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Abstract. Coronary artery disease (CAD) is the leading cause of death worldwide, constituting 

more than one-fourth of global mortalities every year. Accurate semantic segmentation of each 

artery in fluoroscopy angiograms is important for assessment of the stenosis and CAD diagnosis 

and treatment. However, due to the morphological similarity among different types of arteries, it is 

hard for deep-learning-based models to generate semantic segmentation with an end-to-end 

approach. In this paper, we propose a multi-step semantic segmentation algorithm based on the 

analysis of graphs extracted from fluoroscopy angiograms. The proposed algorithm firstly extracts 

the entire arterial binary mask (binary vascular tree) by Feature Pyramid U-Net++. Then we extract 

the centerline of the binary vascular tree and separate it into different vessel segments. Finally, by 

extracting the underlying arterial topology, position and pixel features, we construct a powerful 

coronary artery classifier based on random forest. Each vessel segment is classified into left 

coronary artery (LCA), left anterior descending (LAD) and other types of arterial segments. We 

tested the proposed method on a dataset with 69 LAO and 103 RAO fluoroscopic angiograms and 

achieved classification accuracies of 66.4% and 61.49% respectively. The experimental results 

show the effectiveness of the proposed algorithm, which can be used to analyze the individual 

arteries in fluoroscopy angiograms.  
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1 Introduction 

Coronary artery disease (CAD) is the leading cause of morbidity and mortality in the United States and costs 

about 350 billion dollars annually [1]. The gold standard for diagnosis and therapeutic decisions for CAD is 

invasive coronary angiography (ICA). ICA involves an injection of contrast into the epicardial arteries with 

acquisition of continuous fluoroscopy. Detection of CAD is performed by Doctors through the comparison of the 

visualization of the diseased vessel segments within arteries and the normal vessel segments. X-ray fluoroscopy 

imaging is the most commonly used imaging modality to visualize blood vessels in interventional cardiology [2]. 

Assessment of vessel structures and territories is essential for the diagnosis and treatment.  

The semantic segmentation of coronary vessels is extremely important in clinical practice of interventional 

cardiology: for CAD clinical decisions, successfully detecting the percent stenosis of a coronary artery would 

entail real-time guidance [3]. The left coronary artery (LCA) is the artery that arises from the aorta above the left 

cusp of the aortic valve and feeds blood to the left side of the heart. It is the left main stem coronary artery. The 

LCA branches into the left anterior descending (LAD) artery, which courses between the left and right ventricles 

towards the LV apex on the anterior wall of the heart, and the left circumflex artery (LCX) courses towards the 

left inferior direction along the atrioventricular groove. Typically, radiologists analyze the whole vascular tree 

according to the position and morphological tendency of LAD and LCX. Hence, the first step is to extract LAD 

and LCX. However, the extraction of LAD and LCX depends on manual segmentation, which is time-consuming 

and tedious.  
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Fig. 1. Illustration of semantic segmentation of vessels in (a) Left Anterior Oblique (LAO) view and (b) Right 

Anterior Oblique (RAO) view. For each view, the raw image and semantic maps are juxtaposed vertically. 

Recently, deep learning techniques, especially variants based on convolutional neural networks (CNN), have 

been employed on vessel segmentation in coronary angiography. In [4], the authors implemented a CNN network 

which contains 2 convolutional layers to predict the patched vessel binary mask. In [5], a CNN was used to classify 

the central pixel within the cropped patches into vessel pixel or background. Even though the proposed approaches 

have achieved a state-of-the-art performance on vessel segmentation in fluoroscopic images, the methods are not 

suitable for semantic segmentation to extract individual vessel segments. The existing approaches extracted the 

entire vascular tree in X-ray angiography and did not take the position and topology of vessel segments into 

consideration. Hence, current approaches have a major limitation: it is difficult to assess vessel anatomy in 

fluoroscopy images due to the very low contrast, moving objects, inconstant contrast agent, and limited view 

angles [6]. The morphological similarity among different types of arteries brings challenges to learning-based 

models for semantic segmentation. 

In this paper, we propose a new hybrid deep-learning and graph-based approach to extract individual coronary 

arteries in fluoroscopy angiograms by incorporating global position, topology and pixel information. The focus 

of this work is on the classification of vessel segments into LAD, LCX, D1, OM1 and other vessels.  Initially we 

focus on the segmentation of the entire vascular tree and then we extract the LAD and LCX (major vessels [7]]) 

from the X-ray fluoroscopy images by using the designed Feature Pyramid U-Net++ (FP-U-Net++). After that, 

we extract the centerline of the whole vascular tree, and find the key points to generate the vessel graph. Finally, 

we extract positional and topological features from vessel segments and graph edge and perform the semantic 

segmentation. The workflow of the proposed approach is shown in Fig. 2. 
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Fig. 2. Workflow of coronary arteries semantic segmentation.  

2 Methods 

The proposed method contains five steps: (1) Generation of binary vascular tree using  multi-output U-Net++; (2) 

Extraction of LAD and LCX; (3) Generation of vessel graph; (4) Feature extraction by considering position, 

topology and pixels of vessel segments; (5) Vessel segment labeling. Each step is depicted in the Fig. 2 from (a) 

to (e). 

2.1 Vascular Tree and Major Vessels Segmentation 

In general, current models for medical image segmentation are variants of the encoder-decoder based architecture, 

such as U-Net [8]. Many recent networks employed the classification network with the pre-trained weights in 

ImageNet [9] as the backbone of the encoder. In U-Net++, the skip-connections are modified by using nested and 

dense connections [10]. Accordingly, an improved U-Net++ is used for segmentation.  

In the proposed approach, the multi-scale technique will be improved by feature pyramids, which are built upon 

image pyramids and will form a fundamental solution for utilizing features in different scales. The detailed design 

of the proposed improved vessel extraction network is shown in Fig. 3. To leverage the pyramid features of the 

hierarchy decoder in U-Net++, we resize the feature maps extracted from different layers and integrate them. to 

generate the final feature map. By using pyramid features, the multi-scale problems would be significantly 

resolved. 
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Fig. 3. Architecture of multi-output FP-U-Net++. 

Both vascular tree segmentation task and major vessels segmentation task are performed by applying the 

designed FP-U-Net++ network. For vascular tree segmentation, the input of the network is the raw fluoroscopic 

angiograms and the output is the binary mask of the whole vascular tree. For major vessel segmentation, the input 

is the masked fluoroscopic angiograms by vascular tree binary mask and the output is the binary mask of LAD or 

LCX arteries. We separately train the FP-U-Net++ to generate the LAD and LCX binary masks. To optimize the 

parameters, we adopt the dice coefficient function as the loss function. 

2.2 Vessel Graph Generation 

The centerline of vascular tree is generated by using erosion and dilatation operations. The extracted centerline is 

thus a representation of the vascular tree which contains three types of the nodes [12]: the degree-one nodes are 

the end of vessels and the degree-two nodes are connecting point;  if the degree is greater or equal to 3, the node 

can be a joint point.  

We iterate each pixel in centerline then the vessel nodes are extracted by finding the joint points (degree greater 

or equal to 3) and the end points (degree equals to 1). To find the links between the nodes, we add each pair of 

points into the graph if they are connected adjacently. Then we will remove the degree-two points and 

corresponding edges from the centerline to generate the final undirect graph. 

Each vessel segment is represented by a link between two nodes in the generated graph. Semantic segmentation 

will label the vessels by determining the type of each graph edge and assigning the vessel type to the vessel 

segment based on the vessel pixels between any of the two adjacent nodes [11], the topology information, and the 

pixels within the vessel segments. 

2.3 Vessel Segments Labelling  

In section 2.1, we have extracted the two major vessels and label them as LAD and LCX. For other three classes 

of vessels, we will label them based on the generated graph. The basic idea is to classify the segments into different 

classes of vessels. After that, we will assign the arteries with different class labels to achieve semantic 

segmentation. As demonstrated in section 2.2, each vessel segment is represented by a link between two nodes. 

When we classify a specific segment, we use the features extracted from this segment and its corresponding edge. 

For feature extraction from the edge, topology information will be used: the degree of the nodes connected by this 

edge will be used as the feature. We also extract position and pixel features from the segment (See table 1).  By 

using the extracted features of each vessel segment, we will use an off-the-shell machine learning classifier to 
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perform vessel segment classification and a grid search will be used to find the best classifier (see section 3). By 

classifying the vessel segments into different classes, the semantic segmentation results are generated, and each 

segment is labeled using the label corresponding to that class. 

Table 1. List of features measured for each vessel segment. 

Type Nr. Feature 

pixel 

feature 

1 Number of vessel pixels in the segment  

2 Number of vessel pixels in the extracted centerline in this segment 

3-4 Mean and standard deviation of the intensities in the segment 

5-6 
Mean and standard deviation of the intensities in the centerline in 

the segment 

position 

feature 

7-10 
Positions of absolute and weighted centers related to the vascular 

tree 

11-18 
Absolute and weighted positions of 2 key points related to the 

vascular tree 

19-26 
Absolute and weighted positions of 2 key points related to the 

segment 

27-30 Mean, standard deviation, minima and maxima of vascular radius 

31-40 
Horizontal and vertical distances between segment’s key points to 

LAD or LCX segment 

41-54 
Horizontal and vertical distances between segment’s center to LAD 

or LCX segment 

topolog

y 

feature 

55-56 Degrees of two key points in the centerline 

3 Experimental Results 

Dataset: This retrospective study enrolled 73 patients who received fluoroscopy angiography between September 

2010 and November 2017. Fluoroscopy angiography was performed using a Toshiba Infinix angiography system 

and acquired at 15 frames/sec and with a tube voltage of 80kV. Each image has a size of 512×512 with a pixel 

size of 0.342mm.  

The dataset consists of 172 fluoroscopy angiograms with 69 LAO images and 103 RAO images and all the images 

derived from LCA images. The vessel contours were manually drawn by well-trained operators, confirmed by an 

experienced interventional cardiologist and then provided to this study as the ground truth. For each angiogram, 

we annotated LAD, LCX, D1 and OM1 arteries, which are important for clinical analysis. The study was approved 

by the Oshsner Medical Center Institutional Review Board. 

Results on Vascular Tree and Major Vessels Segmentation. We implemented our deep learning network with 

Keras, and we trained our designed FP-U-Net++ neural network on LAO and RAO dataset separately on a 

workstation with a Titan V GPU. On each subset, we randomly selected 80% samples for training and the rest for 

testing. We trained our model with 1000 iterations using the RMSprop optimizer with an initial learning rate to 

0.001. For the backbone of FP-U-Net++, we adopted the Inception ResnetV2 [13] with the pretrained weight on 

ImageNet dataset and fine-tuned the parameters during the training period. To evaluate the model performance 

on vascular tree and major vessels segmentation, we adopted the Dice coefficient, specificity (SP) and sensitivity 

(SN). The model performance is shown in Table 2. 
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Table 2. Performance evaluation on vascular tree and major vessel segmentation. 

Dataset Dice SP SN Dataset Dice SP SN 

Vascular-LAO 0.8347 0.9928 0.8343 Vascular-RAO 0.8619 0.9929 0.8435 

LAD-LAO 0.9449 0.9995 0.9300 LAD-RAO 0.8447 0.9992 0.7895 

LCX-LAO 0.8756 0.9984 0.9035 LCX-RAO 0.8892 0.9991 0.9692 

Results on Vessel Graph Generation. After generating vessel binary masks and extracting major vessels, we 

extracted the centerlines and generated a graph for each fluoroscopic angiogram. In Fig. 4, the joint points and 

end points are annotated by red star and green plus respectively. 

Results on Vessel Semantic Segmentation. For each generated vascular graph, we separated each vessel segment 

based on the centerline and extracted the corresponding features listed in Table 1. For LAO subset, 1152 segments 

were generated; for RAO subset, 4094 segments were generated. We performed a grid search on the classifiers 

for vessel segment classification, including support vector machine, gaussian process, stochastic gradient descent, 

random forest and ensemble learning with several base classifiers. According to experimental results, random 

forest classifier achieved the best performance on both LAO and RAO subsets. As demonstrated in section 2.3, 

the pixels within the vessel segments will be classified into one class; however, we will evaluate our classification 

model on pixel accuracy rather than segment accuracy, which is defined as: 

Accuracy=
number of correct predictions

total number of vessel pixels
 (1) 

The pixel accuracy on fluoroscopic images is shown in Table 3. 

Table 3. Accuracy of pixel classification by using random forest. 

Dataset LAD LCX D1 OM1 OTHER ALL 

LAO 0.9331 0.5936 0.5707 0.6273 0.5283 0.6640 

RAO 0.8973 0.7686 0.2840 0.2435 0.5819 0.6149 

According to Table 3, our approach achieved an accuracy score at 0.6640 on LAO subset and 0.6149 on 

RAO subset. In Fig. 4, we visualized the results generated on each step for several examples on LAO and RAO 

subsets. 
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Fig. 4. Experimental results on LAO (top) and RAO (bottom) subsets of (a) original images, (b) vascular binary 

segmentation results, (c) generated vascular centerlines, (d) generated vessel graph, (e) semantic segmentation 

predictions, and (f) semantic segmentation ground truths. 

4 Conclusion 

We propose a new hybrid deep-learning and graph-based approach to extract individual coronary arteries in 

fluoroscopy angiograms by incorporating global position and topology information. To precisely extract the entire 

vascular tree and major vessels, we modify a U-Net++ network by concatenating hierarchical feature maps to 

generate the final prediction. By incorporating the clinical knowledge, we firstly extract the LAD and LCX vessel 

segments by FP-U-Net++ to further determine other vessel segments. By generating the centerline of vascular 

tree, we find the key points and convert the centerline into vessel graph. Each vessel segment is represented by 

the edge in the graph. Finally, we extract 56 handcraft features of the vessel segment and employ a random forest 

classifier to classify the vessel segments and further generate the semantic segmentation results. The proposed 

approach achieves an accuracy score at 66.4% and 61.49% on LAO and RAO subsets respectively. To our best 

knowledge, this is the first learning-based method to extract individual arteries in fluoroscopy angiograms and it 

has great promise for clinical uses. 
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