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Abstract:  

  A data-driven approach is developed to estimate medical resource deficiencies or 

medical burden at county level during the COVID-19 pandemic from February 15, 2020 to 

May 1, 2020 in the U.S. Multiple data sources were used to extract local population, 

hospital beds, critical care staff, COVID-19 confirmed case numbers, and hospitalization 

data at county level. We estimate the average length of stay from hospitalization data at 

state level, and calculate the hospitalized rate at both state and county level. Then we 

develop two medical resource deficiency indices that measure the local medical burden 

based on the number of accumulated active confirmed cases normalized by local maximum 

potential medical resources, and the number of hospitalized patients that can be supported 

per ICU beds per critical care staff, respectively. The medical resources data, and the two 

medical resource deficiency indices are illustrated in a dynamic spatiotemporal 

visualization platform based on ArcGIS Pro Dashboards. Our results provide new insights 

into the U.S. pandemic preparedness and local dynamics relating to medical burdens in 

response to the COVID-19 pandemic.  
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1. Introduction 

  Just before the global pandemic COVID-19, a report by the Global Health Security 

Index was released, which is the first-ever comprehensive ranking of 195 countries based 

on their pandemic preparedness, with six categories of 140 questions and 34 indicators [1]. 

Although national health security is fundamentally weak across the globe, the U.S. scored 

83.5/100 and ranked No.1 in the report. As evidence, there were 34.7 critical care beds per 

100,000 inhabitants in the U.S. by 2009, which is higher than that of any other country [2, 

3]. However, the U.S. has fewer hospital beds (2.8), and practicing physicians (2.6) per 

1,000 capita compared to other similar large and wealthy countries [4]. 

       Since the COVID-19 outbreak, it has been estimated that a significant percentage 

of the U.S. population would test positive for COVID-19 even given a conservative 

estimation [5]. For example, a recent AHA (American Hospital Association) webinar on 

COVID-19 projected that 30% (96 million) of the U.S. population would test positive, with 

5% (4.8 million) being hospitalized, 2% (1.9 million) would be admitted to the intensive 

care unit (ICU), and 1% (960,000) would require ventilators [6]. This projection is 

generally compatible with the characteristics of COVID-19 in Wuhan, China, where 5% of 

patients required the intensive care unit and 2.3% required a ventilator [7]. Based on a 

recent CDC survey, the actual weekly hospitalization rate in April 2020 was around 5.8-

7.5% for 100 counties across 14 states [8], which means a large number of infected patients 

will swarm into hospitals and ICUs. As a matter of fact, the U.S. had the highest number of 

confirmed cases of COVID-19 (82,404) in the world on March 26, 2020, and surpassed 

Italy for the highest national death toll (20,413) on April 11, 2020 [9, 10]. 

  Are U.S. medical resources enough to handle the worst scenario during this crisis? 

The Society of Critical Care Medicine (SCCM) released a report regarding the medical 

resources both available and needed for a potentially overwhelming number of critically ill 

patients [6]. In this report, three fundamental elements or features, i.e. ventilators, ICU 

beds, and critical care staff (CCS) were identified as medical resources to plan for or 

manage a COVID-19 pandemic, and it would be wise to consider the interconnections 

among these factors in a spatiotemporal data analysis framework. Specifically, the medical 

resource distribution should be correlated with COVID-19 pandemic statistics in space 

(2D) and time (1D), so medical resource burden or deficiency can be identified through 

feature selection, visualization, monitoring, and cluster analysis[11].  

  Among these three elements, an inventory of ventilators is difficult to quantify for 

estimating critical supply shortages. Based on a 2009 AHA survey, a total of 5,752 U.S. 

acute care hospitals were estimated to have 62,188 full-featured mechanical ventilators and 

98,738 ventilators with limited features [12]. The Strategic National Stockpile (SNS) had 

an estimated 8,900 ventilators for emergency deployment in 2010, and between 12,000 and 

13,000 ventilators by March 13, 2020 [13-15]). Based on these numbers, the ventilator 

inventory was approximately 173,000-174,000 in the U.S. A model-based analysis 

suggested that US hospitals could absorb between 26,200 to 56,300 additional ventilators at 

the peak of a national pandemic with robust pre-pandemic planning [16]. Since SNS can 

deliver ventilators within 24-36 hours after being requested by states and approved by 

federal organizations, and no reliable database for ventilator inventory exists at county or 

state level, we will not consider this factor in our spatiotemporal analysis. A recent model-

driven study simply assumes one ventilator per critical care bed [17] and we use this same 

assumption in our analysis.  
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  Hospital beds, especially ICU beds, are an important factor in evaluating medical 

resource deficiency during the COVID-19 pandemic, and quantity of beds has been used as 

a major factor in model-driven predictions of local critical care capacity limit[17] [18]. 

However, safe use of ventilators in ICU requires trained personnel. In a previous study, the 

number of trained medical personnel is assumed to correlate with the number of staffed 

beds maintained by hospitals [16]. This assumption is perhaps unrealistic at county level 

without considering the geographic disparity. 

  For this research, we assume that a realistic measurement of the medical burden at 

county level should consider both ICU beds and critical care staff (CCS), which will 

provide reasonable evidence for stakeholder (e.g., hospital, county and State governments) 

policy and decision-making. In this study, we (1) conduct a medical data analysis, and re-

evaluate the spatial distribution of medical resource features (hospital beds, ICU beds, and 

CCS) at county level; (2) develop two Medical Resource Deficiency Indices (MRDI and 

MRDId) by linking positive COVID-19 infections and local medical resources to measure 

local medical burden; and (3) develop a data-driven dynamic spatiotemporal framework to 

visualize and analyze the MRDI /MRDId trends at the county level. Our results provide a 

new dimension of insight into the U.S. pandemic preparedness and local dynamic medical 

burden during COVID-19 pandemic. The dataset is open sourced and hosted on GitHub 

(https://github.com/stccenter/COVID-19-Data/tree/master/US), and are visualized through 

ArcGIS Dashboards at: http://mrd-dashboard.stcenter.net/. 

2. Data 

2.1. Base map and unit of analysis  

A total of 3,143 counties and county-equivalents in the U.S. are used as the primary 

unit of this study, since they are manageable in a GIS system and small enough to reflect 

local geographic discrepancies. The base map was downloaded from the 2019 TIGER/LINE 

products from the U.S. Census Bureau, which is the most comprehensive spatial dataset 

designed for GIS platforms (https://www2.census.gov/geo/tiger/TIGER2019/). The county 

vector layer delineates the administrative boundary with land/water area without any 

demographic data, but it provides geographic entity codes (GEOIDs) for joining with other 

socio-economic data such as Census data. Based on the attributes of our collected medical-

related datasets, we also prepared state and ZIP code boundaries for data fusion and 

integration at county level.  

2.2. Medical resource feature extraction 

In this study, two fundamental features of medical resources in the U.S. were 

extracted, i.e., hospital beds and critical care staff. Besides, the population and 60+ senior 

population data was extracted at county level from KHN online database [19], which is used 

to normalize the local medical data in the subsequent analysis. 
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2.2.1. Hospital beds  

National public and private online datasets were used to prepare county-level hospital 

bed counts. Hospital data were collected from Definitive Healthcare [20]. Definitive 

Healthcare consulting services shares their hospital dataset to the entire health research 

community through ArcGIS online, which covers information of nationwide bed capacity 

and average yearly bed utilization of hospitals. Although it is not a real-time dataset that 

reflects each hospital’s bed capacity during COVID-19, it can be used as a baseline to 

estimate the geographic disparity of local health resources.  

A hospital is defined as a healthcare institution providing inpatient, therapeutic, or 

rehabilitation services under the supervision of physicians with the capability of inpatient 

care [20]. All types of hospitals are included in our study. Five types of hospital beds are 

clearly identified in the Definitive Healthcare dataset. In our study, two hospital bed 

capacities were selected and used in the analysis. The first one is the number of licensed beds, 

which is the potential or maximum number of beds for which a hospital holds a license to 

operate. The second type of capacity refers to the number of adult ICU beds that could be 

used for COVID-19. During this crisis, hospitals could use additional intensive care beds to 

supplement an influx of patients. Therefore, adult ICU beds include not only internal medical 

ICU beds, but also burn, surgical, and trauma ICU beds. However, pediatric, premature or 

neonatal ICU beds are not included because they are mainly for a different target patient 

population, which has a much lower incidence rate of COVID-19.  

Two other independent data sources of hospital beds are compared with the data from 

Definitive Healthcare. One is from Kaiser Health News (KHN) based on reports of ICU beds 

in 2018-2019 [19], and the other is from Homeland Infrastructure Foundation-Level Data 

(HIFLD) for licensed hospital beds updated on October 7, 2019 [21]. We conducted a 

regression analysis comparing KHN with Definitive Healthcare in terms of ICU beds, and 

comparing HIFLD with Definitive Healthcare in terms of licensed beds, and the coefficients 

of determination (r2) are 0.94 and 0.97, respectively. The results validate the quality of the 

Definitive Healthcare dataset.  

 

2.2.2. Critical care staff 

A dataset of critical care staff (CCS) was extracted from the weekly updated National 

Provider Identifier Registry (NPI) database (~7.1 GB) through structured query language 

(SQL) [22]. The NPI is a unique 10-digit identification number for each health-care provider 

issued by the Centers for Medicare Medicaid Services through the National Plan and Provider 

Enumeration System. Each health-care provider could have multiple taxonomy codes, which 

indicate areas of specialization. Through consulting with medical researchers and front-line 

physicians, we extracted detailed CCS data from the NPI database released on April 15, 2020 

as a medical resource feature (Table 1). Our study identifies 197,061 health care providers 

by searching unique NPI records and removing duplicate records. With the development of 

COVID-19 in the U.S., all these ICU-related staff (emergency medicine physician, critical 

care physicians, anesthesiologists, hospitalists, pulmonologist, infectious disease physician, 
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surgery, anesthesiologist assistant, critical care nurses, nurse anesthetist, and respiratory 

therapists trained in mechanical ventilation) would become valuable but limited asset for 

critically ill ventilated patients [6].  

 

 Table 1. Critical care staff extracted from NPI database 

  Critical Care Staff (CCS) Taxonomy Code Number 
 Total 

Number*  

Physician 

Emergency Medicine 207P00000X  67591 

 131519 

  

  

  

  

  

  

Anesthesiology (Critical 

Care Medicine) 
207LC0200X  1871 

Hospitalist 208M00000X  27827 

Internal Medicine 

(Infectious Disease) 
207RI0200X  11299 

Internal Medicine (Critical 

Care Medicine) 
207RC0200X  10976 

Internal Medicine 

(Pulmonary Disease) 
207RP1001X  19990 

Surgery (Surgical Critical 

Care) 
2086S0102X  2392 

Physician 

Assistant 
Anesthesiologist Assistant 367H00000X  2953  2953 

Nurse 

Certified & registered 

Nurse Anesthetist 
367500000X  61585 

 62589 

  Nurse Practitioner 

(Critical Care Medicine) 
363LC0200X  1040 

Technician 

Certified Respiratory 

Therapist 
2278C0205X  164  538 

  

 Registered Respiratory 

Therapist 
2279C0205X  379 

Total - - - 197,061 

  * Duplicate records were removed since one health care provider may have multiple 

Taxonomy Codes. 

2.3. COVID-19 patients 

The U.S. Centers for Disease Control and Prevention (CDC) published daily COVID-

19 confirmed cases on February 25, 2020. Each state got involved soon after and began to 

report COVID-19 data, including the daily and accumulated test and confirmed case 

numbers, hospitalization data, and death numbers at state level. However, numbers of 

discharged or released patients from hospitals are less widely available, e.g., only a few 

states, such as Maryland, Colorado, and New York provide some (incomplete) statistics on 

recovered patients from both hospital and home. This study mainly uses the data collected 

by the NSF Spatiotemporal Innovation Center (STC) at George Mason University. This 
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dataset uses a datacube structure for spatiotemporal data aggregation from multiple sources. 

The data is cleaned, standardized, and updated daily to solve any data conflicts, and a time-

series summary at state and county level is provide for the U.S.[10, 23]  

The numbers of county-level confirmed positive cases as well as deaths were 

originally extracted from USAFacts based on CDC data [24], and compared with local public 

health agencies for verification. The confirmed and death cases reflect cumulative statistics 

since January 22, 2020, the day after the first confirmed cases were reported in Washington 

State. Furthermore, state level test and hospitalization data were extracted from the COVID 

Tracking Project [25]. However, the current and accumulated hospitalization cases from state 

health departments are largely incomplete. By April 29, 2020, a total of 22 states reported 

both current and accumulated hospitalized patient numbers, 17 states reported only current 

hospitalized numbers, and 10 states only reported accumulated hospitalized numbers, while 

Washington, D.C., Nevada and Nebraska did not provide information on the number of 

hospitalized cases. 

3. Methods 

3.1. Medical feature extraction and aggregation 

Raw datasets in this study were collected from multiple sources with heterogeneous 

formats and structures. All data are processed and aggregated at county level based on County 

Federal Information Processing Standard (FIPS). Several aggregation methods are used for 

each raw dataset, as summarized in Fig 1. 
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Fig 1. Medical feature extraction workflow 

 

First, the hospital data was originally presented as a point location in a coordinate 

format, and its attribute table includes five types of hospital beds. The spatial point 

aggregation algorithm was used to integrate the numbers of licensed beds and adult ICU beds 

at county level. The bed numbers per 1,000 residents were also calculated at county level.  

The primary practice addresses of CCS were imported from the NPI database, and 5-

digital zip codes were extracted. The total number of CCS within a county was counted based 

on the county's ZIP codes through geocoding and the point/ polygon aggregation algorithm. 

The number of CCS per 1,000 residents were also calculated at county level.  

The accumulated COVID-19 confirmed case numbers were extracted at county level. 

We used existing hospitalization data to estimate the average length of stay (ALOS) in acute 

care, since it is key for estimating the daily hospitalized patients. For a given state, the current 

hospitalized patients should be equal to the accumulation of hospitalized patients minus the 

accumulation of deaths and discharged patients within the most recent ALOS. Since no 

patient discharge data was available, we assumed that the number of discharged patients was 

zero. Therefore, we estimated ALOS by matching (1) the accumulation of hospitalized 

patients minus the accumulation of deaths in most recent days, and (2) the current number of 

hospitalized patients, and finally interpolating by two nearest days or accumulation periods. 

It turns out to be an optimization problem to find a parameter (n) to match the two data 

sources, as shown in Equation (1).   
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where  is the accumulated number of hospitalized patients in the past n days,  

is the accumulated number of deaths in the past n days, and   is the number of currently 

hospitalized patients. 

State hospitalization data were only available recently (starting from March 17, 2020 

in NY) with numerous missing data. By May 1, 2020, among 22 states that have both current 

and accumulated numbers of hospitalized patients, eight states (Colorado, Massachusetts, 

Maine, Minnesota, Montana, North Dakota, New York, Oklahoma) had complete data for 

the most recent 20 days; 12 states (Oklahoma, Wisconsin, Mississippi, Maryland, New 

Hampshire, New Mexico, Oregon, South Dakota, Virginia, Wyoming, Rhode Island, 

Kentucky) only had data in the most recent 5-15 days; and data from Arkansas, Arizona, and 

Connecticut were abandoned due to poor quality. We calculated the daily ALOS for these 19 

states and pooled the results in Fig 2. The average state ALOS ranges from 8.8 (New 

Mexico)-28.5 (Mississippi) days. The overall national average ALOS weighted by state 

hospitalized patients is 15.5 days, which is longer than a previous estimation that the ALOS 

in acute care were 11 days [18]. It is worth noting that ALOS is likely to be underestimated 

since we assumed no discharged patients. Furthermore, ALOS is subject to change when 

more hospitalization data become available in the future.  

 

Fig 2. Box-plot (5-number summary) of hospitalized ALOS among 19 states. 

 

Finally, we define the COVID-19 hospitalized rate as the ratio of the number of 

current hospitalized patients and the accumulated confirmed case numbers during the most 

recent ALOS. If the hospitalized rate remains the same within a state, the daily hospitalized 

patient number in a county can be estimated by using the accumulated COVID-19 confirmed 

case numbers minus deaths in the most recent ALOS, multiplied by the state average 

hospitalized rate. If no state ALOS is available, we use the overall national average ALOS 

of 15.5 days. This daily hospitalized patient number can be used to evaluate the daily medical 

burden at county level.  
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3.2. Medical Resource Deficiency Indices   

The medical resource deficiency indices (MRDI) are defined as an indicator of 

medical resource burden at county level. We define two forms of MRDI: general MRDI, and 

local daily MRDI (MRDId). 

  

where  is the accumulated number of confirmed COVID patients,  is the 

accumulated number of deaths,  is the total number of licensed beds, and  is the 

number of critical care staff. We assumed that  and  were relatively independent 

at county level, and the product of them represents the interconnection of these two medical 

resource features or factors. Therefore, the MRDI represents the number of accumulated 

active confirmed cases normalized by the local maximum potential medical resources (total 

licensed beds and total CCS). MRDId is represented as 

 

where  is the accumulated confirmed case numbers during a most recent ALOS,  is 

the accumulated death numbers during the same ALOS,  is the state hospitalized rate 

derived from state hospitalization data, and  is the number of adult ICU beds.  

MRDId represents the local daily medical burden, or the number of hospitalized patients that 

can be supported per ICU beds per CCS. MRDId is large (>1) when local medical resources 

cannot fully support the hospitalized critically ill patients, or the local medical burden is 

heavy; and MRDId is small (<1) when local medical resources are sufficient.  

3.3. Visualization analysis using ArcGIS Dashboards 

Based on ArcGIS Dashboard, we designed a comprehensive operational dashboard 

for monitoring, analyzing, visualizing, and sharing our medical data and analyzed results. A 

multi-stacked map is built at the center of the interface (Fig 3), which represents the spatial 

distributions of COVID-related statistics such as MRDI, death rate, and infection rate at 

county level over the U.S. In addition to visualizing the macro spatial distribution pattern of 

those statistics results, two lists of counties are displayed. Those counties are dynamically 

filtered by the current map extent in map view and are ranked in real-time by hospitalized 

rate and death rate to represent the spreading of COVID-19 and the outbreak situation in the 

selected study area. Focusing on a specific county, an indicator and two pie charts are applied 

to display for each county (Fig 4): 1) the comparison of active COVID - 19 cases and the 

number of overall beds; 2) the percentage of ICU beds in overall beds; and 3) the proportion 

of each type of CCS. From the temporal analysis perspective, a time series chart is designed 

to demonstrate the dynamics of medical resource deficiencies for each county on a daily basis 
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during the pandemic. In the following section, we will use the dashboard components to 

analyze spatiotemporal distributions of medical resource deficiencies. We will further 

explore the possible factors relating to the medical resource deficiencies for specific counties 

and areas as well as the medical resource capacity for non-severe COVID-19 patients, the 

supplies needed for severe cases, and proportion of each type of CCS.  

 

Fig 3. Spatiotemporal visualization interface based on ArcGIS Dashboards. 

 

 

Fig 4. A use case for regional visual analysis of Tennessee  

 

4. Results  

4.1. Medical resource features 
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 The ICU beds per 1,000 residents (Fig 5a) and CCS per 1,000 residents (Fig 5b) are 

mapped at county level. Both maps show that these two medical resources are not 

homogeneously distributed across the U.S. Some midwestern states, such as North Dakota, 

South Dakota, Nebraska, Kansas, and Montana have more ICU beds, but less CCS. The 

spatial distribution of CCS shows a checker board pattern, with many gaps or low numbers 

across the country. The product of ICU beds and CCS per 1000 residents is shown in Fig 6 

(a). The darkest green zones represent counties with higher quantities of medical resources 

including ICU beds and CCS.  

A total of 19 major medical centers represent top ranking healthcare facilities in the 

U.S. (Table 2) [26]. Medical centers are conglomerations of health care facilities including 

hospitals and research facilities that could be affiliated with a medical school. Overlaying the 

locations of these 19 medical centers on the map (purple circles on the map), it seems these 

counties and medical centers are spatially highly correlated (Fig 6a).  

Since senior people (aged 60+) are vulnerable to COVID-19, we also produced a map 

of the product of ICU beds and CCS per 1000 senior residents (Fig 6b). This map represents 

locations where the supply of medical resources for seniors is higher.  

 

Table 2. Major medical centers in the U.S. 

# Medical Center Location 

1 Banner University Medical Center Tucson Tucson, AR 

2 Phoenix Healthcare Cluster Phoenix, AR 

3 Loma Linda University Medical Center Loma Linda, CA 

4 Stanford University Medical Center Stanford, CA 

5 UCSF Medical Center San Francisco, CA 

6 Ronald Reagan UCLA Medical Center Los Angeles, CA 

7 Illinois Medical District Chicago, IL 

8 National Institutes of Health Bethesda, MD 

9 Johns Hopkins Baltimore, MD 

10 Boston Longwood Area Boston, MA 

11 Washington University Medical Center St. Louis, MO 

12 Mayo Clinic Rochester, MN & others 

13 New York-Presbyterian Hospital New York, NY 
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14 Cleveland Clinic Cleveland, Oh 

15 University of Pennsylvania Health System Philadelphia, PA 

16 University of Pittsburgh Medical Center Pittsburgh, PA 

17 Texas Medical Center Houston, TX 

18 South Texas Medical Center San Antonio, TX 

19 Southwestern Medical District Dallas, TX 
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Fig 5. Geographical distribution of medical resources at county level normalized by local 

population. (a) ICU beds per 1,000 residents; (b) CCS per 1,000 residents.  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 25, 2020. ; https://doi.org/10.1101/2020.05.24.20112136doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.24.20112136


  

14 

 

 

Fig 6. Overall medical resources at county level normalized by local population (a) The 

product of ICU beds and CCS per 1000 residents, and 19 medical centers shown as purple 

bubbles; (b) The product of ICU beds and CCS per 1000 for senior residents (aged 60+). 

 

A regression analysis was conducted to examine the correlation between CCS and 

adult ICU beds at county level (Fig 7). If all 3,143 counties are included, the coefficient of 

determination (r2) is 0.90. However, this high r2 value is quite misleading, since it is heavily 

influenced by several large counties with rich medical resources (blue dots). Removing the 

top 30 counties, causes the coefficient of determination (r2) to drop to 0.78, which better 
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represents the geographic disparity of these two factors in most (3113) of the U.S. counties, 

as shown in Figs 5 (a) and (b). 

 

 

Fig 7. The correlation between CCS and adult ICU beds at county level. Blue dots represent 

30 counties with rich medical resources. Orange dots represent the other 3113 counties.   

The blue dashed line is the overall regression line, and the green solid line is the regression 

line for the 3113 counties only.  

 

A total of 671 counties have neither ICU beds nor CCS, and are shown in Fig 8. These 

counties are mainly distributed in less-populated rural areas across the U.S., and they are not 

included in MRDI or MRDId calculation to avoid a divide-by-zero error. During the COVID-

19 pandemic, individuals requiring a higher level of care in these areas would be sent to 

neighboring counties with sufficient medical resources, and could result in larger MRDId in 

the neighboring counties. 
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Fig 8. The 671 counties without licensed beds or CCS.  

4.2. Spatiotemporal trend of MDRI and MDRId 

 The spatiotemporal dynamics of general MDRI across the U.S. is illustrated at: 

http://mrd-dashboard.stcenter.net/. The general MDRI represents the number of accumulated 

active confirmed COVID-19 cases normalized by local maximum potential medical 

resources, while the dynamic view provides an insightful alternative visualization of COVID-

19 U.S. cases by county. Four snapshot maps are illustrated in Figs 9 (a)-(d), which 

demonstrate four time-stamped frames taken on February 15, March 15, April 15, and May 

1, 2020. A proportional symbol map is used with semi-transparent red circles to represent the 

general MDRI. This visualization technique enhances clustering patterns, and there is a clear 

trend where the general medical burden shifted from the east coast of the U.S. to midwestern 

states. As of May 2020, it would seem that Louisiana, Mississippi, Georgia, Tennessee, 

Indiana, and Nebraska are possibly suffering a new wave of medical resource deficiencies 

due to the rapid increase of accumulated active confirmed cases in some counties.  

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 25, 2020. ; https://doi.org/10.1101/2020.05.24.20112136doi: medRxiv preprint 

http://mrd-dashboard.stcenter.net/
https://doi.org/10.1101/2020.05.24.20112136


  

17 

 

 

Fig 9. General MRDI trend. 

 

Furthermore, the spatiotemporal dynamics of local daily MDRId is also illustrated in 

the dashboards. Since hospitalization data has been available only recently, we illustrate a 

most recent frame taken on May 1, 2020 (Fig 10). The red circle symbols are semi-

transparent, and county-level medical resource deficiencies are visually enhanced by 

searching the reddest clustering patterns in the map. During this COVID-19 infection period, 

it seems that Mississippi, Louisiana, Tennessee, and Indiana were suffering medical resource 

deficiencies, which would have required special attention when relocating medical resources 

if necessary. These newest hotspots have been partially confirmed from local news reports 

around May 1, 2020. For example, there were 5,153 known presumptive cases with the total 

death toll of 201 in Mississippi on April 23, 2020 [27]; new cases COVID-19 rose sharply 

on May 1 in East Baton Rouge, Louisiana, as deaths approached 350 in the region [28]; the 

nation’s highest infection rate was in a county in Trousdale County, Tennessee, where 1,300 

cases of Covid-19 were reported, and most of them traced back to a state correction center 

[29]; and Indiana passed 1,000 COVID-19 deaths on April 29, 2020 [30].  
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Fig 10. Daily medical burden MRDId trend (May 1, 2020).  

 

4.3. Spatiotemporal visualization and analysis interface 

In the center of the dashboard, several map layers could be selected to show the 

general spatial distribution of MRDI, death rate, infection rate and active cases over licensed 

beds per capita. After interactive map scaling (by zooming in/out) and moving (by dragging) 

operations, or using the polygon selection tool, the charts and rank list are linked and self-

adapted to the analysis region of interest to a user. By clicking the polygon of a selected 

county, attribute information about medical resources and COVID-19 related data would 

popup and the relevant chart is automatically updated in the dashboard.  

Northern Tennessee State is presented as a use case to show the possible interactive 

analysis (Fig 4). Since western and east coast regions have more medical resources than 

central regions (Fig 6a), and the states along the Mississippi River in the southern U.S. show 

a high risk (Fig 10), we zoom in on the map and select the nearest region with the largest red 

bubble in Tennessee (Fig 4). Thirty counties are selected as a result, and relevant numbers 

are calculated and presented in dashboard charts. The medical bed pie chart shows ICU beds 

are 10.89% in overall licensed beds, and the medical staff pie chart shows the nurses group 

is the highest (55.77%) followed by physicians (44.01%), physician assistants (0.18%) and 

therapists (0.04%). The line chart shows a time-series trend for MRDI in the northern 

Tennessee area, and we find the index varied greatly between April 30, 2020 to May 1, 2020, 
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which could be explained by the possible tracing of the virus to a correction center outbreak 

in Trousdale County [31]. On the right column of the dashboard, the risk factors of medical 

resource and infection rate is ranked by the selected region. Trousdale, Davidson, and Sumner 

County are the top 3 with highest infection risks, while Trousdale also shows the highest 

medical resource risk in this region. The case study in Fig 4 demonstrates the potential of our 

developed dashboard for interactive and visual analysis of specific regions of interest for 

policy makers, other stakeholders, and the general public. 

5. Discussion and conclusions 

In this study, a data-driven approach has been used to estimate the medical resource 

deficiencies or medical burden at county level during the COVID-19 pandemic across the 

U.S. Specifically, spatiotemporal data analysis methods including feature extraction, 

database structured query (SQL), data fusion or aggregation, linear regression analysis, and 

spatial statistics were used to extract medical resource features and patient statistics, such as 

hospital beds, CSS, local population, COVID-19 confirmed case numbers, and 

hospitalization data at county level. And then the average length of stay (ALOS) was 

estimated from hospitalization data at state level, and the hospitalized rate were calculated at 

state and county level. Based on these datasets, we developed two medical resource 

deficiency indices MRDI and MRDId that measure the local medical burden from two 

different perspectives. The first index represents the number of accumulated active confirmed 

cases normalized by local maximum potential medical resources; and the second one 

represents the number of hospitalized patients that can be supported per ICU beds per critical 

care staff. The related medical resources data and MRDI and MRDId were visualized and 

analyzed using a dynamic spatiotemporal platform created through ArcGIS Pro Dashboards, 

which is a convenient way to enhance the clustering patterns and trends.  

Our analysis showed that (1) the spatial distribution of medical resources (hospital 

beds, ICU beds, and CCS) at county level is highly heterogeneous across the U.S., and ICU 

beds and CCS are not spatially highly correlated; (2) MRDI and MRDId can provide new 

insights into the U.S. pandemic preparedness and local dynamics relating to medical burdens 

during a peak period in the COVID-19 pandemic; and (3) a data-driven dynamic 

spatiotemporal framework is a powerful data visualization tool to illustrate the trends of 

MRDI /MRDId and other medical-related statistics.  

It is worth noting that we have not considered the number of discharged patients due 

to a lack of data, leading to a possible slight underestimate of ALOS during the COVID-19 

rapid infection period. As a result, MRDId may also be slightly underestimated. We also did 

not consider the ratio of ICU patients and acute hospitalized patients due to a lack of data, 

and assumed all hospitalized patients were treated as ICU cases. As a result, MRDId was 

possibly overestimated, and the values calculated here should be viewed as the upper limit 

of local medical burdens. Some other uncertainties include (1) the numbers of registered 

hospital beds and CSS could be incomplete or not up-to-date, although the most recent 
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Definitive Healthcare and NPI databases have been used, so the medical resources could be 

underestimated, (2) critically ill patients in counties without ICU beds and CCS would be 

sent to neighboring counties with sufficient medical resources, (3) some numbers of 

experienced ICU staff may have become ill, (4) the number of trained professionals may have 

increased based on emergent recruiting, and (5) the capacity in ICUs and emergency rooms 

may have been expanded during the crisis. However, MRDId can still serve as a useful 

indicator to measure the county-level medical resource deficiencies, and this index can be 

improved once more public health data are available in the future. Furthermore, it could 

provide reasonable evidence for policy makers in local and state governments to assess their 

medical inventories and staff resources, and provide preparedness for decision of re-opening 

the economies and public life.  

In the future, our work can be combined with epidemic models to either provide 

driving parameters or calibrate the models and predict the local medical burdens. The 

spatiotemporal analysis used in this study can be extended to include remote sensing data, 

social media data, and mobile traffic flow data to estimate severity of pandemic or predict 

the outbreak cases in the U.S. and other counties. 
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