 0.90 0.982 0.67 (0.91) 0.0010 (0.0006)

Se= 0.95 0.02 8 64.81 0.90 0.979 0.54 (0.84) 0.0020 (0.0011)
Sp= 0.90 0.05 6 50.82 0.90 0.971 0.38 (0.67) 0.0053 (0.0029)

0.10 4 35.77 0.90 0.967 0.25 (0.49) 0.0111 (0.0061)
0.01 12 63.15 0.90 0.944 0.86 (0.95) 0.0010 (0.0006)

Se= 0.95 0.02 9 56.42 0.90 0.938 0.77 (0.91) 0.0021 (0.0013)
Sp= 0.80 0.05 6 43.47 0.90 0.926 0.61 (0.80) 0.0055 (0.0033)

0.10 5 29.29 0.90 0.908 0.48 (0.65) 0.0118 (0.0069)
0.01 13 54.35 0.90 0.888 0.92 (0.97) 0.0011 (0.0007)

Se= 0.95 0.02 10 48.11 0.90 0.878 0.87 (0.94) 0.0023 (0.0015)
Sp= 0.70 0.05 6 36.11 0.90 0.866 0.74 (0.86) 0.0059 (0.0037)

0.10 5 23.38 0.90 0.843 0.61 (0.74) 0.0127 (0.0079)12

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 27, 2020. ; https://doi.org/10.1101/2020.05.26.20113696doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.26.20113696


Table 1b: Optimal group size (k∗), efficiency in terms of reduction in test numbers as percentage
of number of individuals tested (Eff), pooled testing sensitivity (SD

e ) and specificity (SD
p ) false

positive predictive value (FPPV ) and false negative predictive value (FNPV ) corresponding
to different prevalence rates (p), sensitivities (Se) and specificities (Sp) for Dorfman’s algorithm
(Continued).

Test p k∗ Eff SD
e SD

p FPPV FNPV
Quality (%) (FPPVI) (FNPVI)

0.01 11 80.59 0.81 0.999 0.10 (0.52) 0.0019 (0.0010)
Se= 0.90 0.02 8 73.22 0.81 0.999 0.07 (0.35) 0.0039 (0.0021)
Sp= 0.99 0.05 5 58.87 0.81 0.998 0.04 (0.17) 0.0099 (0.0053)

0.10 4 43.39 0.81 0.997 0.03 (0.09) 0.0207 (0.0111)
0.01 11 77.01 0.81 0.993 0.45 (0.85) 0.0019 (0.0011)

Se= 0.90 0.02 8 69.81 0.81 0.992 0.33 (0.73) 0.0039 (0.0021)
Sp= 0.95 0.05 6 55.82 0.81 0.988 0.22 (0.51) 0.0100 (0.0055)

0.10 4 40.77 0.81 0.986 0.13 (0.33) 0.021 (0.0116)
0.01 12 72.58 0.81 0.982 0.69 (0.92) 0.0020 (0.0011)

Se= 0.90 0.02 9 65.59 0.81 0.978 0.57 (0.84) 0.0039 (0.0023)
Sp= 0.90 0.05 6 52.14 0.81 0.972 0.40 (0.68) 0.0102 (0.0058)

0.10 4 37.49 0.81 0.968 0.26 (0.5) 0.0213 (0.0122)
0.01 13 63.73 0.81 0.944 0.87 (0.96) 0.0020 (0.0013)

Se= 0.90 0.02 9 57.25 0.81 0.939 0.79 (0.92) 0.0041 (0.0025)
Sp= 0.80 0.05 6 44.79 0.81 0.928 0.63 (0.81) 0.0107 (0.0065)

0.10 5 31.33 0.81 0.912 0.49 (0.67) 0.0226 (0.0137)
0.01 14 54.98 0.81 0.888 0.93 (0.97) 0.0022 (0.0014)

Se= 0.90 0.02 10 49.02 0.81 0.880 0.88 (0.94) 0.0044 (0.0029)
Sp= 0.70 0.05 7 37.61 0.81 0.862 0.76 (0.86) 0.0115 (0.0075)

0.10 5 25.43 0.81 0.848 0.63 (0.75) 0.0243 (0.0156)
0.01 12 81.69 0.64 0.999 0.13 (0.55) 0.0036 (0.0020)

Se= 0.80 0.02 9 74.75 0.64 0.999 0.09 (0.38) 0.0073 (0.0041)
Sp= 0.99 0.05 6 61.41 0.64 0.998 0.05 (0.19) 0.0186 (0.0105)

0.10 4 46.83 0.64 0.998 0.03 (0.10) 0.0385 (0.0220)
0.01 12 78.15 0.64 0.994 0.50 (0.86) 0.0036 (0.0021)

Se= 0.80 0.02 9 71.42 0.64 0.992 0.38 (0.75) 0.0074 (0.0043)
Sp= 0.95 0.05 6 58.47 0.64 0.989 0.25 (0.54) 0.0188 (0.0110)

0.10 5 44.29 0.64 0.985 0.18 (0.36) 0.0390 (0.0229)
0.01 13 73.73 0.64 0.982 0.74 (0.93) 0.0037 (0.0022)

Se= 0.80 0.02 9 67.25 0.64 0.980 0.61 (0.86) 0.0074 (0.0045)
Sp= 0.90 0.05 6 54.79 0.64 0.974 0.43 (0.70) 0.0191 (0.0116)

0.10 5 41.33 0.64 0.966 0.32 (0.53) 0.0398 (0.0241)
0.01 14 64.98 0.64 0.945 0.89 (0.96) 0.0038 (0.0025)

Se= 0.80 0.02 10 59.02 0.64 0.940 0.82 (0.92) 0.0078 (0.0051)
Sp= 0.80 0.05 7 47.61 0.64 0.928 0.68 (0.83) 0.0200 (0.0130)

0.10 5 35.43 0.64 0.919 0.53 (0.69) 0.0417 (0.0270)
0.01 15 56.34 0.64 0.890 0.94 (0.97) 0.0041 (0.0029)

Se= 0.80 0.02 11 50.95 0.64 0.883 0.90 (0.95) 0.0083 (0.0058)
Sp= 0.70 0.05 8 40.67 0.64 0.865 0.80 (0.88) 0.0214 (0.0148)

0.10 6 29.91 0.64 0.849 0.68 (0.77) 0.0450 (0.0308)
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Table 2: Expected values of the proportion of sample testing positive (π) corresponding to
different prevalence rates, sensitivities (Se) and specificities (Sp) for individual testing (πINDIV )
Dorfman’s algorithm (πDORF ). The πDORF values are based on k = 4, the most conservative
pooling choice from Tables 1a and 1b.

Test p πINDIV πDORF Test p πINDIV πDORF

Quality Quality
0.01 0.01 0.01 0.01 0.01 0.01

Se= 1 0.02 0.02 0.02 Se= 0.80 0.02 0.02 0.01
Sp= 1 0.05 0.05 0.05 Sp= 1 0.05 0.04 0.03

0.10 0.10 0.10 0.10 0.08 0.06
0.01 0.11 0.02 0.01 0.11 0.02

Se= 1 0.02 0.12 0.03 Se= 0.80 0.02 0.11 0.03
Sp= 0.90 0.05 0.14 0.07 Sp= 0.90 0.05 0.13 0.05

0.10 0.19 0.13 0.10 0.17 0.09
0.01 0.21 0.05 0.01 0.21 0.05

Se= 1 0.02 0.22 0.07 Se= 0.80 0.02 0.21 0.06
Sp= 0.80 0.05 0.24 0.11 Sp= 0.80 0.05 0.23 0.09

0.10 0.28 0.18 0.10 0.26 0.13
0.01 0.31 0.11 0.01 0.31 0.10

Se= 1 0.02 0.31 0.12 Se= 0.80 0.02 0.31 0.11
Sp= 0.70 0.05 0.34 0.16 Sp= 0.70 0.05 0.33 0.14

0.10 0.37 0.23 0.10 0.35 0.18
0.01 0.01 0.01 0.01 0.01 0

Se= 0.90 0.02 0.02 0.02 Se= 0.70 0.02 0.01 0.01
Sp= 1 0.05 0.05 0.04 Sp= 1 0.05 0.03 0.02

0.10 0.09 0.08 0.10 0.07 0.05
0.01 0.11 0.02 0.01 0.11 0.02

Se= 0.90 0.02 0.12 0.03 Se= 0.70 0.02 0.11 0.02
Sp= 0.90 0.05 0.14 0.06 Sp= 0.90 0.05 0.13 0.04

0.10 0.18 0.11 0.10 0.16 0.07
0.01 0.21 0.05 0.01 0.20 0.05

Se= 0.90 0.02 0.21 0.06 Se= 0.70 0.02 0.21 0.05
Sp= 0.80 0.05 0.23 0.10 Sp= 0.80 0.05 0.22 0.08

0.10 0.27 0.15 0.10 0.25 0.11
0.01 0.31 0.10 0.01 0.30 0.10

Se= 0.90 0.02 0.31 0.11 Se= 0.70 0.02 0.31 0.10
Sp= 0.70 0.05 0.33 0.15 Sp= 0.70 0.05 0.32 0.13

0.10 0.36 0.21 0.10 0.34 0.16
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Table 3a: Estimation results when perceived sensitivity (SP
e ) and specificity (SP

p ) are higher
than the true situations. Bias biasI corresponds to individual tests, while biasD corresponds to
Dorfman tests. The Dorfman values are based on k = 4, the most conservative pooling choice
from Tables 1a and 1b.

Perceived p ST
e = SP

e ST
e 10% less Both ST

e and ST
p Both ST

e and ST
p

test quality ST
p 10% less ST

p = SP
p 10% less 20% less

biasI biasD biasI biasD biasI biasD biasI biasD
0.01 0.10 0.01 0 0 0.10 0.01 0.20 0.04

SP
e = 1 0.02 0.10 0.01 0 0 0.10 0.01 0.19 0.04
SP
p = 1 0.05 0.10 0.02 -0.01 -0.01 0.09 0.01 0.18 0.04

0.10 0.09 0.03 -0.01 -0.02 0.08 0.01 0.16 0.03
0.01 0.10 0.01 0 0 0.10 0.01 0.20 0.04

SP
e = 0.99 0.02 0.10 0.02 0 0 0.10 0.01 0.20 0.04
SP
p = 0.99 0.05 0.10 0.02 -0.01 -0.01 0.09 0.01 0.18 0.04

0.10 0.09 0.03 -0.01 -0.02 0.08 0.01 0.16 0.03
0.01 0.11 0.02 0 0 0.10 0.02 0.21 0.05

SP
e = 0.99 0.02 0.10 0.02 0 0 0.10 0.02 0.20 0.05
SP
p = 0.95 0.05 0.10 0.03 -0.01 -0.01 0.10 0.02 0.19 0.05

0.10 0.10 0.04 -0.01 -0.02 0.09 0.01 0.17 0.04
0.01 0.11 0.03 0 0 0.11 0.02 0.22 0.06

SP
e = 0.99 0.02 0.11 0.03 0 0 0.11 0.02 0.22 0.06
SP
p = 0.90 0.05 0.11 0.03 -0.01 -0.01 0.10 0.02 0.20 0.06

0.10 0.10 0.04 -0.01 -0.02 0.09 0.02 0.18 0.05
0.01 0.13 0.04 0 0 0.12 0.04 0.25 0.09

SP
e = 0.99 0.02 0.12 0.04 0 0 0.12 0.03 0.24 0.08
SP
p = 0.80 0.05 0.12 0.04 -0.01 -0.01 0.11 0.03 0.23 0.08

0.10 0.11 0.05 -0.01 -0.02 0.10 0.03 0.20 0.06
0.01 0.14 0.05 0 0 0.14 0.05 0.28 0.11

SP
e = 0.99 0.02 0.14 0.05 0 0 0.14 0.05 0.28 0.11
SP
p = 0.70 0.05 0.14 0.05 -0.01 -0.01 0.13 0.04 0.26 0.10

0.10 0.13 0.06 -0.01 -0.02 0.12 0.03 0.23 0.08
0.01 0.11 0.02 0 0 0.10 0.01 0.21 0.05

SP
e = 0.95 0.02 0.10 0.02 0 0 0.10 0.01 0.20 0.05
SP
p = 0.99 0.05 0.10 0.02 -0.01 -0.01 0.10 0.01 0.19 0.04

0.10 0.10 0.03 -0.01 -0.02 0.09 0.01 0.17 0.03
0.01 0.11 0.02 0 0 0.11 0.02 0.22 0.06

SP
e = 0.95 0.02 0.11 0.02 0 0 0.11 0.02 0.21 0.06
SP
p = 0.95 0.05 0.11 0.03 -0.01 -0.01 0.10 0.02 0.20 0.05

0.10 0.10 0.04 -0.01 -0.02 0.09 0.01 0.18 0.04
0.01 0.12 0.03 0 0 0.12 0.03 0.23 0.07

SP
e = 0.95 0.02 0.12 0.03 0 0 0.11 0.03 0.23 0.07
SP
p = 0.90 0.05 0.11 0.03 -0.01 -0.01 0.11 0.02 0.21 0.06

0.10 0.11 0.04 -0.01 -0.02 0.09 0.02 0.19 0.05
0.01 0.13 0.04 0 0 0.13 0.04 0.26 0.09

SP
e = 0.95 0.02 0.13 0.04 0 0 0.13 0.04 0.26 0.09
SP
p = 0.80 0.05 0.13 0.04 -0.01 -0.01 0.12 0.03 0.24 0.08

0.10 0.12 0.05 -0.01 -0.02 0.11 0.03 0.21 0.06
0.01 0.15 0.05 0 0 0.15 0.05 0.30 0.12

SP
e = 0.95 0.02 0.15 0.05 0 0 0.15 0.05 0.30 0.12
SP
p = 0.70 0.05 0.15 0.06 -0.01 -0.01 0.14 0.04 0.28 0.11

0.10 0.14 0.06 -0.02 -0.02 0.12 0.04 0.25 0.08
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Table 3b: Estimation results when perceived sensitivity (SP
e ) and specificity (SP

p ) are higher
than the true situations. Bias biasI corresponds to individual tests, while biasD corresponds to
Dorfman tests (Continued).

Perceived p ST
e = SP

e ST
e 10% less Both ST

e and ST
p Both ST

e and ST
p

test quality ST
p 10% less ST

p = SP
p 10% less 20% less

biasI biasD biasI biasD biasI biasD biasI biasD
0.01 0.11 0.02 0 0 0.11 0.01 0.22 0.05

SP
e =0.90 0.02 0.11 0.02 0 0 0.11 0.01 0.22 0.05

SP
p = 0.99 0.05 0.11 0.03 -0.01 -0.01 0.10 0.01 0.20 0.05

0.10 0.10 0.04 -0.01 -0.02 0.09 0.01 0.18 0.04
0.01 0.12 0.02 0 0 0.12 0.02 0.23 0.06

SP
e =0.90 0.02 0.12 0.03 0 0 0.11 0.02 0.23 0.06

SP
p = 0.95 0.05 0.11 0.03 -0.01 -0.01 0.11 0.02 0.21 0.06

0.10 0.11 0.04 -0.01 -0.02 0.09 0.02 0.19 0.04
0.01 0.12 0.03 0 0 0.12 0.03 0.25 0.08

SP
e =0.90 0.02 0.12 0.03 0 0 0.12 0.03 0.24 0.08

SP
p = 0.90 0.05 0.12 0.04 -0.01 -0.01 0.11 0.03 0.22 0.07

0.10 0.11 0.04 -0.01 -0.02 0.10 0.02 0.20 0.05
0.01 0.14 0.04 0 0 0.14 0.04 0.28 0.11

SP
e =0.90 0.02 0.14 0.05 0 0 0.14 0.04 0.27 0.10

SP
p = 0.80 0.05 0.14 0.05 -0.01 -0.01 0.13 0.04 0.26 0.09

0.10 0.13 0.05 -0.01 -0.02 0.11 0.03 0.23 0.07
0.01 0.16 0.06 0 0 0.16 0.06 0.33 0.14

SP
e =0.90 0.02 0.16 0.06 0 0 0.16 0.06 0.32 0.13

SP
p = 0.70 0.05 0.16 0.06 -0.01 -0.01 0.15 0.05 0.30 0.12

0.10 0.15 0.07 -0.02 -0.02 0.13 0.04 0.27 0.09
0.01 0.13 0.02 0 0 0.12 0.02 0.25 0.07

SP
e =0.80 0.02 0.12 0.02 0 0 0.12 0.02 0.24 0.06

SP
p = 0.99 0.05 0.12 0.03 -0.01 -0.01 0.11 0.02 0.23 0.06

0.10 0.11 0.04 -0.01 -0.02 0.10 0.01 0.20 0.05
0.01 0.13 0.03 0 0 0.13 0.03 0.26 0.08

SP
e =0.80 0.02 0.13 0.03 0 0 0.13 0.03 0.26 0.08

SP
p = 0.95 0.05 0.13 0.04 -0.01 -0.01 0.12 0.02 0.24 0.07

0.10 0.12 0.05 -0.01 -0.02 0.11 0.02 0.21 0.05
0.01 0.14 0.04 0 0 0.14 0.04 0.28 0.10

SP
e =0.80 0.02 0.14 0.04 0 0 0.14 0.03 0.27 0.09

SP
p = 0.90 0.05 0.14 0.05 -0.01 -0.01 0.13 0.03 0.26 0.08

0.10 0.13 0.05 -0.01 -0.02 0.11 0.03 0.23 0.07
0.01 0.16 0.06 0 0 0.16 0.05 0.33 0.13

SP
e =0.80 0.02 0.16 0.06 0 0 0.16 0.05 0.32 0.13

SP
p = 0.80 0.05 0.16 0.06 -0.01 -0.01 0.15 0.05 0.30 0.11

0.10 0.15 0.07 -0.02 -0.02 0.13 0.04 0.27 0.09
0.01 0.20 0.08 0 0 0.20 0.07 0.39 0.18

SP
e =0.80 0.02 0.20 0.08 0 0 0.19 0.07 0.38 0.18

SP
p = 0.70 0.05 0.19 0.08 -0.01 -0.01 0.18 0.06 0.36 0.16

0.10 0.18 0.08 -0.02 -0.03 0.16 0.05 0.32 0.12
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