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Cuiabá, MT, Brasil

Abstract

The novel of COVID-19 disease started in late 2019 making the worldwide gov-
ernments came across a high number of critical and death cases, beyond constant
fear of the collapse in their health systems. Since the beginning of the pandemic,
researchers and authorities are mainly concerned with carrying out quantitative
studies (modeling and predictions) overcoming the scarcity of tests that lead
us to under-reporting cases. To address these issues, we introduce a Bayesian
approach to the SIR model with correction for under-reporting in the analy-
sis of COVID-19 cases in Brazil. The proposed model was enforced to obtain
estimates of important quantities such as the reproductive rate and the aver-
age infection period, along with the more likely date when the pandemic peak
may occur. Several under-reporting scenarios were considered in the simulation
study, showing how impacting is the lack of information in the modeling.

Keywords: COVID-19; under-reporting; SIR model; Bayesian Aproach.

1. Introduction

The COVID-19 epidemic disease is caused by the new SARS-CoV-2 coron-
avirus associated with the severe acute respiratory syndrome (SARS) that began
in Wuhan, China, late 2019 (Rodŕıguez-Morales et al., 2020). After the first de-
tected case in China, the disease continued to spread globally with exported
cases confirmed in all of the continents worldwide. In a matter of a few months,
the disease overtook 80 thousand reported cases until early April, 2020. On
March 12nd, 2020 the World Health Organization (WHO) declared COVID-19
as pandemic disease, when more than 20 thousand cases and almost a thousand
deaths were registered in the European Region - the center of this pandemic
according to the Europe’s Standing Committee (WHO, 2020).
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There are still many unknowns about COVID-19 and the lack of evidence
complicates the design of appropriate response policies - for example, it is im-
possible to precisely say something about the mortality rate and determine the
disease recurrence rate (Lenzer, 2020).

Despite uncertainties, the frightening speed through which this disease spreads
across communities and the collapse that it is capable of causing to the health
systems are facts that must be faced. The exponential growth of the cases and
the consequent number of deaths had been observed in a short period. In mid-
January 2020, a few weeks after the first detected COVID-19 case in the world,
the countries that are close to the territory of the virus origin, on the Asian con-
tinent, as well in European and American Regions also began to report cases of
the disease. Five months later, more than 200 countries and territories around
the world have reported over to 3 million confirmed cases of COVID-19 and a
death toll of about 200 thousand people.

In Brazil, the first confirmed COVID-19 case occurred on February 25th,
2020. This first case was a 61 years-old male, who stayed from February 9th to
February 20th, 2020 in Lombardy - an Italian region were a significant outbreak
was ongoing at that time. On March 17th, the health authorities in São Paulo
confirmed the Brazilian death from the new coronavirus. The victim, whose
identity has not been disclosed, had been hospitalized in São Paulo city.

Preserving due proportions, COVID-19 is not the first experienced signifi-
cant outbreaks of infections that were declared Public Health Emergencies of
International Concern by the WHO. Year after year we also have experimented
with the Zika and Chikungunya outbreaks in the last decade and continue facing
the huge consequences of dengue. Confronting outbreaks in the large Brazilian
territory is a twofold problem. The first is the demographic and territorial size
of the country, with an estimated population of 210 million according to the
Brazilian Institute for Geography and Statistics and the heterogeneity intrinsic
to its extensive territory. Another problem pointed out by the past epidemics
run into a recurring problem of under-reporting (de Oliveira et al., 2017; Stoner
et al., 2019).

The COVID-19, given its complexity and behavior, exposed the problem of
under-reporting disease occurrence not only in Brazil but in several countries
worldwide. As a consequence, the lack of information has launched a warning
about the researchers of the world concerning models and estimates, since the
database available may not be reliable from what had indeed been observed.

Focusing on the modeling and estimating, aiming to preview the behavior
and the speed of the COVID-19 growth, this paper presents an approach to ad-
dress the problem of under-registration of COVID-19 cases in Brazil, proposing
methodologies to work on the inaccuracy of the official reported cases. Then,
we investigate a general framework for correcting under-reporting data making
it possible to perform a model, in a Bayesian framework, which allows great
flexibility and leads to complete predictive distributions for the true counts,
therefore quantifying the uncertainty in correcting the under-reporting. Several
scenarios of under-reporting were considered in a simulation study, presenting
the real lack of data impact.
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This paper is organized as follows. Section 2 describes the methodology for
estimating the reported rates. In Section 3, we introduce the SIR model for
modeling epidemics. In Section 4, we introduce the Bayesian framework for the
SIR model with a modification to account for under-reporting. In Section 5 we
show the model application for COVID-19 cases in Brazil and in Section 6, we
present a simulation study of the proposed model. Finally, in Section 7, we give
some concluding remarks.

2. Reported rate estimation

Although in the first moment there was a real hunt for the size and the mo-
ment of the COVID-19 cases peak, the most important aspects of the outbreak
are the growth rate of the infection. Statistical and mathematical models are
being used to preview the rates and analyze the growth curve behavior to assist
health public managers in decision-making (Cotta et al., 2020).

According to Kim et al. (2020), estimating the case fatality rate (CFR) is a
high priority in response to this pandemic. This fatality rate is the proportion
of deaths among all confirmed patients with the disease, which has been used to
assess and compare the severity of the epidemic between countries. The rates
can also be used to assess the healthcare capacity in response to the outbreak.
Indeed, several researchers are interested in estimating the CFR in the peak of
the outbreak, analyzing its variation among different countries, and check the
influence of other features as ages, gender, and physical characteristics in the
CFR of the COVID-19.

Aiming to estimate the CFR, first of all, lets set up the Brazilian scenario of
COVID-19 case notification: the Brazilian Ministry of Health collects daily all
confirmed cases data for Brazil and all its states. Although the data presented
by the health authorities are official, they are only from patients with COVID-
19 confirmed by blood and/or swab positive tests. Given the scarcity of tests
for all the suspected individuals, the notified patients are only those with severe
disease or that demanding hospitalization. It is relevant to highlight that no
clinically diagnosed patient, even those with symptoms compatible with the
disease have been officially counted, evidencing an under-reporting of the case
frequency.

Faced with the lack of COVID-19 tests, which naturally leads to the under-
reporting data, before any modeling purpose we have the desire to correct and
update the current numbers, bringing them as close as possible to reality.

Following Russel et al. (2020), we also based on a delay-adjusted case fatality
ratio to estimate under-reporting, using the incidence of cases and deaths to
estimate the number of notified cases by

µt =
t∑

j=0

ct−jfj
ct

, (1)

where ct is the daily incidence of cases at the moment t, fj is the proportion of
cases with a delay between the confirmation and the death, and µt represents
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the underestimation proportion of cases with known outcomes, (Nishiura et al.,
2009).

Then, the corrected CFR is given by

CFRc =
mt

µt
, (2)

where mt is the cumulative number of deaths.
To estimate the potential for under-reporting, we assume that the CFR is

1.4% with a 95% confidence interval from 1.2% up to 1.7% found in China (Guan
W-j, 2020). Thus, the potential for reporting rate is given by

η =
1.4

CFRc
. (3)

3. The SIR Model

Epidemic models are tools widely used to study the mechanisms by which
diseases spread, to predict the course of an outbreak, and to evaluate strate-
gies to control an epidemic disease. Several analyses of an epidemic spreading
disease can be found in the literature that applies the time series model (given
the historical data), the log-logistic family of models (the Chapman, Richards,
among others), and compartments models (Bjørnstad, 2018).

Kermack & McKendrick (1927) proposed a class of compartmental mod-
els that simplified the mathematical modeling of infectious disease transmis-
sion. Entitled as SIR model, it is a set of general equations which explains the
dynamics of an infectious disease spreading through a susceptible population.
Essentially, the standard SIR model is a set of differential equations that can
suit the Susceptible (if previously unexposed to the pathogen), Infected (if cur-
rently colonized by the pathogen), and Removed (either by death or recovery)
as follows:

dS

dt
= −βSI,

dI

dt
= βSI − γI,

dR

dt
= γI,

where S, I and R are the total number of susceptible, infected and removed
individuals in the population, respectively, γ is the removal rate and β is the
infectious contact rate.

It is important to note that

dS

dt
+
dI

dt
+
dR

dt
= 0

and so, the total population, S(t) + I(t) +R(t) remains constant for all t ≥ 0.
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For the practical point of view, the most interesting issue is to estimate 1
γ ,

which determines the average infection period and the basic reproductive ratio
R0 = β

γ , defined as the expected number of secondary infections from a single

index case in a completely susceptible population (Keeling & Rohani, 2011).

4. Bayesian Approach

The Bayesian methods are used in several works (Gelman et al., 1995);
(Paulino et al., 2018). The Bayesian approach in the context of the SIR model
is a flexible way to account for uncertainty in the parameters, in the form of the
disease transmission dynamic. The Dirichlet-Beta state-space model appears in
some papers as Osthus et al. (2017) and Song et al. (2020). The target distri-
bution for inference is the a posteriori distribution of the quantities of interest,
more specifically β, γ, and R0: the infectious contact rate, the removal rate,
and the propagation rate, respectively. The application of this methodology is
through Markov chain Monte Carlo methods (MCMC) through Gibbs Sampling
and the Metropolis-Hastings algorithm (Chib & Greenberg, 1995).

The use of Dirichlet distribution for the proportions of susceptible, infected,
and removed individuals in the target population are a feasible way to guarantee
that the support set of these quantities has boundaries, for example, the number
of infected individuals must be always positive.

4.1. Model specification

In this section, we present a modification to account for under-reporting in
the context of the Dirichlet-Beta state-space model from Osthus et al. (2017).
This adaptation is based on a reparametrization of Beta distribution that in-
cludes the reported rate estimate, η, from equation (3).

The Beta distribution, as is well known, is very flexible for proportions mod-
eling since its density can have quite different shapes depending on the values of
the two parameters that index this distribution (Ferrari & Cribari-Neto, 2004).
For this reason, we made a reparametrization to the Beta model in such a way
that we could obtain a regression structure for the means of the response vari-
ables associated with a precision parameter.

Let Y It be the reported infected proportion, Y Rt be the reported removed
proportion and θt = (θSt , θ

I
t , θ

R
t ) be the true but unobservable susceptible, in-

fectious, and removed proportions of the population, respectively.
Hence, we rewrite the SIR model in terms of these unobservable proportions

as the following

dθSt
dt

= −βθSt θIt ,

dθIt
dt

= βθSt θ
I
t − γθIt , (4)

dθRt
dt

= γθIt .
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Then, the distributions for Y It , Y Rt , and θt are given below

Y It |θIt ,φ ∼ Beta(λIηθ
I
t , λI(1− ηθIt )),

Y Rt |θRt ,φ ∼ Beta(λRηθ
R
t , λR(1− ηθRt )),

θt|θt−1, φ ∼ Dirichlet(κf(θt−1, β, γ)),

where φ = (β, γ,θ0, κ, λ) is the parameter vector for this model and f(θt−1, β, γ)
is the solution for the differential equations in (4).

Note that it is necessary to obtain the solutions for the proportions θSt θ
I
t and

θRt . These solutions can be found using the Runge-Kutta fourth-order method,
in short RK4, for solving non-linear ordinary differential equations (Mathews,
1992) and can be seen in Appendix A.

5. Case study: the COVID-19 Brazilian data

The official Brazilian data consists of daily collections carried out by the
national health department with records of infected individuals and deaths in
all states and national territory, from February 26th, 2020 when the first case
of COVID-19 was registered up to May 20th, 2020.

It is notable in Brazil a lack of testing due to the registry of only severe
cases and consequently under-reporting cases of COVID-19. Taking this fact
into account, we consider for this research not only the official data but also the
estimates of reported rate.

5.1. Reported Rate of COVID-19

In order to obtain the estimate of reported rate, assume that the delay in con-
firmation until death follows the same estimated distribution of hospitalization
until death. Using data from COVID-19 in Wuhan, China, between December
17th, 2019, and January 22nd, 2020, it has a lognormal distribution with mean
of 13, median of 9.1 and standard deviation of 12.7 days (Linton NM, 2020).
This methodology based on the information of delay from hospitalization until
death is reasonable since China was considered as one of the countries that most
tested the population for the virus, and consequently, it is supposed to have a
tiny under-reporting rate.

Using the methodology presented in section 2, the reporting rate in Brazil,
η, was estimated to be 0.07 with 95% confidence interval from 0.06 up to 0.08.
Prado et al. (2020) obtained a reporting rate of 0.08 with data from Brazil
until April 10th, 2020. These results are similar to the analysis from Ribeiro &
Bernardes (2020), which present a 7.7 : 1 under-reporting rate, meaning that
the real cases in Brazil should be, at least, seven times the published number.

Table 1 presents the rates for all states of Brazil, from which we can observe
that Paráıba has the lowest reported rate 0.06 and while Roraima presents the
highest reported rate 0.52. Indeed, Prado et al. (2020) found that Paráıba and
Pernambuco had a low reporting rate comparing with other states.
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Table 1: Reported rate estimates and 95% confidence interval (95% CI) for COVID-19 Brazil-
ian data.

State Rate (η̂) Lower 95% CI Upper 95% CI
Acre 0.14 0.12 0.17

Alagoas 0.10 0.09 0.12
Amapa 0.20 0.17 0.24

Amazonas 0.08 0.07 0.10
Bahia 0.20 0.17 0.24
Ceará 0.11 0.10 0.13

Distrito Feral 0.40 0.34 0.48
Esṕırito Santo 0.19 0.16 0.23

Goiás 0.19 0.17 0.24
Maranhão 0.11 0.09 0.13

Mato Grosso 0.22 0.19 0.27
Mato Grosso do Sul 0.24 0.21 0.30

Minas Gerais 0.19 0.16 0.23
Pará 0.10 0.08 0.12

Paráıba 0.06 0.06 0.08
Paraná 0.15 0.13 0.18

Pernambuco 0.07 0.06 0.09
Piaúı 0.10 0.09 0.12

Rio de Janeiro 0.08 0.07 0.10
Rio Grande do Norte 0.14 0.12 0.17
Rio Grande do Sul 0.23 0.20 0.28

Rondônia 0.17 0.15 0.21
Roraima 0.52 0.44 0.63

Santa Catarina 0.30 0.25 0.36
São Paulo 0.09 0.07 0.10

Sergipe 0.12 0.10 0.14
Tocantins 0.17 0.15 0.21
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5.2. Estimation: Dirichlet-Beta state-space model

For the adjustment of the Bayesian model, the prioris and hyper-parameters
are specified:

� γ - We assume that the average infection period is equal to 15 days. Thus,
the γ a priori belongs to lognormal distribution with mean of 0.07 and
variance of 0.01.

γ ∼ LogN(−3.215, 1.112).

The average infection period ρ comes directly from γ parameter, that is,
ρ = 1

γ .

� β - The reproduction number R0 of the disease is estimated by the ratio
R0 = β

γ . We assume that R0 a priori belongs to lognormal distribution
with mean of 3 and variance of 9. Thus β values were obtained from
β = R0γ

R0 ∼ LogN(0.752, 0.693)

� The a priori distributions for k, λI and λR and θ0 were obtained according
to Osthus et al. (2017), that is,

k ∼ Gamma(2, 0.0001),

λI ∼ Gamma(2, 0.0001),

λR ∼ Gamma(2, 0.0001),

θ0 ∼ Dirichlet(0.99, 0.001, 0.001).

The estimates from a posteriori distributions for R0, β, γ, k, λI and λR
were obtained through MCMC methods, specifically Gibbs sampling (Geman &
Geman, 1984). To execute the sampling procedure, we used the R programming
language (R Core Team, 2020), with rjags package (Plummer, 2019).

The total number of iterations considered, as well as the discard (burn-in)
and the minimum distance between one iteration to another (thin) were obtained
through the criterion of Raftery & Lewis (1992) in the analysis of a pilot sample
with 10,000 iterations.

The convergence diagnosis of the MCMC procedure was verified using the
Geweke (Geweke, 1992) and Heidelberger and Welch(Heidelberger & Welch,
1983) criteria, which are available in the coda package (Plummer et al., 2006).

Table 2 shows the p-values from Geweke, and Heidelberger and Welch con-
vergence diagnostics, from which we conclude that chains reached convergence
for all parameters (p-value > 0.05). The inference was made by considering the
reported rate estimate in Brazil, η̂ = 0.07, a chain of 300,000 interactions was
generated, with a burn-in of 10,000 and a thin of 300, resulting in a final sample
of 1,450 values.

The parameter estimates are shown in Table 3, in which β̂ = 0.1125 and
γ̂ = 0.0308 are the major characteristics from SIR model and k̂ = 52, 535.34,
λ̂I = 217, 894.30 and λ̂R = 223, 431.60 express the magnitude of the process
error for the unknown proportions (θ) in Bayesian approach.
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Table 2: P-values for Geweke, and Heidelberger and Welch convergence diagnostics.

parameter Geweke Heidelberger and Welch
R0 0.7222 0.2026
β 0.8900 0.1898
γ 0.8210 0.2611
κ 0.2965 0.1455
λI 0.8205 0.2462
λR 0.1118 0.2568

The inference results show that R̂0 = 3.6243 which expresses a high repro-
ductive rate of the virus. Also, ρ̂ = 32.1667 days shows that the time for virus
infection is very close to one month period.

Table 3: Point estimates and 95% Credible Interval.

parameter Mode 95% Credible Interval
lower upper

γ 0.0308 0.0272 0.0343
β 0.1125 0.1067 0.1201
R0 3.6243 3.3528 4.0335
ρ 32.1667 29.1268 36.7576
κ 52535.34 38384.26 71244.52
λI 217894.30 148822.20 310111.60
λR 223431.60 147997.80 320880.00

Using the parameter estimates from Table 3 and the latent proportion (θ),
we reached information about the peak from SIR curve for the COVID-19 trans-
mission in Brazil, that is the time when the proportion of infected individuals
reaches its maximum. The peak estimate is June 18th, 2020, occurring between
June 12nd and June 22th, 2020 and it is shown in Figure 1.

6. Simulation Study

Concerning to evaluate the effect of the notification rate on the model’s
estimates, a simulation study was carried out. The model was estimated con-
sidering COVID-19 data in Brazil, assuming a reporting rate between 0.05 and
1.00, varying every 0.05. Aiming the practical point of view, we conduct a
simulation study to investigate the effects of under-reporting in the parameters
of the SIR model and how it impacts on the pandemic curve behavior. For
each value of η, a chain of 300,000 interactions was generated, with a burn-in
of 10,000 and a thin of 300.

Figure 2 shows the point estimates and 95% credible intervals for β and γ
versus the reported rate values. It can be observed that as reported rate in-
creases, β estimate becomes lower, which means that the infectious contact rate
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Figure 1: Estimated SIR curves for COVID-19 Brazilian data from February 26th to May
20th, 2020.

is underestimated when under-reporting is ignored. Additionaly, the removal
rate γ remains almost constant when the reported rate increases, which means
that it is not influenced by the rates.

Figure 2: Point estimates and 95% credible intervals for β and γ versus reported rates

The graphics with the point estimates and 95% credible intervals for R0 and
infection period ρ versus the reported rates are shown in Figure 3, from which
we observe that R0 decreases as the reported rate increases and ρ keeps roughly
invariant, then we can conclude that the reproduction rate and infection period
can be underestimated when under-reporting is ignored, affording an unreal
impression on a tiny mean number of secondary individuals that a primary
individual can infect, when in fact it is large.

Figure 4 shows the estimated SIR curves for COVID-19 versus reported rate,
from which we observe that the lower the reported rate, the earlier the peak is
reached with a higher proportion of infected individuals. It is also observed that
the contagion curves become similar to each other as the reported rates increase.
These results reveal that the peak estimate of the COVID-19 transmission curve
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Figure 3: Point estimates and 95% credible intervals for R0 and infection period versus re-
ported rates.

in Brazil is compromised when the presence of under-reporting is ignored.

Figure 4: Estimated SIR curves versus reported rate for COVID-19 Brazilian data.

Finally, Table 4 presents the deviance information criterion (DIC) (Spiegel-
halter et al., 2002), which indicates the SIR model with the reported rate of 0.1
as the best one that fitted the simulated data, since its DIC value is the lowest.
These results suggest that the notification rate is very low.

7. Concluding Remarks

In this paper, we show that the method of adjusting cases by delay can be
used to determine the reported rate of COVID-19 cases. Thus, it was possible
that the rate of cases reported in Brazil is 0.07 and thus underestimates the real
spreading of pandemic in the country.

Thus we proposed a SIR model with correction for under-reporting. The
Bayesian approach is a feasible way to deal with the parameters inherent to the
SIR model.
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Table 4: DIC values for COVID-19 Brazilian data.

rate(η) DIC rate(η) DIC
0.05 3197.96 0.55 3260.65
0.10 3183.47 0.60 3266.44
0.15 3208.17 0.65 3272.19
0.20 3237.96 0.70 3277.76
0.25 3241.55 0.75 3279.27
0.30 3248.51 0.80 3283.36
0.35 3249.57 0.85 3295.20
0.40 3258.51 0.90 3296.90
0.45 3259.62 0.95 3306.84
0.50 3259.71 1.00 3307.88

The methods reached convergence in the application with the Brazilian
COVID-19 data set. Thus, a reproductive rate of 3.6243 was obtained, indi-
cating that the epidemic is still booming in Brazil.

The simulation study revealed that the parameters estimates from the SIR
model and the peak estimate which is a concern of several researchers and health
authorities are sensitive to reporting rates. Future work may include considering
the use of extended SIR models like the SEIR model (with the compartments of
susceptible, exposed, infected, and removed individuals), and further, consider
different scenarios of isolation and quarantine for the strategy of the COVID-19
transmission control.
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Appendix A. Numerical Solution for SIR model

Let f(θt−1, β, γ) be the Runge-Kutta RK4 approximation to the SIR model.
Thus,

fθt−1, β, γ) =

θSt−1 + 1
6 [kS1

t−1 + 2kS2
t−1 + 2kS3

t−1 + kS4
t−1]

θIt−1 + 1
6 [kI1t−1 + 2kI2t−1 + 2kI3t−1 + kI4t−1]

θRt−1 + 1
6 [kR1

t−1 + 2kR2
t−1 + 2kR3

t−1 + kR4
t−1]
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