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Estimating Household Transmission of SARS-CoV-2
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Introduction and Goals. SARS-CoV-2 is transmitted both in the community and within households.
Social distancing and lockdowns reduce community transmission but do not directly address household
transmission. We provide quantitative measures of household transmission based on empirical data, and
estimate the contribution of households to overall spread. We highlight policy implications from our analysis
of household transmission, and more generally, of changes in contact patterns under social distancing.

Methods. We investigate the household secondary attack rate (SAR) for SARS-CoV-2, as well as Ry,
which is the average number of within-household infections caused by a single index case. We identify
previous works that estimated the SAR. We correct these estimates based on the false-negative rate of PCR
testing and the failure to test asymptomatics. Results are pooled by a hierarchical Bayesian random-effects
model to provide a meta-analysis estimate of the SAR. We estimate Ry, using results from population testing
in Vo', Italy and contact tracing data that we curate from Singapore. The code and data behind our analysis
are publicly available!.

Results. We identified nine studies of the household secondary attack rate. Our modeling suggests the
SAR is heterogeneous across studies. The pooled central estimate of the SAR is 30% but with a posterior
95% credible interval of (0%, 67%) reflecting this heterogeneity. This corresponds to a posterior mean for
the SAR of 30% (18%, 43%) and a standard deviation of 15% (9%, 27%). If results are not corrected for false
negatives and asymptomatics, the pooled central estimate for the SAR is 20% (0%, 43%). From the same
nine studies, we estimate R, to be 0.47 (0.13,0.77). Using contact tracing data from Singapore, we infer
an Ry, value of 0.32 (0.22,0.42). Population testing data from Vo’ yields an Ry, estimate of 0.37 (0.34,0.40)
after correcting for false negatives and asymptomatics.

Interpretation. Our estimates of Ry, suggest that household transmission was a small fraction (5%-35%)
of R before social distancing but a large fraction after (30%-55%). This suggests that household transmission
may be an effective target for interventions. A remaining uncertainty is whether household infections actually
contribute to further community transmission or are contained within households. This can be estimated
given high-quality contact tracing data.

More broadly, our study points to emerging contact patterns (i.e., increased time at home relative to the
community) playing a role in transmission of SARS-CoV-2. We briefly highlight another instance of this
phenomenon (differences in contact between essential workers and the rest of the population), provide coarse
estimates of its effect on transmission, and discuss how future data could enable a more reliable estimate.
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1 Introduction

Lockdowns and stay-at-home orders have been deployed across the world to curb the growth of SARS-CoV-2,
the virus that causes COVID-19. These policies reduce transmission by reducing overall mobility.

Since the introduction of lockdowns, community mobility has decreased by 28% — 70% (Google, 2020),
and the effective reproduction number R has decreased by an average of 48% (IQR 38-65%) across 16 US
states (shown in Figure 4). At the same time, these policies have increased time spent at home and therefore
likely increased household transmission of SARS-CoV-2: Google (2020) reports 15% — 29% increases in time
spent at home in these states. In the UK, Shanghai, and Wuhan, the majority of social contacts occurred
in households after lockdown. The estimated proportion of contacts is 58% for the UK (up from 34%
pre-lockdown from Jarvis et al. (2020)) and 79% and 94% for Shanghai and Wuhan respectively (Zhang
et al., 2020). Household transmission played an important role in previous epidemics such as the 2009
HIN1 pandemic (Endo et al., 2019; Tsang et al., 2016; Lau et al., 2012). It may now also be an important
factor in SARS-CoV-2 transmission, especially since community transmission has decreased and household
transmission has increased under stay-at-home policies.

Our aim is to estimate household transmission and determine its overall contribution to growth of SARS-
CoV-2. We do so both via a meta-analysis of previous studies, a direct analysis of data collected in Vo’,
Italy (Lavezzo et al., 2020), and analysis of contact tracing data that we curated from Singapore (Singapore
COVID-19 Dashboard, 2020). We correct these data for false negatives and in some cases for selective
testing of only symptomatic cases. Code for our analysis, together with the Singapore dataset, are available
at https://github.com/andrewilyas/covid-household-transmission.

We estimate that household transmission contributes between 0.22 and 0.42 infections to the overall
reproduction number. In comparison, overall reproduction numbers during stay-at-home policies ranged
from 0.65 to 1.25. We conclude that household transmission is now a significant contributor to overall
SARS-CoV-2 reproduction (see Figure 5 for region-specific estimates).

We next examine two folk theories that have sometimes been used to argue against attending to household
transmission. The two theories are that preventing transmission within a household is either (a) futile, since
transmission is inevitable or (b) low-impact, since secondary infections are “contained” in the household
(Horowitz, 2020):

1. Household inevitability: No interventions to reduce household transmission are likely to work.
2. Household containment: People infected at home will stay at home and not cause community spread.

Our meta-analysis of the household secondary attack rate yielded a central estimate of 30% and estimates
for individual studies ranging from 11% — 55%. This implies that household infection is not a certainty
and can be mediated by differences in setting, which casts doubt on inevitability. In Section 4.2 we discuss
policies for reducing household infection. More generally, our estimates imply that infection is not certain
even among individuals who are in regular contact.

We formalize the household containment theory in terms of ratios of secondary transmission, and show
that these can be estimated from well-annotated contact tracing data. Unfortunately, existing data are too
noisy to reliably estimate containment. In Section 4.2 we outline how these rates can be approximated from
aggregate data, and suggest future work for estimating them directly.

Our results underscore that mobility is an imperfect measure of infection risk, since decreases in mobility
likely increase household infections. We suggest instead basing policy on contact patterns, which mediate
transmission both for COVID-19 (Liu et al., 2020; Jarvis et al., 2020) and previous epidemics (Edmunds
et al., 1997; Wallinga et al., 1999; 2006; Mossong et al., 2008; Hens et al., 2009; Eames et al., 2012). To this
end, we explore contact heterogeneity caused by stay-at-home orders, due to the divide between essential
workers and the rest of the population. An initial simulation study (Section 4.3) forecasts that decreasing
transmission risk between essential workers is 8 —35 times as effective as reducing other types of transmission.

2 Methods

The dynamics of disease spread are described via the effective reproduction number R, which measures the
average number of new infections caused by each infected person i. To quantify household transmission, we
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decompose R into two components R = R. + Rj,. The community reproduction number R, is the average
number of new infections caused by an infected individual ¢ outside i’s household. The intra-household
reproduction number Ry, is the average number of new infections caused by an infected individual ¢ inside
i’s household. The ratio % measures the fraction of transmission occurring within households.

In addition to Ry, we consider two measures of intra-household spread that quantify individual risk of
infection. The household secondary attack rate (SAR) is the probability an infected person ¢ infects a specific
household member j. Additionally, we define the household conditional risk of infection (CRI) to be the
probability that j is infected, conditioned on household member ¢ being infected. In contrast to the SAR,
the CRI allows for j having been infected by someone other than 4, and so CRI can be estimated without
attributing infections to particular primary cases.

2.1 Challenges in estimating R;,, SAR and CRI from empirical data

Estimating the growth and prevalence of household cases requires detailed household-level data. The relevant
information to estimate Ry, SAR, and CRI includes:

e Testing results for all members of a household, including both positive and negative cases.

e Infection attribution within a household, which involves identifying the primary cases in a household
and constructing the household transmission chains.

e (linical outcome at the end of the study. If a case is still infectious at the end of a study the data
might undercount the number of infections attributed to the case.

Assuming accurate household level data we can estimate Ry, SAR, and CRI as follows:

e Rj, can be estimated as the ratio of secondary household cases to total household cases. It requires
accurate attribution of infections within households, but does not require negative case counts.

e SAR can be estimated as the ratio of secondary household cases to total susceptible household members.
It requires accurate attribution as well as negative test counts in households.

e CRI can be estimated as the ratio of total number of infected pairs in households to total number
of household pairs. It requires positive and negative case count at household level but not direct
attributions.

In practice, estimating these quantities is made difficult by asymptomatic infections and false negatives.
Existing evidence suggests that asymptomatic cases constitute 18-43% of all infections and may have different
households transmission dynamics than symptomatic cases (Lavezzo et al., 2020; Gudbjartsson et al.; Ferretti
et al., 2020; Streeck et al., 2020). However most studies predominantly test symptomatic individuals, which
leads to biases in the estimates. We can correct the estimates to account for asymptomatic cases. We
calibrate our corrections on studies that have tested a representative sample of the population, as in studies
of Vo', Ttaly and Gangelt, Germany (Lavezzo et al., 2020; Streeck et al., 2020).

Regarding false negatives, recent studies have shown high false-negative rates (FNR) for RT-PCR tests,
and this rate varies over the time course of the disease. Kucirka et al. (2020) find an FNR of 20% for
patients tested on Day 8 of infection and 67% on Day 4. The average FNR in the 10 days following onset
of symptoms is estimated as 17% by Wikramaratna et al. (2020) and 30% by Kucirka et al. (2020). The
FNR also varies between different kinds of swab (Wikramaratna et al., 2020) and between different labs
(Kucirka et al., 2020). The problem of false negatives can be mitigated by correcting estimates using the
FNR (Wikramaratna et al., 2020). However, in recent studies of household transmission (see Section 2.2.1),
estimates of SAR have not been corrected for the FNR.

2.2 Procedure for estimating R,, SAR, and CRI

In order to estimate Ry, SAR, and CRI and account for asymptomatics and false negatives we propose two
approaches. First we adjust estimates from previous studies to account for false negatives and asymptomatics
(see Section 2.2.1). Second, we estimate CRI on the blanket testing dataset from Vo’, Ttaly (Lavezzo et al.,
2020) (see Section 2.2.3). Additionally, we have assembled our own dataset based on contact tracing data
from Singapore, which we use to estimate Rp, (see Section 2.2.2).
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Figure 1: Estimates for secondary attack rate (SAR) and household reproduction number (Rj). Dashed
lines show estimates from the original studies. Solid lines show 95% credible intervals from a Bayesian
hierarchical model, which adjusts estimates for false negatives and asymptomatics where appropriate. In
the left plot the Meta Estimates (orange) are the model’s pooled credible intervals over the mean SAR and
standard deviation of SAR. In the right plot the Meta Estimates refer to the credible intervals over the mean
and standard deviation of Rj. The relatively wide intervals for the mean along with large variance of the
meta estimate of SAR and Ry, are due to high variability across studies. If a study has a single asterisk, this
means it was unnecessary to adjust for asymptomatics (only false negatives). The double asterisk means no
adjustment was necessary.

2.2.1 Adjusting SAR literature estimates

For the SAR, we searched PubMed and Google Scholar to find any previous work that estimates the household
SAR from empirical data. We found a total of nine papers. Whenever appropriate, we recalculated the
estimated SAR for each study to correct for the false-negative rate (FNR) of RT-PCR testing and the
proportion of cases that are asymptomatic (denoted “AR”). We used a hierarchical Bayesian random effects
model both for correcting estimates from individual studies and for pooling results to compute a meta-analysis
estimate of the SAR. In the model, the SAR for study ¢ (denoted SAR;) is drawn from a Beta distribution and
each study has a false-negative rate FNR; drawn from a prior based on estimates in the literature (Section 2.1).
The proportion of asymptomatics AR is shared across studies and is also drawn from a prior based on existing
literature. The likelihood of a household member testing positive is p; = SAR; * (1 — FNR;) x (1 — AR) for
studies where only symptomatic contacts were tested. To estimate the household reproduction number Ry,
for each study ¢, we adjust the total number of secondary cases using FNR; and AR and divide by the number
of primary cases. Results are shown in Figure 1 and a full description of the model is found in Appendix B.

2.2.2 Singapore contact tracing data for estimating R},

Singapore’s Ministry of Health has collected information about COVID-19 cases tracked via contact trac-
ing (Singapore MOH, 2020). UpCode Academy published this data in an interactive dashboard (Singapore
COVID-19 Dashboard, 2020). We extracted associated metadata for each positive case along with a directed
graph providing information about the infection source. This resulted in a case and transmission network
for 6588 patients. Confirmation dates for cases ranged from January, 23rd to April 19th.

We used the data to construct a transmission graph, where nodes correspond to cases and edges to
infections. As terminology, we distinguish source cases (which are the cause of infections) from target cases
(which are infected by sources). We define a cut-off date, such that all infections with confirmation date
prior to the cut-off are labeled as sources. All the nodes that have an incident edge from a source are labeled
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as targets. A node in the infection graph can be both source and target. When relationships are known,
edge annotations reflect the relationship between source and target cases (e.g. family member, colleague,
contact). Rj can be thus estimated as the ratio of total number of household infections to total number of
source cases. Since there is no annotation for “household”, we use the annotation “family member” as a
proxy.

A schematic infection graph is shown in Figure 2. In the case of real data some of the edges are not direct
source-target attributions, but are mediated by ‘Cluster’ nodes. Despite not always having direct infection
attributions we can use temporal information to determine the number of sources and targets.

Cut-off date
Confirmation date *
Nodes:
houschold A
houschold B
household C
QO  inma-houschold
infections
Edges:
» intra-household

transmission

___ _p  primary community
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Figure 2: Estimation of R; from annotated contact tracing data. Nodes represent positive cases and their
horizontal position indicates confirmation date. We consider the subset of the graph containing cases with
confirmation date prior to cut-off date: target nodes are infected by sources. R can be estimated as R =
% and hence R = 13/7 for this cluster. There are 3 distinct households in the cluster and thick borders
denote secondary household infections. The household reproductive number is Ry, = 5/7.

2.2.3 Data from Vo’ for estimating R, and CRI

Most of the population in the town of Vo’, Italy was tested both at the start of a lockdown and 14 days
later (Lavezzo et al., 2020). The two phases of testing covered 86% (2812 subjects) and 72% (2343 subjects)
of the population in Vo’, respectively.

We analyzed data collected in order to estimate Ry and CRI. Following the same terminology as in the
previous section, the date of the second round of testing acts as a cut-off date. Since the data does not trace
infections to sources, we assume that all secondary household infections were caused by the primary case.

We estimate the FNR by assuming that symptomatic cases in households with other confirmed infections
are positive cases.
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Source Quantity Adjusted estimate Notes
Meta-analysis of 9 SAR 0.30 (0.18-0.43) Central estimate and 95% credible inter-
studies Ry 0.51 (0.40-0.62) vals over mean SAR and mean Rj esti-

mate. See Table A.1 for breakdown of each
study and Table 4 for study-level estimates
with and without corrections. See Figure
10 for histograms of posterior samples.

Meta-analysis of 9 sd(SAR) 0.17 (0.09-0.27) Central estimate and 95% credible inter-
studies sd(Rp) 0.15 (0.09-0.23) vals over standard deviation of SAR and
Ry, estimate.
Estimates derived from CRI 0.31 Not corrected for AR or FNR as study used
(Streeck et al., 2020), antibody testing.
Gangelt, Germany
Our estimate from CRI 0.50 Smaller mean household size but older pop-
Vo', Italy data Ry, 0.37 (0.34-0.40) ulation. CRI for under 50s was 0.24.
Our estimates from Ry, 0.19-0.34 Estimates vary with cut-off date value.

Singapore tracing data

Calculated from CRI 0.41 Simple theoretical estimate assuming no
SAR=10.3 outside infection.

Table 1: Estimates of household transmission quantities. Literature estimates were corrected for FNR and
AR, whenever appropriate, and pooled via a hierarchical Bayesian model. Vo’ and Singapore estimates are
based on original analysis of the respective datasets. The R} range for Singapore is the range of central
estimates for different cut-off dates. The Rj, interval for Vo’ is the confidence intervals derived from normal
approximations. We do not report confidence intervals for CRI.
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3 Results

3.1 SAR and R; estimates from previous studies

Estimates of the SAR for each study are shown in Figure 1 and Table 4 and precise counts and estimates
in Tables 3 and 4. Our Bayesian model allows for the possibility of heterogeneity in the SAR across studies
and we find substantial heterogeneity. Figure 1 shows that some 95% credible intervals for the SAR do
not overlap. The pooled central estimate of the SAR is 30% with 95% credible interval (0%, 67%), which
captures the model’s posterior prediction for the SAR for a new study. If we do not correct estimates for
false-negatives and asymptomatics, the central estimate is 20% (0%, 43%). The heterogeneity of SAR across
studies is partly due to variation in the false-negative rate, which we model but do not observe directly. It
may also be due to variation in the cohort of primary cases and their behavior in the household. As a point
of comparison, the household SAR has been estimated to be 15% for HIN1 influenza (Carcione et al., 2011)
and 8% for SARS (Lau et al., 2004).

One concern about previous studies is that asymptomatics are under-represented among the primary
cases. This could also contribute to the observed heterogeneity. Table 4 shows estimates of the CRI based
on random population testing. These estimates (0.31 for Gangelt, Germany and 0.50 for Vo', Italy) are
consistent with our central estimate of SAR, which predicts CRI = 0.41. This provides some evidence that
our SAR estimates are robust to under-representation of asymptomatics.

3.2 Estimates from Singapore contact tracing data.

In Singapore, the quality of annotations appears to have degraded over time. Therefore, we limited our
analysis to consider source cases that were confirmed prior to March 27th 2020, along with their corresponding
target cases (even if the target cases are confirmed later). We believe this cut-off date was early enough to
ensure data quality. This subset of the infection graph contains a total of 1076 nodes and 599 edges. Out of
the total number of cases, 710 are connected to other known cases forming 111 clusters. Among these, 417
out of 710 are source cases with confirmation date prior to the cut-off. The remaining 366 out of 1076 are
not traced to any other case.

The effective reproductive number R is the average number of new infections generated by each case.
We can estimate R from our transmission graph by computing the ratio of total number infections to total
number of source cases. The data contains 599 total infections and 417 source cases, which results in an
estimated R of 1.44 (0.77-2.31). Figure 3 contains estimates for cut-off dates other than March 27th, central
estimates for which range between 0.90 and 4.93. Regarding household transmission, there are 108 household
infections. Assuming FNR, of 20% the corrected estimate for Ry, is 0.32 (0.22-0.42).

The corrected central estimate ranges from 0.19 to 0.34 depending on the cut-off date (see Figure 3; also
Figure 8 and Table 5 in Appendix A).

3.3 Estimates from blanket testing data

In Vo', Italy, the first round of testing recorded 73 positive cases among 53 households with a total of 137

members. The second round of testing identified 7 more positive cases, 3 of which were in households with

prior reported cases. The CRI can be estimated as the ratio between the total number of ordered pairs

among infected individuals in the same household (60) and the total number of ordered household pairs

where the first individual in the pair is infected (136). This yields a point estimate for CRI of 0.44 = %.
Assuming that secondary infections are caused by the primary case in a household, there 73 sources, 23

(7343-53) targets (household infections), and 84 (137-53) susceptible individuals (household contacts). This

23

yields a point estimate for Ry, of 0.31 = £35. Due to the nature of blanket testing we cannot determine the

number of index cases, which makes estimates of SAR unreliable.

Correcting for false negatives and asymptomatics. Out of subjects residing in households with at
least one conformed case, 7 have experienced symptoms but have tested negative. We can adjust for false
negatives by considering the distribution of case counts across households. Assuming an asymptomatic
rate of 0.41 Lavezzo et al. (2020) (among confirmed cases), and a false negative rate (FNR) of 22%, the
expected number of false negatives in infected households is 6.77, which corresponds to the observed value.
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Figure 3: Daily aggregate estimates of effective and household reproduction number in Singapore based on
contact tracing data. We observe that in early phases of the epidemic R, ¢¢ was greater than 1. With increased
public awareness and contact tracing efforts the effective reproduction number has decreased steadily through
March 15th. Throughout this time household transmission stayed constant, with Ry values in the 0.2 — 0.3
range. The ratio of infections attributable to households decreased sharply at the end of March due to large
outbreaks in migrant worker dormitories. Even though their infections are not annotated as households, this
indicates that co-habitation and proximity play a large role in transmission dynamics.

For FNR value of 22%, and average household size of 2.1.2, the corrected estimates are CRI= 0.54 and
R, = 0.37 ((0.34 — 0.40)). We estimate confidence intervals for Rj, by making normal approximations to
the conditional distribution of the corrected Rj values for each individual. In the case of CRI we cannot
accurately quantify uncertainty due to heterogeneity in household sizes and difficulties in estimating the
number of index cases in the community. (see Table 2 for other FNR values).

Confounds and heterogeneity. We might be concerned that testing decreased the household transmis-
sion due to earlier household isolation, as in (Bi et al., 2020). However, if we restrict to early cases (where
the first household member has symptoms prior to the start of testing), the adjusted CRI is essentially
unchanged at 48%.

Next we might ask about heterogeneity in CRI: perhaps spouses have a very high CRI rate. But among
presumed partners (adult co-habitants in the same ten-year age range), CRI was still only 52%. Possibly
more important is age: CRI is only 24% among individuals under 50 when adjusting for 15% FNR. There is
evidence that younger people have a higher FNR, but even an FNR of 40% would only lead to an adjusted
CRI of 33%.

Each of these subgroup analyses is on only a small number of total cases and so should be interpreted
with caution. In addition, the Vo’ data may overestimate both Rj and the CRI due to an older population,

2More accurately, 2.1 was the mean number of individuals in each household who were tested.
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FNR CRI Ry, Expected false negatives
15%  0.50 0.35 (0.32-0.38) 4.24
22%  0.54 0.37 (0.34-0.40) 6.77
30%  0.60 0.39 (0.36-0.42) 10.29

Table 2: Estimates of CRI and Ry and SAR assuming different FNR values for Vo’ data.

lack of awareness of infection risk in early February and violation of single index case assumption. In the
other direction, Vo’ has a smaller-than-typical mean household size of 2.1.

4 Discussion

4.1 The contribution of household transmission to reproduction number

In the previous section, we estimated the contribution of household transmission to the spread of COVID-19
through SAR, CRI, and the household reproduction number Rj, from a variety of sources. Estimates for Ry,
based on contact tracing data and blanket testing data ranged from 0.2-0.37. Here we examine the extent
to which this household transmission explains overall transmission levels. More formally, we study the ratio
of the effective household reproductive number R;, to the effective reproductive number R.

We estimated R across geographic regions where enough data was available® for both pre- and post-
lockdown time periods (Figure 4). Specifically, we used an overdispersed (o = 0.1) Poisson model (Yadlowsky
et al., 2020) fit to death data (Dong et al., 2020) to estimate the growth rate, which was translated into R
using the generation time distribution w(t) estimated by Ferretti et al. (2020).

Based on our results in Table 4, we assume that R = 0.3 for all regions pre-lockdown. After lockdown,
location tracking data from Google shows that people spent more time in their households (an 11% increase
in the United States (Google, 2020)). Hence we estimate post-lockdown Ry, as 0.3 - M, where M is the
increase in average time spent inside residential areas (Google, 2020).

Figure 5 (left) shows a scatter plot of estimated community vs household reproduction numbers for each
region we study. Figure 5 (right) shows a histogram of the estimated contribution of household transmission
to total reproduction number both pre- and post-lockdown. The share of R attributed to household trans-
mission increased from 0-25% pre-lockdown to 25-50% post-lockdown. This shows there could be meaningful
benefits from interventions that reduce Ry,.

4.2 Implications for household inevitability and containment

We previously identified two common arguments against intervening against household transmission: house-
hold inevitability and household containment. We revisit these theories in light of our estimates.

Inevitability. Household inevitability posits that once a household member is infected, the other members
will also become infected, thus making interventions futile. Our central estimate of the household SAR
is 30% with less than 5% posterior probability assigned to the SAR being above 67%. This shows that
household transmission is not inevitable. There is also evidence that the SAR can be reduced by behavioral
interventions. Wang et al. (2020a) found that the SAR was lower in households where people wore masks
at home, cleaned regularly with disinfectant, and avoided close contact with the primary cases. Li et al.
(2020) found the SAR was 0% for households where the primary case was isolated on symptom onset. These
results comport with what is known about the incubation and generation time (Jing et al., 2020; Ferretti
et al., 2020) and the effectiveness of PPE (Feng et al., 2020). However, these results are both observational
studies and we await more rigorous experiments.

3Regions were selected from a pool of all US states and over 100 other regions, and were included based on (a) availability
of lockdown dates, (b) having enough pre-lockdown data to estimate R reliably. The exact calculations are given in our code
release.
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Figure 4: Estimated values of the reproduction number R pre- and post-lockdown in a subset of US states
(top) and other countries (bottom). The growth rate was estimated by fitting an overdispersed Poisson
distribution onto daily death statistics, as described in Yadlowsky et al. (2020). This was translated into
a reproduction number R via the generation time distribution (c.f. (Ferretti et al., 2020)). 95% confidence
intervals are shown.

Containment. Household containment posits that people infected in the household (as opposed to the
community) are unlikely to cause further community infection. If true, this would imply that interventions
to reduce household transmission are less valuable for reducing overall spread.

We can quantify this effect, if it exists, by considering secondary transmission rates from household
and community infections. To simplify matters we refer to those infected via household transmission as
“household cases” and those infected via community transmission as “community cases.” We then let R,
be the average number of community infections caused by a household case, and R, the average number of
community infections caused by a community case. Household containment asserts that R,/Rc. < 1.

To our knowledge, there is no public dataset that allows us to test household containment empirically.
Accurate contact tracing data would enable us to measure R, and R directly by counting cases, but
existing data does not reliably distinguish between primary and secondary infections within a household.
Instead, we provide an a priori analysis. There are two relevant differences between people infected at home
and those infected in the community:

1. Household cases may be demographically different (e.g., they could predominantly be children) or have
different levels of exposure to the community (e.g., they could predominantly be non-essential workers).

2. Household cases may self-isolate earlier than community cases, based on observing that the primary
case in the household is symptomatic.

These demographic and contact differences could decrease R.|;,/R.|.: for example, if all household cases
are non-essential workers and all community cases are essential workers, the differences in contact would
decrease R,/R.. by a factor of 3.5 (based on self-reported contact data from (Rothwell, 2020)). We
also expect early isolation protocols to have an effect. The effect size should depend on the proportion
of households that decide to use early isolation, and the probability of secondary transmission under the
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Figure 5: Left: Reproduction numbers for community transmission (R.) and intra-household transmission
(Rp) for the regions whose R values are shown in Figure 4. The overlaid contour plot shows level sets of
the overall reproduction number R = R;, + R.. Right: Estimated share of transmission attributable to
household infections (Rj/R). In both graphs we assume Rj; = 0.3 pre-lockdown—to obtain post-lockdown
Ry, we multiply by a mobility factor M, from Google’s estimates of average time spent in residential areas.

protocol. The former is dependent on policy and population behaviour, whereas the latter can be estimated
from disease characteristics (generation time distribution, incubation time distribution, and asymptomatic
rate; c.f. (Ferretti et al., 2020)).

More empirical data on these quantities, or more fine-grained contact tracing and testing data, is needed
for better estimates and will facilitate a proper cost-benefit analysis around reducing household transmission.

4.3 Other types of contact heterogeneity

Our results highlight the fact that net community mobility gives an incomplete picture of overall transmission,
and thus a contact-based view of transmission dynamics (Hens et al., 2009; Eames et al., 2012; Mossong
et al., 2008) may be helpful. Contact-based models may be especially relevant in the presence of interventions
that drastically shift contact patterns, such as the lockdown orders prompted by COVID-19 (Zhang et al.,
2020). For example, lockdowns have amplified differences in contact between essential workers and the rest
of the population: a recent Gallup panel (Rothwell, 2020) found that essential workers report 3.5 times as
many contacts per day as other individuals. In this section, we briefly show how even outside of households,
studying contact may help shed light on the effectiveness of policy interventions.

While the most accurate way to study contact in an epidemic is through a network or graph model (Meyers
et al., 2005; Lloyd-Smith et al., 2005; Kiss et al., 2006), prior work has shown that even simple stratified
compartmental models can be effective (Wallinga et al., 2006; Jarvis et al., 2020; Xia et al., 2013; Liu et al.,
2020; Zhang et al., 2020) at predicting epidemic growth. These models partition the population into groups
and are specified by the average level of contact between groups, rather than between individuals; a common
choice is to assign groups to age ranges: e.g., the POLYMOD study (Mossong et al., 2008), or in the context
of COVID-19, compartmental age models of the UK (Jarvis et al., 2020) and seven Chinese cities (Liu et al.,
2020; Zhang et al., 2020).

Here, we use a compartmental model with only two groups: people staying at home (‘low contact’ or LC)
and essential workers (‘high contact’ or HC). Transmission under our HC/LC model is determined by a two-
by-two contact matrix M, where M;; is the number of contacts made by a member of group j € {LC, HC'}
with members of group i € {LC, HC'}. Since we are not aware of high-quality data measuring these quantities
directly during lockdowns, we instead obtain coarse estimates from available survey data. Using self-reported
contact data (Rothwell, 2020; Jarvis et al., 2020), we obtain point estimates for the contact matrix in the
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Figure 6: Contact matrix estimates for the .
United States using data from (Rothwell, 2020). -

Derivation can be found in the Appendix. HOHC HCLC/LCHC —LCLC

Type of contact decreased by 10

Figure 7: The effect of reducing each contact
mode by 10% under the simple compartmental
model presented here.

United States (see Figure 6; methodology, sensitivity analysis, and an analagous estimate based on data
from the UK are shown in the Appendix).

A common assumption for respiratory diseases such as SARS-CoV-2 is that exposure levels are propor-
tional to contact levels (Edmunds et al., 1997; Wallinga et al., 1999; 2006). An additional implicit assumption
of compartmental models is that infection rates between two groups are independent of the groups them-
selves. A more accurate model would account for disparities in infection rates (e.g., Zhang et al. (2020)
find that social contacts tend to have a higher infection rate than workplace contacts)—this is also true of
age-compartmental models, where the relative infectiousness of children and adults is not yet known (Jarvis
et al., 2020). Under this assumption, the dominant eigenvalue of the contact matrix is a constant multiple of
the reproductive number (more precisely, the contact matrix is a constant multiple of the “next-generation
matrix” (Diekmann et al., 1990; den Driessche and Watmough, 1992), whose dominant eigenvalue is R). We
can therefore estimate how changes in contact affect disease transmission, by looking at how each entry of
the contact matrix affects the dominant eigenvalue (Caswell, 2006; Klepac et al., 2020).

Since the two groups in our model are easily identifiable, policymakers can target interventions to specific
modes of interaction (e.g. by enforcing more stringent physical distancing in the workplace to reduce HC-HC
contact, or providing PPE to workers with public-facing occupations to reduce HC-LC contact). To forecast
the effect of such interventions, we consider the decrease in reproduction number R caused by a 10% decrease
in each type of contact (Figure 7). The results predict that reducing contact between high-contact individuals
will have disproportionate effect on reducing overall transmission. Specifically, our point estimate predicts a
10% reduction in contact between high-contact individuals (HC-HC contact) being 35x more effective than
a 10% reduction in LC-LC contact, and 8x more effective than a 10% reduction in HC-LC contact.

These predictions are based on rather crude parameter estimates, and could be greatly improved by more
direct measurements of contact structures, and by incorporating heterogeneity from other sources (e.g. by
also stratifying the model on age or contact location (Jarvis et al., 2020; Liu et al., 2020; Zhang et al., 2020)).
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A Data Tables

A.1 Case counts

Study Index Household Household Notes
cases contacts infections
(Li et al., 2020) 105 392 64 Not corrected for AR or FNR: all
Wuhan, China household contacts were tested and
only counted as negative after two
negative results.
(Cheng et al., 2020) 100 151 7 Corrected for FNR and AR: only
Taiwan symptomatic contacts were tested.
(Jing et al., 2020) 212 770 97 Corrected for FNR and AR: only
Guangzhou, China symptomatic contacts were tested.
(Korea CDC, 2020) 30 119 9 Corrected for FNR and AR: only
South Korea symptomatic contacts were tested.
(Park et al., 2020) 97 225 34 Not corrected for AR, corrected for
Seoul, South Korea FNR: all household members tested
(Wang et al., 2020Db) 85 155 47 Corrected for FNR and AR: only
Wuhan, China symptomatic contacts were tested.
(Burke et al., 2020) 10 19 2 Corrected for FNR and AR: only
USA symptomatic contacts were tested.
(Bohmer et al., 2020) 4 24 5 Corrected for FNR and AR: only
Germany symptomatic contacts were tested.
(Zhang et al., 2020) 136 956 339 Not corrected for AR, corrected for

Hunan, China

FNR: all household members tested

Table 3: Case counts for index cases, household contacts and household infections.
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A.2 Intra-household reproduction number and SAR estimates

Study Quantity Adjusted estimate Uncorrected estimate
(Li et al., 2020), SAR 0.17 (0.13-0.20) 0.17 (0.13-0.20)
Wuhan, China Ry, 0.38 (0.33-0.43) 0.38 (0.33-0.43)
(Cheng et al., 2020), SAR 0.11 (0.04-0.19) 0.06 (0.02-0.09)
Taiwan Ry, 0.14 (0.06-0.22) 0.14 (0.06-0.23)
(Jing et al., 2020), SAR 0.25 (0.18-0.33) 0.13 (0.10-0.15)
Guangzhou, China Ry 0.48 (0.39-0.54) 0.47 (0.40-0.55)
(Korea CDC, 2020), SAR 0.17 (0.07-0.27) 0.09 (0.04-0.14)
South Korea Ry, 0.40 (0.22-0.52) 0.39 (0.25-0.54)
(Park et al., 2020), SAR 0.21 (0.14-0.28) 0.15 (0.11-0.20)
Seoul, South Korea Ry, 0.33 (0.25-0.39) 0.32 (0.25-0.39)
(Wang et al., 2020b), SAR 0.55 (0.38-0.74) 0.29 (0.23-0.36)
Wuhan, China Ry, 0.50 (0.41-0.57) 0.50 (0.42-0.58)
(Bshmer et al., 2020) SAR 0.37 (0.14-0.63) 0.20 (0.08-0.34)
Bavaria, Germany Ry, 0.69 (0.46-0.79) 0.67 (0.50-0.81)
(Burke et al., 2020), SAR 0.25 (0.05-0.49) 0.14 (0.03-0.26)
USA Ry 0.33 (0.09-0.48) 0.31 (0.11-0.50)
(Zhang et al., 2020), SAR 0.47 (0.40-0.55) 0.35 (0.32-0.38)
Hunan, China Ry, 0.77 (0.74-0.79)) 0.77 (0.74-0.80)
Meta estimate: Posterior SAR 0.30 (0.00-0.67) 0.19 (0.00-0.45)
Ry 0.46 (0.13-0.77) 0.37 (0.05-0.65)
Meta estimate: Posterior mean SAR 0.30 (0.18-0.43) 0.19 (0.11-0.28)
Ry 0.51 (0.40-0.62)) 0.40 (0.30-0.52)
Meta estimate: SAR 0.17 (0.09-0.27) 0.11 (0.06-0.19)
Posterior standard deviation Ry, 0.15 (0.09-0.23) 0.14 (0.09-0.20)

Table 4: Estimates of household transmission quantities. Literature estimates were corrected for FNR, and
AR. The case counts are taken from the cited studies (see Table A.1). The credible intervals for the SAR
and Ry, estimates are obtained via MCMC sampling.
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A.3 Contact tracing estimates by cut-off date
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01-26 4 0 1 16 3 3 4.00 (4.00-4.00)  0.94 (0.64-1.23)
01-27 7 0 1 16 3 3 2.29 (2.29-2.29) 0.54 (0.34—0.73)
01-28 8 0 2 22 4 4 2.75 (2.75—2.75) 0.62 (0.43—0.82)
01-29 12 0 2 22 4 4 1.83 (1.83—1.83) 0.42 (0.26—0.57)
01-30 16 0 3 27 4 4 1.69 (1.69-1.69)  0.31 (0.18-0.45)
01-31 17 0 3 27 4 4 1.59 (1.59—1.59) 0.29 (0.17—0.42)
02-01 18 0 3 27 4 4 1.50 (1.50-1.50)  0.28 (0.16-0.40)
02-02 18 0 3 27 4 4 1.50 (1.50-1.50)  0.28 (0.16-0.40)
02-03 22 0 4 35 6 7 1.59 (1.59-1.59)  0.40 (0.26-0.54)
02-04 26 0 4 35 6 7 1.35 (1.35-1.35)  0.34 (0.21-0.46)
02-05 28 1 4 35 6 7 1.25 (1.21-1.29)  0.31 (0.17-0.46)
02-06 31 2 5 37 6 7 1.19 (1.12-1.26)  0.28 (0.15-0.42)
02-07 33 4 5 37 6 7 1.12 (1.00-1.24) 0.27 (0.14—0.39)
02-08 38 5 6 42 7 8 1.11 (0.98-1.24)  0.26 (0.15-0.38)
02-09 39 5 6 42 7 8 1.08 (0.95-1.21)  0.26 (0.14-0.37)
02-10 41 6 6 42 7 8 1.02 (0.89—1.17) 0.24 (0.13—0.35)
02-11 43 6 7 64 9 11 1.49 (1.31—1.63) 0.32 (0.21—0.43)
02-12 47 6 7 67 10 13 1.43 (1.26-1.55) 0.35 (0.24—0.45)
02-13 56 6 7 68 10 13 1.21 (1.10-1.32)  0.29 (0.19-0.39)
02-14 61 7 8 71 10 14 1.16 (1.04—1.28) 0.29 (0.18—0.39)
02-15 67 7 8 72 11 15 1.07 (0.97-1.18)  0.28 (0.18-0.38)
02-16 69 7 9 73 11 15 1.06 (0.96-1.16)  0.27 (0.17-0.37)
02-17 72 7 9 73 11 15 1.01 (0.92—1.11) 0.26 (0.17—0.36)
02-18 75 7 9 74 11 15 0.99 (0.90—1.08) 0.25 (0.16—0.34)
02-19 77 7 9 74 11 15 0.96 (0.88-1.05) 0.24 (0.15-0.34)
02-20 78 8 9 74 11 15 0.95 (0.86-1.05) 0.24 (0.15-0.33)
02-21 80 8 9 74 11 15 0.93 (0.84-1.02)  0.23 (0.14-0.32)
02-22 81 9 9 74 11 15 0.91 (0.82—1.02) 0.23 (0.14—0.32)
02-23 82 9 9 74 11 15 0.90 (0.81-1.01) 0.23 (0.14—0.32)
02-24 82 9 9 74 11 15 0.90 (0.81—1.01) 0.23 (0.14—0.32)
02-25 82 9 9 74 11 15 0.90 (0.81-1.01)  0.23 (0.14-0.32)
02-26 84 10 11 130 18 24 1.55 (1.38-1.67)  0.36 (0.27-0.45)
02-27 &7 10 11 131 18 24 1.51 (1.35—1.62) 0.34 (0.26—0.43)
02-28 90 10 11 131 18 24 1.46 (1.31—1.57) 0.33 (0.25-0.42)
02-29 92 10 11 132 18 24 1.43 (1.29—1.54) 0.33 (0.24—0.41)
03-01 97 10 11 133 18 24 1.37 (1.24-1.47)  0.31 (0.23-0.39)
03-02 100 10 11 134 18 24 1.34 (1.22—1.44) 0.30 (0.22—0.38)
03-03 100 11 11 134 18 24 1.34 (1.21—1.45) 0.30 (0.22—0.38)
03-04 102 12 11 134 18 24 1.31 (1.18—1.43) 0.29 (0.22—0.37)
03-05 110 14 11 134 18 24 1.22 (1.08-1.35) 0.27 (0.20-0.35)
03-06 121 17 11 136 19 25 1.12 (0.99—1.26) 0.26 (0.19—0.33)
03-07 126 18 13 148 20 26 1.17 (1.03-1.32)  0.26 (0.18-0.33)
03-08 133 20 13 149 21 27 1.12 (0.97-1.27)  0.25 (0.18-0.32)
03-09 142 21 13 149 21 27 1.05 (0.91—1.20) 0.24 (0.17—0.31)
03-10 148 22 13 155 23 29 1.05 (0.91-1.20) 0.24 (0.18-0.31)
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03-11 155 24 13 158 23 29 1.02 (0.88-1.17)  0.23 (0.17-0.30)
03-12 163 26 15 167 25 31 1.02 (0.88-1.18)  0.24 (0.18-0.30)
03-13 174 30 16 178 26 32 1.02 (0.87-1.20)  0.23 (0.17-0.29)
03-14 181 38 16 183 28 34 1.01 (0.84-1.22)  0.23 (0.18-0.29)
03-15 190 42 16 199 31 43 1.05 (0.86-1.27)  0.28 (0.22-0.35)
03-16 201 46 16 203 32 44 1.01 (0.82-1.24)  0.27 (0.21-0.33)
03-17 220 67 16 216 39 51 0.98 (0.75-1.29)  0.29 (0.23-0.35)
03-18 237 87 16 222 41 53 0.94 (0.69-1.30)  0.28 (0.23-0.33)
03-19 253 110 16 228 45 57 0.90 (0.63-1.34)  0.28 (0.22-0.34)
03-20 269 140 17 242 50 62 0.90 (0.59-1.42)  0.29 (0.23-0.34)
03-21 282 168 18 256 52 64 0.91 (0.57-1.50)  0.28 (0.23-0.34)
03-22 294 209 18 265 55 67 0.90 (0.53-1.61)  0.28 (0.23-0.34)
03-23 306 224 20 300 57 79 0.98 (0.57-1.71)  0.32 (0.26-0.38)
03-24 338 265 23 337 62 86 1.00 (0.56-1.78)  0.32 (0.23-0.41)
03-25 368 292 25 572 68 94 1.55 (0.87-2.35)  0.32 (0.23-0.41)
03-26 395 319 25 585 73 102 1.48 (0.82-2.29) 0.32 (0.22-0.42)
03-27 417 366 26 599 77 108 1.44 (0.77-2.31)  0.32 (0.22-0.42)
03-28 444 387 27 2105 78 109 4.74 (2.53-5.61)  0.31 (0.21-0.40)
03-20 465 402 28 2120 83 117 4.56 (2.45-5.42)  0.31 (0.22-0.40)
03-30 489 419 33 2333 89 127 4.77 (2.57-5.63)  0.32 (0.24-0.41)
03-31 520 446 37 2566 95 134 4.93 (2.66-5.79) 0.32 (0.24-0.40)
04-01 565 461 38 2658 96 137 4.70 (2.59-5.52)  0.30 (0.22-0.38)
04-02 608 473 40 3228 99 142 5.31(2.99-6.09) 0.29 (0.22-0.37)
04-03 669 498 43 3274 104 147 4.89 (2.81-5.64) 0.27 (0.20-0.34)
04-04 688 501 43 3276 104 147 4.76 (2.76-5.49)  0.27 (0.20-0.34)
04-05 783 526 43 3293 112 157  4.21 (2.52-4.88) 0.25 (0.19-0.31)
04-06 839 537 44 3298 113 159 3.93 (2.40-4.57) 0.24 (0.18-0.29)
04-07 975 595 50 3835 117 163  3.93 (2.44-4.54) 0.21 (0.16-0.26)
04-08 1117 627 55 3965 121 172 3.55 (2.27-4.11)  0.19 (0.15-0.24)

Table 5: R.ys and Rj, values for ranging values of cut-off date.
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A.4 Reproduction number estimates by cut-off date

Effective reproductive number over time
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Figure 8: Daily aggregate estimates of effective and household reproduction number in Singapore for cutoff
dates ranging from the begining of epidemic to April 7th.
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B Hierarchical Model for Literature Estimates

We use the following Bayesian Hierarchical Model:

Data:
Confirmed (C)
Total (N)

Figure 9: Graphical Model

Data

N; — number of household contacts considered in each study

C; — number of confirmed cases

14r, — indicator; O - the study tested asymptomatics, 1 - otherwise

1png, — indicator; O - the study corrected for false negatives, 1 - otherwise
Priors

FNR; ~ Uniform(0.15,0.35)

AR ~ Uniform(0.18,0.43)

SAR; ~ Beta(a, )

a,B ~ HalfFlat()

Likelihood:

pi = SAR(1— AR -145)(1 — FNR; - 1pnn,)

((Ci|SAR;, FNR;, AR) o pSi (1 — p;)Ni=C

equivalently:

C;|SAR;, FNR;, AR ~ Binomial(N;, SAR;(1— AR-14g,)(1—FNR;-1pnR,))

We perform inference via MCMC sampling using PyMC3* with the the built-in NUTS Hoffman and
Gelman (2014) sampler. We use 4 chains with 6000 iterations each. The burn-in period is 2000.

Figure 10 below contains histograms corresponding to posterior samples of SAR and Ry as well as the
posterior samples of the mean of SAR and Rj, respectively.

4https://docs.pymc.io/
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Figure 10: Samples from the posterior distribution of SAR and Ry,.
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C Contact Matrix Estimation

We thus focus on a simple model analagous to the age stratification model, but with just two groups:
high-contact individuals (HC) and low-contact individuals (LC). To simplify matters, we will treat the HC
cluster as consisting of essential workers only, with the rest of the population belonging to the LC cluster.
If we make assumptions analagous to those made in the age stratification model®, then once again the
contact matrix M determines disease transmission via its dominant eigenvalue and eigenvector (Caswell,
2006). This observation leaves us with four relevant quantities to estimate: Mpc e, Muc,re, Mre,nc,
and Mpc rc. Using self-reported contact data from the US (Rothwell, 2020) we provide estimates for each
of these parameters below.

Total contacts. The most readily available statistic from the available data is the number of total contacts
reported by members of each cluster. In the US, Rothwell (2020) find that those who are working report
13.9 contacts per day, whereas those not working report 4.0 contacts per day.

Population proportions. Allen et al. (2020) suggest that essential workers represent 40% of the US
workforce, which as of 2018 represents 63% of the US population®. Since 29% of the US workforce is

reportedly equipped to work from home”, we estimate that 18% of the population is doing essential work.

Estimating Mpyc pc. This parameter corresponds to the number of essential workers that an essential
worker will have close contact with, on average. This is equal to the number of contacts an essential worker
has with co-workers, added to the average number of contacts an essential worker will have with other
essential workers in the general population.

For coworker interactions, Rothwell (2020) report that 9.9 of the 13.9 interactions had by essential
workers were at their places of work, or 71% of all contacts. This is likely to be an overestimate of coworker
interaction, since it includes interactions with low-contact individuals at the essential worker’s workplace (e.g.
clients at a bank or shoppers at a grocery store). To get a reasonable lower bound, we use the number of
workplace contacts reported by essential workers in sectors that are not public-facing, namely construction,
agriculture, and communications. Workplace contacts for these sectors range from 6.1-7.4, and so we take
6.8 as a central estimate, or 49% of all contacts. This is likely an underestimate, since it does not take into
account high-contact jobs such as those in food processing or assembly lines.

To get Mpc,mc, we have to add the number of interactions with coworkers to the number of interactions
with essential workers in the general population. To estimate the latter, we take the remaining number of
total essential worker contacts (e.g. if we estimate 9.9 coworker contacts, 4.0 remain) and use population
proportions to estimate how many of them are with other essential workers (e.g. 0.18 - 4.0 = 0.7).

In the end, we give a central estimate of 9.35 for My, nc based on the range [8.1,10.6].

Estimating Myc rc, Mrc.uc, and Mpc c. Once we obtain an estimate of My pc, the remaining
parameters can be straightforwardly deduced. First, Mc gc is the number of total essential worker contacts
minus Mgc gc. This entry uniquely determines Mpc o, since contact is symmetric and thus wgc -
Mic.ac = (1 —wge) - Muc, Lo, where wyc is the proportion of essential workers in the population. After
solving for Myc, rc, the final entry Mpc, ¢ is obtained by subtracting Myc ¢ from the total number of
contacts reported by individuals in the LC cluster.

5Concretely, that transmission depends only on the number of cluster-specific contacts, the infection probability of each
contact, and the contact duration

Shttps://www.bls.gov/emp/tables/civilian-labor-force-participation-rate.htm

"https://www.bls.gov/news.release/flex2.t01.htm
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