SARS-CoV-2 detection in nasopharyngeal throat swabs by metagenomics

- 3
- 4 Le Van Tan¹, Nguyen Thi Thu Hong¹, Nghiem My Ngoc², Tran Tan Thanh¹, Vo Thanh
- 5 Lam², Lam Anh Nguyet¹, Le Nguyen Truc Nhu¹, Nguyen Thi Han Ny¹, Ngo Ngoc Quang
- 6 Minh³, Dinh Nguyen Huy Man², Vu Thi Ty Hang¹, Phan Nguyen Quoc Khanh¹, Tran Chanh
- 7 Xuan⁴, Nguyen Thanh Phong², Tran Nguyen Hoang Tu², Tran Tinh Hien^{1,5}, Le Manh
- 8 Hung², Nguyen Thanh Truong², Lam Minh Yen¹, Nguyen Thanh Dung², Guy Thwaites^{1,5},
- 9 Nguyen Van Vinh Chau², for OUCRU COVID-19 research group*
- 10 *Members of the Group are listed in the acknowledgements

11

- ¹Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- ²Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
- ³Children's Hospital 1, Ho Chi Minh City, Vietnam
- ⁴Cu Chi Hospital, Ho Chi Minh City, Vietnam
- ⁵Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine,
- 17 University of Oxford, Oxford, UK
- 18 Correspondence: Le Van Tan, email: tanlv@oucru.org
- **Abstract**: 49
- 20 Main text: 1198
- 21 **Running title**: SARS-CoV-2 detection by metagenomics
- 22 Key words: COVID-19, SARS-CoV-2, coronaviruses, pandemic, Vietnam

23 ABSTRACT

- 24 Metagenomics could detect SARS-CoV-2 in all eight nasopharyngeal/throat swabs with
- 25 high/low viral loads, and rhinovirus in a co-infected patient. The sequenced viruses
- 26 belonged to lineage B1. Because metagenomics could detect novel pathogen and co-
- 27 infection, and generate sequence data for epidemiological investigation, it is an attractive
- 28 approach for infectious-disease diagnosis.

29	Metagenomics is a sensitive sequence-independence method for infectious disease diagnosis
30	and the discovery of novel pathogens [1]. The novel coronavirus namely severe acute
31	respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the ongoing coronavirus
32	disease 2019 (COVID-19) pandemic [2]. However, there have only been three studies
33	reporting the utility potential of metagenomics to detect SARS-CoV-2 directly from clinical
34	specimens, with a combined sample size of nine patients [3-5]. But none of these has been
35	conducted in resource-limited settings. In this area of the world, emerging infection however
36	is likely to emerge. Here we describe the application of metagenomics to detect SARS-CoV-
37	2 in RT-PCR positive nasopharyngeal throat swabs. In addition, using the obtained
38	sequence, we genetically characterize the viruses.
39	THE STUDY
40	Since the beginning of March, 2020 an observational study have been conducted at the
41	Hospital for Tropical Diseases (HTD) in Ho Chi Minh City, Vietnam and another one at one
42	of its two designated centres for receiving and treating COVI-19 patients from southern
43	Vietnam with a population of over 40 million (Figure 1). We enrolled patients with a
44	confirmed SARS-CoV-2 diagnosis admitted to the study settings within 48 hours. We
45	collected nasopharyngeal throat swabs (NTS), clinical and laboratory data, and travel and
46	contact history from each study participant. The collected NTS was stored at 4 ⁰ C at the
47	study sites within four hours and was then transferred to the clinical laboratory of HTD for
48	analysis. SARS-CoV-2 detection was carried out using a WHO recommended real time RT-
49	PCR assays [6]. Assessment of co-infection with common respiratory viruses was carried
50	out using multiplex RT-PCR targeted at 15 different respiratory viruses [7]. The clinical
51	studies received approvals from the Institutional Review Board of the HTD and the Oxford

52 Tropical Research Ethics Committee of the University of Oxford. Study participants gave53 their written informed consent.

54	The selected samples were individually analyzed with the inclusion of a molecular grade
55	water sample serving as a non-template control (NTC). Metagenomics was carried out as
56	previously described [8]. DNA libraries of individual samples and NTC were then
57	multiplexed using double unique indexes (i.e. each sample was differentiated by double
58	barcodes) and sequenced on an Illumina MiSeq platform using a 300-cycle MiSeq reagent
59	kit V3 (Illumina). Detection of SARS-CoV-2 and co-infection viruses in the obtained
60	sequence data was carried out using a combination of publically availably metagenomics
61	pipelines namely IDseq (idseq.net) and DISCVR [9]. Reference based mapping approach
62	was applied to assemble SARS-CoV-2 genomes from the obtained sequences using
63	Geneious 11.0.3 (Biomatters, Auckland, New Zealand). SARS-CoV-2 lineage determination
64	and detections of nonsynonymous mutations were carried out using CoV-GLUE (http://cov-
65	glue.cvr.gla.ac.uk), a publically available tool for SARS-CoV-2 sequence analysis (Figure
66	1).
67	As of March 19th, 2020, a total of 11 PCR confirmed SARS-CoV-2 patients were enrolled in
68	the clinical studies (Figure 1). As a pilot, we selected eight with a wide range of viral loads,
69	as reflected by real time Cycle threshold (Ct) values, for metagenomics analysis (Figure
70	2A). Information about demographics and clinical status of the eight included patients are
71	presented in Table 1. All were adults and two were asymptomatic carriers identified through
72	contact tracing approach implemented in Vietnam [10]. Three were cases of locally acquired
73	infection and five were imported cases, and one was co-infected with rhihnovirus.

Information about duration of stay and clinical and laboratory findings are presented inTable 1.

76 Metagenomics generated a total of 2–4 million reads per sample in 7/8 included NTS. In the

remaining sample, ¹/₄ million reads were obtained (Table 2). SARS-CoV-2 were detected in

sequence data obtained from all eight RT-PCR positive NTS samples by both IDseq and

79 DISCVR, but not in the NTS sample. One patient presenting with respiratory infection was

80 co-infected with rhinovirus, which was also detected by metagenomics.

81 Results of reference-based mapping showed three consensuses had genome coverage of

 \geq 270%, while the remaining five had coverage of <50% (Table 2 and Supplementary Figure

1). Analysis of the obtained consensuses showed all belong to lineage B1. A total of 11

84 nonsynonymous substitutions were detected in three of the eight obtained consensuses

85 (Supplementary Table 1).

86 CONCLUSIONS

The emergence of SARS-CoV-2 emphasizes the continuous unprecedented threat posed by emerging infectious diseases, especially those caused by novel viruses. The diagnosis of respiratory diseases is highly challenging because the responsible pathogens are diverse. In addition, the emergence of novel pathogens further challenges routine diagnosis. Indeed, SARS-CoV-2 initially went undetected by PCR panels targeted at common respiratory viruses [2]. New diagnostic approach is therefore urgently needed to address the ongoing challenge posed by emerging infections.

94 Here, we demonstrated that when coupled with publically available bioinformatics tools,

95 metagenomics could detect SARS-CoV-2 in RT-PCR positive NTS samples with a wide

96 range of viral loads. The data suggests that metagenomics is a sensitive assay for SARS-

97	CoV-2 diagnosis and detection of co-infection as illustrated by the detection of rhinovirus,
98	in line with a recent report [4], important for clinical management. In addition to providing
99	diagnostic information, the obtained sequences also allows for genetic characterization, and
100	detection of genetic variations in the genomes of the pathogen under investigation. Indeed,
101	using the obtained sequences, we successfully identified that all the Vietnamese viruses
102	included for analysis belonged to lineage B1, which has been found worldwide [11]. In line
103	with a recent report [12], we identify several nonsynonymous substitutions in the obtained
104	genomes SARS-CoV-2. Further research is needed to ascribe the potential consequences
105	that SARS-CoV-2 evolution may have.
106	Currently, real time RT-PCR is used for screening of suspected cases of SARS-CoV-2
107	infection [6]. Compared with RT-PCR, metagenomics based on Illumina sequencing
108	technologies remains high cost and low throughput. However, these caveats could be
109	overcome by third generation sequencing technologies such as Oxford Nanopore [13],
110	which warrants further research.
111	The application of metagenomics for SARS-CoV-2 and respiratory diagnosis would be
112	highly relevant in the near future. This is because SARS-CoV-2 has spread globally, and
113	will likely soon become endemic worldwide. Indeed as of May 21 st , 2020 nearly 5 million
114	cases have been reported globally. Notably, the vast majority of SARS-CoV-2 infections are
115	asymptomatic or mild, while COVID-19 patients present with signs/symptoms
116	undistinguished with respiratory diseases caused by other viruses [14, 15]. As such rapid
117	identification of the likely cause of hospitalized patients with respiratory infections is
118	essential for clinical management and outbreak response. Under this circumstance,
119	metagenomics is a preferable method because of its ability to detect both known and

- 120 unknown pathogens presenting in the tested specimens without the need of pathogen
- 121 specific PCR primers [1, 13].
- 122 Our study has some limitations. Only a small number of patients were included for analysis,
- 123 owing to the nature of a pilot in itself. However during the study period, there were only 14
- 124 SARS-CoV-2 confirmed cases reported in our setting, Ho Chi Minh City, Vietnam. As a
- 125 consequence, we were not able to properly assess the sensitivity and specificity of
- 126 metagenomics for the diagnosis of COVID-19.
- 127 In summary, we show that metagenomics is a sensitive assay for sequence-independent
- 128 detection of SARS-CoV-2 NTS samples. The ability of metagenomics to detect co-infection
- and novel pathogens, and generate sequence data for molecular epidemiological
- 130 investigation makes it an attractive approach for infectious disease diagnosis.

131 ACKNOWLEDGEMENTS

- 132 This study was funded by the Wellcome Trust of Great Britain (106680/B/14/Z and 204904/Z/16/Z).
- 134 We are indebt to Ms Nguyen Thanh Ngoc, Ms Le Kim Thanh, and the OUCRU
- 135 IT/CTU/Laboratory Management departments for their support.
- 136
- 137 We thank the patients for their participations in this study, and the doctors and nurses at
- HTD Cu Chi Hospital, who cared for the patients and provided the logistic support with the study.
- 107 Staajt

140 OUCRU COVID-19 Research Group

- 141 Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam: Nguyen Van Vinh Chau,
- 142 Nguyen Thanh Dung, Le Manh Hung, Huynh Thi Loan, Nguyen Thanh Truong, Nguyen
- 143 Thanh Phong, Dinh Nguyen Huy Man, Nguyen Van Hao, Duong Bich Thuy, Nghiem My
- 144 Ngoc, Nguyen Phu Huong Lan, Pham Thi Ngoc Thoa, Tran Nguyen Phuong Thao, Tran Thi
- 145 Lan Phuong, Le Thi Tam Uyen, Tran Thi Thanh Tam, Bui Thi Ton That, Huynh Kim
- 146 Nhung, Ngo Tan Tai, Tran Nguyen Hoang Tu, Vo Trong Vuong, Dinh Thi Bich Ty, Le Thi
- 147 Dung, Thai Lam Uyen, Nguyen Thi My Tien, Ho Thi Thu Thao, Nguyen Ngoc Thao,
- 148 Huynh Ngoc Thien Vuong, Pham Ngoc Phuong Thao, Phan Minh Phuong
- 149 Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam: Dong Thi Hoai
- 150 Tam, Evelyne Kestelyn, Donovan Joseph, Ronald Geskus, Guy Thwaites, H. Rogier van
- 151 Doorn, Huynh Le Anh Huy, Huynh Ngan Ha, Huynh Xuan Yen, Jennifer Van Nuil, Jeremy
- 152 Day, Joseph Donovan, Katrina Lawson, Lam Anh Nguyet, Lam Minh Yen, Le Nguyen Truc
- 153 Nhu, Le Thanh Hoang Nhat, Le Van Tan, Sonia Lewycka Odette, Louise Thwaites, Maia
- 154 Rabaa, Marc Choisy, Mary Chambers, Motiur Rahman, Ngo Thi Hoa, Nguyen Thanh Thuy
- 155 Nhien, Nguyen Thi Han Ny, Nguyen Thi Kim Tuyen, Nguyen Thi Phuong Dung, Nguyen
- 156 Thi Thu Hong, Nguyen Xuan Truong, Phan Nguyen Quoc Khanh, Phung Le Kim Yen,
- 157 Sophie Yacoub, Thomas Kesteman, Nguyen Thuy Thuong Thuong, Tran Tan Thanh, Tran
- 158 Tinh Hien, Vu Thi Ty Hang

159 **ABOUT THE AUTHOR**

- 160 Dr Le Van Tan is head of Emeging Infections at Oxford University Clinical Resarh Unit.
- 161 His research interest includes novel diagnosis and emerging infections.
- 162

163 **REFERENCES**

- Chiu, C.Y. and S.A. Miller, *Clinical metagenomics*. Nat Rev Genet, 2019. 20(6): p. 341-355.
- 166 2. Zhu, N., D. Zhang, W. Wang, X. Li, B. Yang, J. Song, X. Zhao, B. Huang, W. Shi, 167 B. Lu, P. Niu, F. Zhan, Y. Ma, D. Wang, W. Yu, C. Wu, C.F. Cao, W. Tan, J. Ching
- 167 R. Lu, P. Niu, F. Zhan, X. Ma, D. Wang, W. Xu, G. Wu, G.F. Gao, W. Tan, I. China

168		Novel Coronavirus and T. Research A Novel Coronavirus from Patients with
160		Pnoumonia in China 2010 N Engl I Med 2020 382 (8): p 727-733
170	3	Chen I W Liu O Zhang K Yu G Ve W Wu Z Sun E Liu K Wu B Zhong
170	5.	V Moi W Zhang V Chan V Li M Shi V Lan and V Liv DNA hasad mNCS
1/1		1. Mei, w. Zhalig, 1. Chell, 1. Li, M. Shi, K. Lali, and 1. Liu, <i>KivA based mivGS</i>
1/2		approach identifies a novel human coronavirus from two individual pneumonia
1/3		cases in 2019 Wuhan outbreak. Emerg Microbes Infect, 2020. 9(1): p. 313-319.
174	4.	Peddu, V., R.C. Shean, H. Xie, L. Shrestha, G.A. Perchetti, S.S. Minot, P.
175		Roychoudhury, M.L. Huang, A. Nalla, S.B. Reddy, Q. Phung, A. Reinhardt, K.R.
176		Jerome, and A.L. Greninger, Metagenomic analysis reveals clinical SARS-CoV-2
177		infection and bacterial or viral superinfection and colonization. Clin Chem, 2020.
178	5.	Ai, J.W., Y. Zhang, H.C. Zhang, T. Xu, and W.H. Zhang, Era of molecular
179		diagnosis for pathogen identification of unexplained pneumonia, lessons to be
180		<i>learned</i> . Emerg Microbes Infect, 2020. 9(1): p. 597-600.
181	6.	Corman, V.M., O. Landt, M. Kaiser, R. Molenkamp, A. Meijer, D.K. Chu, T.
182		Bleicker, S. Brunink, J. Schneider, M.L. Schmidt, D.G. Mulders, B.L. Haagmans, B.
183		van der Veer, S. van den Brink, L. Wiisman, G. Goderski, J.L. Romette, J. Ellis, M.
184		Zambon M Peiris H Goossens C Reusken M P Koopmans and C Drosten
185		Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR Furo
186		Surveill 2020 25(3)
187	7	Jansen R.R. J. Schinkel S. Koekkoek D. Paikrt M. Beld M.D. de Jong and R
188	7.	Molenkamp, Development and evaluation of a four-tube real time multiplex PCR
100		assay covaring fourteen respiratory viruses, and comparison to its corresponding
109		assay covering jourieen respiratory viruses, and comparison to its corresponding
190	0	Arb NT NTT Hang I NT Nhu TT Thanh C V Lou D Limmethuroteelul
191	8.	Ann, N. I., N. I.I. Hong, L.N.I. Nnu, I.I. Inann, C.Y. Lau, D. Liminaunuroisakui,
192		X. Deng, M. Kanman, N. V. V. Chau, H.K. van Doorn, G. Inwaites, E. Delwart, and
193		L.V. 1an, Viruses in Vietnamese Patients Presenting with Community-Acquired
194	0	Sepsis of Unknown Cause. J Clin Microbiol, 2019. 57(9).
195	9.	Maabar, M., A.J. Davison, M. Vucak, F. Thorburn, P.R. Murcia, R. Gunson, M.
196		Palmarini, and J. Hughes, DisCVR: Rapid viral diagnosis from high-throughput
197		sequencing data. Virus Evol, 2019. 5(2): p. vez033.
198	10.	Dinh, L., P. Dinh, P.D.M. Nguyen, D.H.N. Nguyen, and T. Hoang, Vietnam's
199		response to COVID-19: Prompt and proactive actions. J Travel Med, 2020.
200	11.	Rambaut, A., E.C. Holmes, V. Hill, Á. O'Toole, J.T. McCrone, C. Ruis, L. du
201		Plessis, and O.G. Pybus, 2020.
202	12.	van Dorp, L., M. Acmna, D. Richarch, P.L. Shaw, E.C. Fprd, L. Ormond, J.C. Owen,
203		J. Pang, C.S.C. Tan, A.T.F. Boshier, T.A. Ortiz, and F. Balloux, <i>Emergence of</i>
204		genomic diversity and recurrent mutations in SARS-CoV-2. Infection, Genetics and
205		Evolution, 2020. in press.
206	13.	Yang, L., G. Haidar, H. Zia, R. Nettles, S. Oin, X. Wang, F. Shah, S.F. Rapport, T.
207		Charalampous, B. Methe, A. Fitch, A. Morris, B.J. McVerry, J. O'Grady, and G.D.
208		Kitsios. <i>Metagenomic identification of severe pneumonia pathogens in mechanically-</i>
209		ventilated patients: a feasibility and clinical validity study Respir Res. 2019 20 (1):
210		n. 265
211	14	Goval P. I.I. Choi, L.C. Pinheiro, E.I. Schenck, R. Chen, A. Jahri, M.I. Satlin, T.R.
211	т Г.	Campion Ir M Nahid IB Ringel KI Hoffman MN Alchak H & Li GT
212		Wehmeyer M Rajan E Reshetnyak N Hunert F M Horn F I Martinez D M
ZI J		wonneyer, wi. Rajan, D. Resneuryak, w. nupert, D.W. non, r.J. Warthez, K.W.

- Gulick, and M.M. Safford, *Clinical Characteristics of Covid-19 in New York City*. N
 Engl J Med, 2020.
- 216 15. Grasselli, G., A. Zangrillo, A. Zanella, M. Antonelli, L. Cabrini, A. Castelli, D.
- 217 Cereda, A. Coluccello, G. Foti, R. Fumagalli, G. Iotti, N. Latronico, L. Lorini, S.
 218 Merler, G. Natalini, A. Piatti, M.V. Ranieri, A.M. Scandroglio, E. Storti, M.
- 219 Cecconi, A. Pesenti, and C.-L.I. Network, *Baseline Characteristics and Outcomes of*
- 220 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region,
- 221 Italy. JAMA, 2020.

	intear and		e ni i ei	t data of th	ie staaj p	artierpants		
	Patient 1	Patient 2	Patient 3	Patient 4	Patient 5	Patient 6	Patient 7	Patient 8
Age range	30's	40's	20's	30's	20's	20's	40's	10's
Gender	Male	Male	Male	Male	Female	Female	Female	Male
Arriving in Vietnam from abroad (Yes/No)	Yes	Yes	No	No	No	Yes	Yes	Yes
Locally acquired infection (Yes/No)	No	No	Yes	Yes	Yes	No	No	No
Days from confirmed diagnosis to enrolment	2	1	3	2	3	2	1	0
Days from admission to enrolment	2	1	2	1	0	1	2	0
Duration of stay	15	NA	17	18	15	12	13	17
Symptomatic (S)/asymptomatic (A)	S	S	S	А	S	А	S	S
Laboratory results								
White-cell count (×103per µl)	4.23	6.89	3.96	NA	6.85	4.83	3.46	8.27
Lymphocyte counts (×103per µl)	0.8	0.54	1.08	NA	2.94	2.50	0.88	2.40
Hemoglobin ((g/dl)	13.6	14.6	16.8	NA	15.7	15.00	11.60	15.60
Hematocrit (%)	42.4	43.4	41.6	NA	37.4	35.78	28.48	38.09
Platelet count (per μl)	140	235	187	NA	414	321.00	178.00	330.00
Glucose (mg/dl)	125.7	112	85	NA	NA	NA	76.80	98.50
Creatinine (mg/dl)	0.96	1.28	1.2	NA	NA	NA	0.99	1.19
Aspartate aminotransferase (U/liter)	24	17	22	NA	NA	NA	17.40	23.30
Alanine aminotransferase (U/liter)	23	16	24	NA	NA	NA	17.40	25.30
Clinical signs/symptoms (Yes/No)								
Fever	Y	Y	Y	N	N	N	N	N
Cough	N	Y	Ν	N	N	N	Y	N
Rhinorrhea	N	N	Y	N	Y	N	N	Y
Fatigue	Ν	Y	Ν	N	N	N	N	N
Diarrhea	N	Ν	Ν	N	N	N	N	Y
Sore throat	N	N	Y	N	N	N	Y	N
Muscle pain	N	Y	Ν	N	N	N	Y	N
Headache	N	Y	N	N	N	N	N	Ν
Abdominal pain	N	N	N	N	N	N	N	Ν
Lost sense of smell	Ν	N	Ν	Ν	Y	N	N	N

Table 1: Demographics, clinical and real time RT-PCR data of the study participants

Patient number	Ct values	Total single reads	No of SARS-CoV-2 reads	% SARS-CoV-2 genome coverage	SARS-CoV-2 lineage
1	26.52	3,182,758	84	16	B1
2	21.47	4,218,464	6930	70	B1
3	27.06	2,735,464	573	36	B1
4	32.09	1,902,512	68	12	B1
5	24.81	245,818	14	3	B1
6	25.68	3,524,972	995	48	B1
7	24.56	2,440,326	16564	87	B1
8	24.13	3,253,308	9095	80	B1

Table 2: Results of mNGS and lineage assignment SARS-CoV-2 sequences

Figure 2: Distribution of Ct values of nasopharyngeal throat swabs of the study participant (A), and the association between Ct values and genome coverage of SARS-CoV-2 generated by mNGS (B)

Note to Figure 2A: Blue dot represent for samples selected for mNGS while red squares represent for samples not selected for mNGS. Numbers on the X axis represent for calendar days of March 2020

	Nucleotide variation*	Coding Region	Amino acid change	Detected in GenBank
Patient 6	17104C>T	nsp13	H290Y	Yes
	14407C>T	nsp12	P323L	Yes
	23402G>A	S	D614G	Yes
Patient 7	28881G>A	N	R203K	Yes
	28882G>A	N	R203K	Yes
	28883G>C	N	G204R	Yes
	14407C>T	nsp12	P323L	Yes
	23402G>A	S	D614G	Yes
Patient 8	28881G>A	N	R203K	Yes
	28882G>A	N	R203K	Yes
	28883G>C	N	G204R	Yes

Supplementary Table 1: list of non synonymous substitution detected in eight consensuses of the present study

Note to supplementary Figure 1: *compared with reference strain (GenBank accession number NC_045512.2)

Supplementary Figure 1: A screen shot showing evidence of SARS-CoV-2 detection in metagenomics data using IDseq pipeline