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Abstract

This research presents a modified Singular Spectrum Analysis (SSA) approach
for the analysis of COVID-19 in Saudi Arabia. We have proposed this approach
and developed it in [1–3] for separability and grouping step in SSA, which plays
an important role for reconstruction and forecasting in the SSA. The modified
SSA mainly enables us to identify the number of the interpretable components
required for separability, signal extraction and noise reduction. The approach
was examined using different number of simulated and real data with different
structures and signal to noise ratio. In this study we examine its capability in
analysing COVID-19 data. Then, we use Vector SSA for predicting new data
points and the peak of this pandemic. The results shows that the approach can
be used as a promising one in decomposing and forecasting the daily cases of
COVID-19 in Saudi Arabia.

Keywords: COVID-19; Prediction; Singular Spectrum Analysis, Separability;
Eigenvalues.

1 Introduction

One of the main issues that threats our health around the glop are infectious diseases.
Nowadays, the outbreak of 2019 virus disease (COVID-19) is a global pandemic [4, 5].
The first case of this virus was recognized and reported on 31-12-2019 in the city of
Wuhan, the capital of Hubei in China [6]. Then, the virus has spread rapidly around
the world and affected more than 200 countries [7].

The number of cases and deaths of this virus are globally considered as serious
problems. The number of confirmed cases were more than 4 million and around 200
thousand deaths by 12-05-2020. Although the outbreak seems to have decreased in
China, the virus and its impacts are still going global, and those numbers are increasing.
This leads to our concerns about variation in the affected cases and the mortality rate
of the COVID-19 pandemic. Furthermore, there are a lot of concerns about economic
global impact of this crises. It is now understood that the devastating influence of the
virus on economy and world health is incomparable [8].
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The primary objective of this manuscript is construction of a reliable, robust and in-
terpretable model describing, decomposing, forecasting the number of confirmed cases,
and predict the peak of this pandemic in Saudi Arabia. The rate of mortality in Saudi
Arabia is low, less than 1% till writing this paper. Thus, we are only interested in
the new daily cases affected by the virus and try to detect its peak. The number of
cumulative cases is more than 40000 by 12-05-2020.

There are many standard epidemiological models for modelling epidemics such SIR,
see e.g. [9–11]. However, since our aim is to analyse the daily data series of COVID-19,
we seek to use a promising, reliable, and capable method for analysing time series.
There is a number of various methods for analysing time series, but several of these
methods requiring, for example, linearity or non linearity of a particular form as they
are parametric methods.

An alternative method uses non-parametric approaches that are neutral with re-
spect to problematic areas of specification, such as linearity, stationarity and normal-
ity [13]. Thus, such approaches can show a reliable and better means of decomposing
time series data. Singular Spectrum Analysis (SSA) is a relatively new non-parametric
technique that has shown and proved its capabible use in several applications of time
series in different disciplines, such as genetics and biology [14, 15], medicine [16, 17],
engineering [18, 19], economics and finance [20, 21], and other areas. For its his-
tory, see [22, 23]. For more details on the theory of SSA and its applications, refer
to [13,24,25]. A comprehensive review of the method and description of its extensions
and modifications can be found in [26].

Although the signals can be affected by an internal or external noise, which often
have unknown characteristics, they can be identified if the signal and noise subspaces
are accurately separated. It is known that removing noises from any signal is necessary
for analysing any kind of time series, and is helpful in decomposing the signal in a
proper manner [27].

The main idea of SSA is to analyse the main series into different components, then
reconstruct the noise free series for further analysis. It depends upon two main choices;
namely, the window length L and the number of required eigenvalues, denoted by r, for
reconstruction. Thus, an appropriate selection of L and r leads to a perfect analysis
and separability between the time series components. It was discussed in [28] that for
a series of length N , selecting L = N/4 is common practice.It also should be mentioned
that L should be large enough, but not larger than half of the series [24]. In [29], it
was shown that for a series of length N and the optimal selection of the number of
eigenvalues r for reconstructing the signal, the appropriate value of the window length
is median{1, . . . , N}. Despite various attempts that have been applied, there is no
universal rule for obtaining optimal selections of L and r.

We have proposed an approach in [2, 3] for the selection of the value of r for noise
reduction, filtering, and signal extraction in SSA. This has also been applied to the
distinction of noise from chaos in time series analysis [30], and for the correction of
noise in gene expression data [31]. In [3], we have developed the approach and intro-
duced new criteria to the discrimination between epileptic seizure and normal EEG
signals, the filtering of the EEG signal segments, and elimination of the noise included
in the signal. The approach is mainly used to identify the required number of eigen-
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values/singular values corresponding to the signal component, which depends on the
distribution of the eigenvalues of a scaled Hankel matrix. The correlation between
eigenvalues, the coefficients of skewness, kurtosis and variation of the eigenvalues dis-
tributions were proposed and proved to be new criteria for the separability between
signal and noise components as they can split the eigenvalues into two groups [2]. Dif-
ferent simulated and real signals were used considering different signal to noise ratio
in [2, 3], and evaluated to show the ability of the approach in the selection of r.

The remainder of this paper is structured as follows: the following section gives a
short description of the modified SSA approach and its algorithm. In Section 3, we
show that this approach can decompose a synthetic data into two main distinct sub-
spaces. Section 4 presents the implementation of the approach in decomposing and
reconstructing COVID-19 daily cases series. The section also presents the prediction
of COVID-19 in Saudi Arabia using Vector SSA for the extracted signal by the modified
SSA. Section 5 draws the conclusion of this paper with some ideas for future work.

2 The Modified SSA method

2.1 Review

This section presents a short description of the modified SSA used in this manuscript
(for more details refer to [2]). A time series is decomposed by the SSA technique
into a sum of components, allowing the identification of each one as either a main or
noise component. The goal here is to consider the signal as a whole so that we can
identify the appropriate value of r related to the whole signal component. In other
words, we are not interested in each signal component, so the selection of L rational to
the periodicity of the signal components becomes less important [25]. Therefore, the
modified SSA focuses on the selection of r to identify the signal subspace.

Consider a one-dimensional series YN = (y1, . . . , yN) of length N . Transferring this
series into a multi-dimensional series X1, . . . , XK where Xi = (yi, . . . , yi+L−1)

T ∈ RL

provides X = (xi,j)
L,K
i,j=1, where L is an integer (2 6 L 6 N/2) and K = N − L + 1.

A matrix X is a Hankel matrix, all the elements along the diagonal i + j = const are
equal. Set B = XXT and denote by λi (i = 1, . . . , L) the eigenvalues of B taken in
decreasing order of magnitude ( λ1 ≥ . . . ≥ λL ≥ 0) and by U1, . . . , UL the orthonormal
system of the eigenvectors of matrix B corresponding to these eigenvalues.

The SVD of matrix X can be written as follows:

X = X1 + · · ·+ XL, (1)

where Xi =
√
λiUiVi

T . The elementary matrices Xi having rank 1, Ui and Vi are
the left and right eigenvectors of matrix X. Note that the collection (

√
λi, Ui, Vi) is

called the ith eigentriple of the SVD. Note also that ||X||2F = tr(XXT ) =
L∑
i=1

λi and

||Xi||2F = λi, where || ||F denotes the Frobenius norm.
Fundamental to the question of the eigenvalues behaviour, λi, is that if the series

size increases, there is a corresponding increase in the eigenvalues. This problem can be
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overcome if B is dividing by its trace, A = B/tr(B), which provides several important
properties [1]. Let ζ1, . . . , ζL denote the matrix A eigenvalues in decreasing order of
magnitude (1 ≥ ζ1 ≥ . . . ≥ ζL ≥ 0). The simulation technique is performed to obtain
the distribution of ζi and to understand the behaviour of each eigenvalue. This helps
to identify the value of r. Here, the goal is to establish the distribution and related
forms of ζi, which will be used to select the appropriate value of r for removing noise
from COVID-19 series.

It was proved in our work [2] that the largest eigenvalue has a positive skewed
distribution for a white noise process. Therefore, if skew(ζc) (c ∈ {1, . . . , L}) is the
maximum, and the pattern for skew(ζc) to skew(ζL) has the same pattern, the same as
emerged for the white noise, then the first r = c−1 eigenvalues correspond to the signal
and the rest to the noise. A similar procedure can be done using the the coefficients
of kurtosis and variation of ζi. Furthermore, if ρs(ζc−1, ζc) is the minimum, and the
pattern for the set {ρs(ζi, ζi+1)}L−1i=c is similar to what was observed for the white noise,
then we select the first r = c − 1 eigenvalues for the signal and the rest for the noise
component (for more information see [2]).

In this research, we use the third and fourth central measures moments of the dis-
tribution, which are the skewness (Skew) and kurtosis (Kurt). Skewness is a measure
of asymmetry of the data distribution, whilst kurtosis describes the distribution of ob-
served data in terms of shape or peak. We use these measures as criteria for choosing
the value of r, which can be calculated for m simulation as follows:

Skew(ζi) =

1
m

m∑
n=1

(
ζi,n − ζ i

)3
[

1
m−1

m∑
n=1

(
ζi,n − ζ i

)2]3/2 , (2)

Kurt(ζi) =

1
m

m∑
n=1

(
ζi,n − ζ i

)4
[

1
m

m∑
n=1

(
ζi,n − ζ i

)2]2 − 3. (3)

Moreover, the coefficient of variation, (CV ), which is defined as the ratio of the
standard deviation σ(ζi) and ζ i can be calculated mathematically from the following
formula:

CV (ζi) =
σ(ζi)

ζ i
. (4)

In addition, the Spearman correlation ρs between the eigenvalues ζi and ζj (i, j =
1, . . . , L) is also calculated to enhance the results obtained by those measures:

ρs = cor(ζi, ζj) = 1− 6
∑
d2n

m(m2 − 1)
, (5)

where dn = xn − yn (n = 1, . . . ,m) is the difference between xn and yn which are the
ranks of ζi,n and ζj,n respectively, and ζi,n is the n-th observation for the i-th eigenvalue

(ζi), ζ i =

(
m∑
n=1

ζi,n

)
/m.
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These measures of difference between the eigenvalues related to the signal and
noise components can specify the cut-off point of separability; the number of leading
SVD components that are separated from the residual. Thus, the last cut-off point
of separability between the signal and noise components obtained by the suggested
measures, corresponds to the rank estimation.

The eigenvalues can be split into two groups by using the above criteria; the first
corresponds to the signal and the second to the noise component. Furthermore, the
Spearman correlation ρ between ζi and ζj is also calculated to support the outcomes
obtained by those measures. The absolute value of the correlation coefficient is con-
sidered; 1 shows that ζi and ζj have perfect positive correlation, whilst 0 indicates
there is no correlation between them. The matrix of the absolute values of the Spear-
man correlation gives a full analysis of the trajectory matrix, and in this analysis each
eigenvalue corresponds to an elementary matrix of the SVD. Note that if the absolute
value of ρ is close to zero, then the corresponding components are almost orthogonal;
however, if it is close to one, then the two components are far from being orthogonal
and so it is difficult to separate them. Thus, if ρ = 0 between two reconstructed com-
ponents, this shows that these two reconstructed series are separable. The results of ρ
between the eigenvalues for the white noise are quite large (see [2]), which helps in the
discrimination of the noise part.

Once r is identified, then the matrices Xi can be split into two groups. Therefore,
equation (1) can be written as follows:

X = S + E, (6)

where S =
r∑
i=1

Xi is the signal matrix and E =
L∑

i=r+1

Xi is the noise one. We then use

diagonal averaging to transform matrix S into a new series of size N (see [24]).

2.2 Algorithm

The algorithm consists of two main stages. The steps of the first stage using the coeffi-
cients of skewness, kurtosis, variation and correlation can help us to obtain the optimal
value of r for the separability between signal and noise as they split the eigenvalues
into two groups. The steps of the second stage are used to reconstruct the free noise
series

2.2.1 Stage 1:

1. Map a one-dimensional time series YN = (y1, . . . , yN) into multi-dimensional
series X1, . . . , XK with vectors Xi = (yi, . . . , yi+L−1)

T ∈ RL, where the window
length L is an integer; 2 ≤ L ≤ N/2, and K = N −L+ 1. This step gives us the
Hankel matrix X = [X1, . . . , XK ] = (xij)

L,K
i,j=1.

2. Compute the matrix A = XXT/tr(XXT ).

3. Decompose matrix A as A = PΓPT , where Γ = diag(ζ1, . . . , ζL) is the diagonal
matrix of the eigenvalues of A that has the order (1 ≥ ζ1 ≥ ζ2, . . . , ζL ≥ 0) and
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P = (P1, P2, . . . , PL) is an orthogonal matrix whose columns are the correspond-
ing eigenvectors.

4. Simulate the original series m times and calculate the eigenvalues for each series.
We simulate yi from a uniform distribution with boundaries yi − a and yi + b,
where a =| yi−1 − yi | and b =| yi − yi+1 |.

5. Compute the skewness coefficient for each eigenvalue, skew(ζi). If skew(ζc) is
the maximum, and the pattern for skew(ζc) to skew(ζL) has a similar pattern to
the white noise, select r = c− 1.

6. Compute the coefficient of kurtosis for each eigenvalue, kurt(ζi). If kurt(ζc) is
the maximum, select r = c− 1.

7. Compute the coefficient of variation, CV (ζi). The result of CV splits the eigen-
values in two groups, from ζ1 to ζc−1 which correspond to the signal, and the
remainder, which have an almost U shape, correspond to the noise.

8. Compute the absolute values of the correlation matrix between the eigenvalues,
and represent them in a 20-grade grey scale from white to black corresponding to
the values of the correlations from 0 to 1. This matrix also splits the eigenvalues
into two groups, from ζ1 to ζr which correspond to the signal, and the remainder,
which correspond to the noise.

2.2.2 Stage 2

1. Calculate the approximated signal matrix S̃, that is S̃ =
∑r

i=1 Xi, where r is

obtained from the first stage, Xi =
√
λiUiVi

T , Ui and Vi stands for the left and
right eigenvectors of the trajectory matrix.

2. By averaging over the diagonals of matrix S̃, this gives a one dimensional series,
which is the approximate signal S̃.

The capability of the modified SSA using different synthetic data, including series
generated from chaotic map systems with different Signal to Noise ratio (SNR), were
presented in [2]. This result confirms that the approach works promisingly for any
series that is mixed with a low or high noise level.

Each eigenvalue or singular value contributes to the trajectory matrix decomposi-
tion. We can consider the ratio ζ i×100 to be the characteristic of matrix Hi to Eq. (1).
Thus, 100 ×

∑r
i=1 ζ i is considered as the characteristic of the optimal approximation

of H by matrices of rank r.

3 Separability in Synthetic data

We should mention that using the standard criteria in the basic SSA, the weighted
correlation or w -correlation for separability and grouping (for more information see
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[25]), does not always provide a good separability and correct selection of r, specially
for real data.

It was shown in [2] that the results based on Skew, Kurt, CV , and ρs are more ac-
curate than those obtained by the w -correlations for small window length, particularly
for a data where a linear trend is included in the series.

Thus, we use the modified SSA, in particular, we use some of those proved criteria
on the distribution of ζi, which given in the previous sections to identify r. The results
are plausible and reliable.

We will provide here one synthetic example to show the capability of the approach
before applying it to COVID-19 data, for more examples considering different types of
series and evaluations with different criteria refer to [2].

Simulated data: In the following example, a white noise process εt was added to
an exponential trend series.

yt = α1 + α1exp(α2t) + εt,

where t = (1, . . . , N), N = 42, α1 = 10, α2 = 0.09, and εt is a Gaussian white noise
process with variance 1 (see 1). It is obvious that the number of eigenvalues required to
reconstruct the signal for this series is 2, as we have a constant adding to exponential
curve, which corresponds to the rank estimation (see [24].

Fig. 1: A realization of the simulated series.

By looking at the w -correlations, and the logarithm of the eigenvalues, we may use
only the first component to extract the signal (see Fig. 2).

However, using the suggested measures and criteria, this gives us the correct value
of r. Fig. 3 represents the kurtosis coefficient of ζi (i = 1, . . . , L). The maximum value
of the kurtosis coefficient is considered as one of the rules and indicators we use for the
start of the noise. It is clear that the maximum kurtosis coefficients of ζi is obtained for
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Fig. 2: w-correlations matrix (left) for the 7 reconstructed components of the simulated
series, and logarithms of the 7 simulated series eigenvalues (right).

ζc=3. Thus, the number of eigenvalues required to extract the signal is r = c− 1 = 2.
Similar results emerged by using the values of skew and CV (see Fig 4).

Fig. 3: Kurtosis of ζi for the simulated series.

In addition, the Spearman correlation coefficient between ζi and ζi+1 is also cal-
culated. Fig. 5 (left) shows the correlation between ζi and ζi+1. For the correlation
coefficient, the minimum value of ρs between ζc−1 and ζc is used as an another indi-
cator for the cut-off point. The results are similar to what emerged by other criteria,
and confirm that the approach works properly. Different criteria were used in [2] to
evaluate the approach, for example, RMSE and MAE, which confirm that the modified
approach can be used as a promising one.

The correlation matrix also enables us to distinguish and separate the different com-
ponents from each other. Thus, the correlation matrix of ζi is identify the separability
between the components. If the absolute value of the correlation coefficient between ζi
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Fig. 4: Skewness (left) and coefficient of variation (right) of ζi for the simulated series.

and ζj is small, then the corresponding components are almost orthogonal; however,
if the value is large, then the corresponding series are far from being orthogonal and
thus they are not neatly separable. It is clear that the signal can be separated from
the noise since the top right pattern from the correlation matrix is related to the white
noise process (see Fig. 5 (right)).

Fig. 5: Spearman correlation of (ζi, ζi+1) (left) and matrix of Spearman correlation
between (ζi, ζj).

4 COVID-19 data analysis

The daily confirmed cases of COVID-19 in Saudi Arabia [32] is used in this research.
First, We have used the first 42 days data; from 02-03-2020 to 12-04-2020. The aim
is to analyse the data and make prediction from 13-04-2020 to end of June 2020, and
detect the peak. The number of daily cases series is depicted in Fig. 6. Second, we have
updated our data on 12-05-2020, and included values from 13-04-2020 to 12-05-2020,
so the total became 71 values. This does not affect the required number of eigenvalues
for the reconstruction stage, this will be discussed in the following part.
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Fig. 6: COVID-19 daily confirmed cases time series in Saudi Arabia (02-03-2020 to
12-04-20202)

4.1 Separability and selection of the components

let us now start with the first data. As we mentioned earlier, since our aim is to extract
the signal as a whole, we can choose any value for L, and the goal to find the best
choice of r. Furthermore, based on our research [2], we showed that one can use a small
window length when analysing exponential series, like the one of COVID-19 series. The
selection of L = 7, provide the best and reasonable results with the required r that
will be obtained by the proposed approach.

Th results based on those measure in extraction the signal for forecasting, give a
curve with likely peak. However, the prediction using many other choices of L and
r do not give any end or peak for this pandemic and go up exponentially, and this
is impossible as this pandemic will not stay forever. This also support the obtained
results. Therefore, the important task now is the selection of the number of eigenvalues
r that required for reconstruction and build the model for forecasting.

Fig. 7 illustrates the results of the coefficients of skewness and kurtosis for each
eigenvalue, and the results of the matrix correlations and correlation between ζi and
ζi+1 for L = 7. As shown by the results, for the COVID-19 daily series, the maximum
values of Skew, Kurt, are observed for ζc=3, and the minimum value of ρs is obtained
between ζc−1=2 and ζc=3. In addition, the matrix of Spearman correlation for ζi and ζj
(i, j = 1, . . . , 7) split the eigenvalues or the components into two groups; this indicates
that the value of r = 2.

Fig. 8 depicts the the result of the reconstructed series, which is obtained by
using L = 7 and eigentriples r = 2. The red and the black lines correspond to the
reconstructed series and the original series, respectively. It seems that the reconstructed
series has been obtained well. However, we will see later that the the reconstructed
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Fig. 7: All measures results for ζi.

series using the whole data is better than this fitted series.

4.2 Prediction daily cases of COVID-19 using VSSA

After obtaining the reconstructed series, the next aim is to predict new data, we will
predict values from 13-04-2020 to the end of June 2020. There are two main forecasting
methods in SSA, Vector SSA (VSSA) and Recurrent SSA (RSSA). The VSSA forecast-
ing algorithms is the most widely used in SSA [24]. Generally, this method works more
robustly than RSSA especially when a series contains outliers or when faced big shocks
in the series [12]. Therefore, we use the VSSA algorithm for forecasting in this research
as recommended in [13].

Vector forecasting algorithm: For performing SSA forecasting, the basic re-
quirement is that the series satisfies a linear recurrent formula (LRF). The series
YN = [y1, . . . , yN ] satisfies a LRF of order L− 1 if:

yt = a1yt−1 + a2yt−2 + · · ·+ aL−1yt−L+1, t = L+ 1, . . . , N (7)

The coefficient vector A = a1, . . . , aL−1 is defined as follows:

A ≡ 1
1−ν2

r∑
j=1

πjU
∇
j ,

where ν2 =
r∑
j=1

π2
j , and U∇j is the vector of the first L − 1 components of the
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Fig. 8: Plot of the daily Covid-19 series in Saudi Arabia and fitted curve.

eigen-vector Uj, and πj the last component of Uj (j = 1, . . . , r).
Consider the following matrix

Π = U∇U∇T + (1− ν2)AAT (8)

let us now define the linear operator:

fν : Lr → RL, (9)

where Lr = span{U1, . . . , Ur} and

fνY =

(
ΠYM
ATYM

)
, Y ∈ Lr, (10)

where YM is the vector of the last L− 1 elements of YN . The vector Zj is defined as
follows:

Zi =

{
X̃i for j = 1, . . . , K,
fνZj−1 for j = K + 1, . . . , K + h+ L− 1

where the X̃i are the reconstructed columns of the trajectory matrix of the ith series
after grouping and leaving out noise components. Now, by constructing matrix Z =
[Z1, . . . , ZK+h+L−1] and performing diagonal averaging, a new series ŷ1, . . . , ŷK+h+L−1
is obtained, where ŷN+1, . . . , ŷN+h from the h terms of the VSSA forecast.

As we discussed above, the best values for reconstruction and forecasting are L = 7
and r = 2. Similar procedures have been done for the new data that updated from
02-03-2020 to 12-05-2020. Same values of L and r were used in analysing the new data,
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and used for prediction new data points. Fig. 9 presents the updated data and the
reconstructed series by the first 2 eigentriples. It is obvious that the reconstructed series
is obtained precisely. Fig. 10 shows two curves predictions and the whole actual data,
the red one is the prediction using the first data, and the blue one is the predictions
using the updated data. It is obvious that there is no big difference, as the peak by
the red curve around May 20 where around beginning of June by the blue curve that
used the updated data. In addition, and the end of this pandemic will be between mid
of June and mid of July.

Fig. 9: Plot of the daily COVID-19 series in Saudi Arabia and fitted curve for the
whole data.

Fig. 10: Comparison of two forecasting scenarios with actual observations.
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5 Conclusion

A modified Singular Spectrum Analysis approach were used in this research for the
decomposing and forecasting COVID-19 data in Saudi Arabia. The approach was
examined in our previous research, and here in analysing COVID-19 data.

In the first stage, the first 42 confirmed daily values (02-03 to 12-04-2020) were used
and analysed to identify the value of r for separability between noise and the signal.
After obtaining the value of r, which was 2, and extracting the signals, the Vector
SSA were used for prediction and determine the pandemic peak. In the second stage,
we updated the data and included 71 daily values. We have used the same window
length and number of eigenvalues for reconstruction and forecasting. The results of
both forecasting scenarios have indicated that the peak will be around end of May and
mid of June, and the end of this crises will be between end of June and mid of July.

All our results confirm the impressive performance of the modified SSA in analysing
COVID-19 data and selecting the value of r for identifying the signal subspace from a
noisy time series, and then make a good prediction using Vector SSA method. Note
that we have not examined all possible values of window length in this research, and
for forecasting we have used only the basic Vector SSA.

For future research, we will include more data and considered different window
length L that may give a better forecasting. In addition, chaotic behaviour in COVID-
19 data will be examined as we have some results that show strange patterns, which
can be found in chaotic systems.
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