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Abstract

The recent spread of COVID-19 across the U.S. led to concerted efforts by states

to “flatten the curve” through the adoption of stay-at-home mandates that encour-

age individuals to reduce travel and maintain social distance and indeed using

data on travel activity we find that residents start reducing mobility early in most

states. Combining data on changes in travel activity with COVID-19 health out-

comes and variation in state policy adoption, we characterize the direct impact of

stay-at-home mandates on mobility and social distancing and link these behav-

ioral changes to health benefits. We find evidence of dramatic declines in mobility

nationwide prior to the adoption of statewide mandates. Despite these early re-

ductions, we find that statewide stay-at-home policies induced “mandate effects”

of between 4.1 and 5.9 percentage point declines relative to pre-COVID-19 lev-

els for the first four states to introduce such policies. These effects persist when

considering all states’ mandates and alternate estimation strategies that account

for states’ differences in travel behavior prior to policy adoption. Using previous

changes in mobility, we find significant effects on current mortality, with 1% re-

ductions in visits to non-essential businesses weeks prior being associated with

9.2 fewer deaths per 100 million per day, corresponding with over 74,000 lives

saved nationwide and resulting economic benefits between $249-$745 billion for
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observed behavioral changes in March and April. Observed reductions in mobil-

ity indeed contribute to flattening the curve and reduce the strain on the medical

system during those two months. Our findings provide evidence that statewide

stay-at-home ordinances induce additional social distancing, and ultimately at-

tenuate the negative health consequences of COVID-19, revealing themselves as

important policy tools in the fight against pandemic. Further, substantial reduc-

tions in mobility prior to state-level policies convey important policy implications.

Introduction

Since December 2019, the novel coronavirus SARS-CoV-2 (COVID-19) has spread rapidly

around the world and in the U.S., prompting dramatic policy responses. Local, state,

and national governments around the world face an extensive set of policy instru-

ments with which to fight the pandemic and limit the virus’ impact on their con-

stituents. As many regions have exhibited exponential growth in coronavirus cases

[26], policymakers are increasingly implementing aggressive stay-at-home mandates

to reduce transmission through human interaction and “flatten the curve” [45] [21]. As

of March 31, the U.S. had the highest number of confirmed cases (more than 67% more

than the next country) with at least one resident of every state affected [64]. Improv-

ing our understanding of how existing stay-at-home policies reduce travel activity

and ultimately mitigate negative health consequences of the pandemic will help local

and state policy makers determine the optimal policies for helping “flatten the curve”

and quell the spread of COVID-19. To investigate this, we combine data on human

mobility with state policy variation and health outcomes, allowing us to determine

the reductions in distance traveled, visits to non-essential businesses, and human en-
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counters, and ultimately relate these to changes in hospitalizations and deaths directly

attributable to mobility changes and stay-at-home mandates.

While the benefits of non-pharmaceutical interventions (NPI), such as quarantin-

ing infected households, closing schools, and banning social events or large gatherings

to reduce infection rates has largely been informed by mathematical models [35], some

anecdotal and historical evidence supports their efficacy. In California’s San Francisco

Bay Area, the first area of the country to implement stay-at-home mandates, doctors

reported “fewer cases than expected” after two weeks of social distancing [39]. Anal-

ysis of internet-connected thermometers suggest that new fever rates on March 23

were below those at the start of the month, while state hospitalization rates showed a

commensurate decline in growth rates [44]. Washington state officials reported simi-

lar reductions in COVID-19 transmission as a result of the state’s containment strate-

gies [9]. Exploration of death rates and NPI rollout in 17 U.S. cities during the 1918

influenza pandemic support these claims, finding that implementation of multiple so-

cial distancing practices intended to reduce infectious contacts between persons early

in the outbreak led to 50% lower peak death rates and flatter epidemic curves relative

to cities that did not implement such policies [35]. Gaining insight into the effective-

ness of these stay-at-home mandates is critical for understanding the benefit of mak-

ing the considerable economic sacrifices required to enact such policies. Even before

mandates limited economic activity, GDP forecasts suggested an economic contrac-

tion in the U.S. five times greater than previous predictions [42]. Concerns over these

costs prompted comments from the executive branch regarding relaxation of restric-

tions and allowing non-essential businesses to reopen [52], prompting opposition from

public health experts [31, 43] and economists [13, 36].
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Recent simulations provide further insight into the benefits of social distancing.

While epidemiological models of the U.K. and U.S. suggest that techniques for miti-

gating exposure of those most at risk may drastically reduce peak load on the health-

care system and cut COVID-19 deaths by half, such techniques on their own might

not be enough to prevent the healthcare system from being overwhelmed. Some ar-

gue that, in this case, a combination of social distancing, self-quarantine of infected,

and suspension of schools would need to be maintained until a vaccine is available

to prevent rebound [28]. Other experts call for widespread testing coupled with dig-

ital contact tracing as a means to reduce viral spread while minimizing harmful so-

cial and economic side-effects [30]. Simulations based on a moderate mitigation pol-

icy (comprised of 7-day isolation following any symptoms, a 14-day quarantine for

the household, and social distancing for all citizens over age 70) implemented in late

March find that such policies reduce potential U.S. deaths by 1.76 million deaths [34].

Given that this simulated policy is less stringent and maintained for a shorter dura-

tion than many of the policies currently observed, the actual benefits (either directly

from reduced COVID-19 deaths or indirectly due to decreased transmission of other

illnesses) from existing stay-at-home mandates could be substantially larger.

This paper contributes to the existing literature by looking first at mobility pat-

terns during the pandemic across states and time and second by providing the first

empirical evidence of stay-at-home policies’ effectiveness. These mandates combine

closures of non-essential businesses with instructions for all residents to remain at

home except for the purchase of necessities (i.e. groceries or medicine), with the goal

of limiting “unnecessary person-to-person contact” [48] and to “mitigate the impact

of COVID-19” [15]. We examine changes in travel behavior in response to these so-
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cial distancing policies due to the pandemic across the entire United States, estimate

the portion of these reductions attributable to early state stay-at-home mandates, and

correlate reduced travel behavior with changes in health outcomes weeks later.

To estimate the changes in travel activity and social distancing since the spread of

COVID-19 in the United States, we use data on changes in average distance traveled,

visits to non-essential businesses, and unique human encounters per square kilome-

ter by day and by state [63] relative to pre-COVID-19 baseline levels. Through data

visualization and descriptive event studies, we show that tremendous nationwide re-

ductions in travel activity levels occurred prior to statewide mandates, suggesting res-

idents were already responding to local policies and perceived risks. By the time the

average adopter has implemented its statewide mandate, average travel distances had

already fallen by 38 percentage points, the human encounter rate by 76 percentage

points, and non-essential visits by 52 percentage points, providing evidence of exten-

sive social distancing occurring even before statewide orders requiring such behavior.

We then estimate econometric models that isolate the effect of statewide man-

dates by comparing differences before and after mandate implementation and be-

tween early-adopting and control states. Identification of the stay-at-home policy ef-

fect originates from residual variation in changes to mobility measures relative to a

state specific flexible trend, a day-to-day flexible national trend, and between man-

date and non-mandate states. Using this panel fixed effects control structure, we test

whether states’ stay-at-home policies induce significant changes in mobility and hu-

man encounters by day in the United States once the mandate is implemented, relative

to the change in non-mandate states.

After presenting results from the difference-in-differences model, we employ the
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weighted event study approach following [10]. This approach combines a partially

pooled synthetic control method with an outcome model to obtain an improved pre-

period outcome match between treated and control states in a doubly-robust manner.

Results suggest similar effects as the difference-in-differences estimates, supporting

the finding that statewide mandates induced further reductions in travel activity even

after considerable

Across both methods we find evidence that residents reduce activity every day,

even before mandates, and that patterns differ by state. Moreover, we estimate sig-

nificant reductions in travel and increased social distance in response to early stay-

at-home mandates. We estimate a 4.1 percentage point reduction in average distance

traveled, a 5.2 percentage point decline in non-essential visits, and an 4.7 percentage

point reduction in human encounters rate per day once early stay-at-home mandate

are implemented in the early adoption states of California, New York, Illinois, and

New Jersey. These estimated “mandate effects” represent approximately one tenth of

the pre-mandate reductions in mobility. Focusing on all the mandate states, we again

find evidence of mandate-induced behavioral responses. These reductions come in

addition to the considerable pre-existing reductions, suggesting that later adoption of

statewide mandates did not substantially erode their effectiveness.

Finally, we merge the daily behavior changes with data on changes in the number

of daily state-level death rates and hospitalization rates of patients from COVID-19

[22] to provide an early indication of whether current health outcomes are informed by

past behavioral responses. We estimate lagged specifications to test whether changes

one, two and three weeks prior in the three mobility measures we look at (distance

traveled, non-essential travel, and human encounter rates) have an effect on current
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health outcomes, controlling for state-specific trends in pandemic trajectories over

tiem, and also for day-to-day changes common to all states and state-specific factors

affecting health outcomes for all states, while also distinguishing between early man-

date and all the mandate states. We find evidence that reduced travel does ultimately

affect health outcomes, with reduced daily COVID-19 deaths of 9.2 per 100 million

(0.092 per million) per day associated with a one percentage point reduction in past

non-essential visits. Calculations of the resulting economic benefits suggest savings

between $249 and $745 billion due to avoiding over 74,000 deaths from COVID-19 dur-

ing the months of March and April, thus flattening the curve. We also find evidence of

a relationship between reduced travel distance and COVID-19 mortality in early adop-

tion states, suggesting economic benefits of $23.1-$99.1 billion and providing evidence

that earlier implementation of non-pharmaceutical interventions may have increased

the effectiveness of mobility reductions in reducing the spread of the pandemic.

To our knowledge, ours is the first paper investigating mobility during the COVID-

19 pandemic and providing evidence of reduced travel activity and social distancing

and of health benefits associated with improved social distancing and reduced travel

activity resulting from stay-at-home mandates and pre mandate mobility declines. We

contribute to the overall understanding of the direct health benefits of current COVID-

19 policies and provide evidence that these policies are having the intended effect of

reducing social interactions and are correlated with reductions in negative health con-

sequences from the current pandemic. Our findings that there are substantial reduc-

tions in mobility prior to state-level policies convey important policy implications.
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Materials and Methods

Mobility Data

We obtain travel activity and social distancing data from the analytics company Un-

acast [63]. To understand how well different communities are social distancing, Un-

acast uses cellular location data for 15-17 million identifiers per day to construct three

measures of behavior in response to COVID-19 policies [60]. Each measure is aggre-

gated to the state by day level and is defined as the daily percentage point change rel-

ative to that weekday’s average for the pre-COVID-19 period of the four weeks prior

to March 8. While all data is published directly to their Social Distancing Dashboard

in the form of figures and maps [60], we obtained the balanced panel of state by day

observations for the period of February 24 through April 29, 2020 directly from Un-

acast. Unacast receives location data from mobile devices through authorized appli-

cations, Wi-Fi or Bluetooth connections, and A-GPS positions. Obtained information

includes the location of the device at a given point in time (latitude, longitude, and

elevation) along with the mobile device make, model, and operating system, the cor-

responding application gathering the data, GPS accuracy value, and the direction and

rate of travel. Each state-day observation we use is calculated using position informa-

tion. The three measures we use together paint a comprehensive picture of behavior

changes in response to state stay-at-home mandates. See the Data Appendix for more

details on the data collection process, the equations used to construct each measure,

and along with discussion on sample composition and potential biases or measure-

ment errors.

The first measure we use is the change in average distance traveled ( ˙ADT ), which
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captures changes in both the number of trips and the length of trips taken outside

the home relative to the pre COVID-19 baseline period. Reductions in ADT following

mandate implementation would reflect compliance on average with states’ guidance

to work from and stay at home except for essential activities. A value of ˙ADT it = 0

indicates that the average distance traveled for individuals in state i on date t was

identical to the pre-COVID-19 distance for that day of the week. A value of −7 con-

veys that, on average, devices assigned to the state traveled an average distance 7

percentage points shorter than during the pre-COVID-19 baseline. This approach al-

lows us to account for differences in travel potential by day of week, making sure our

comparison accurately reflects the average conditions for that day of the week prior to

behavior and policy changes due to COVID-19.

The second measure is the change in visits to non-essential businesses, defined as

Non Essential Visits ( ˙NEV ). To the extent that non-essential businesses are closed

following stay-at-home mandates, we expect to see reductions in the number of trips

residents take to these types of retail or service businesses. Our utilized measure of

the change in visits to non-essential businesses (ṄEV ) offers a similar comparison

targeted at travel to the types of businesses most heavily impacted by stay-at-home

mandates. Businesses likely to be deemed “non-essential” include department stores,

spas and salons, fitness facilities, event spaces, and many others; non-essential busi-

nesses are defined according to group definitions in both the Unacast SDK and the

OpenStreetMaps POI’s to improve accuracy (see the data appendix for a table with

the complete list of included business types). The metric ṄEV is constructed similarly

to ȦDT , replacing the average distance traveled per day with the average visitations

to non-essential businesses and the baseline is again constructed as the average for a
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given weekday in the pre-COVID-19 period for a given state. A value of ˙NEV it = 2

indicates a two percentage point increase in visitations to non-essential businesses rel-

ative to baseline norms for that weekday in a given state.

Finally, we use changes in the rate of unique human encounters ( ˙ENC) as a mea-

sure of social distancing. Following [50], ( ˙ENC) is calculated as the rate of unique

human encounters per square kilometer, and is initially normalized relative to the na-

tional median over the four weeks prior to March 8. We further adjust the rate of

encounters as the change relative to the state’s mean change from the national aver-

age for the period February 24 to March 8 to match measurement of the other activity

variables.1 An encounter rate equal to that of the state baseline rate results in a value

of ENCit = 0, while a value of ENCit = −12 indicates a 12 percentage point reduction

in the encounter rate for state i on date t relative to the states’ pre-COVID-19 level.

In Table 1 we provide summary statistics for each of the three Unacast data mea-

sures by column, with rows organized into three panels. Each panel reports the av-

erages, first and third quartiles, and medians for each mobility measure along with

the count of observations during the week.The first panel corresponds to the last week

in February, February 24-29, the first week for which data are available. The middle

panel is for the month of March, and the bottom panel is for the month of April up to

April 29th, 2020.

In the top panel for the end of February, we see that average distance traveled was

larger than pre-COVID-19 baseline levels by 2.49 percentage points. In column 2, we

see that non-essential visits were 0.71 percentage points lower than the pre-COVID-19

baseline, with the rate of human encounters 2.8 percentage points higher in column 3.

1For data quality reasons, we drop observations for Washington D.C. from our analysis of human
encounter rates.
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Table 1: Summary Statistics on Travel Behavior and Social Distancing

˙ADT ˙NEV ˙ENC
Distance Traveled Non-Essential Visits Human Encounters

February 24th to Feb 29th

Average 2.49 -0.71 2.80
25th Percentile 0.11 -4.30 -10.44
Median 2.37 -0.66 0.39
75th Percentile 4.68 2.25 15.15
Number of Observations 408 408 400

March 1 to March 31st

Average -19.55 -31.86 -46.49
25th Percentile -33.79 -55.78 -74.70
Median -17.63 -28.84 -58.02
75th Percentile -3.66 -7.09 -15.77
Number of Observations 1428 1428 1400

April 1 to April 29th

Average -40.92 -59.02 -78.85
25th Percentile -47.87 -65.44 -85.25
Median -39.98 -58.92 -80.53
75th Percentile -33.33 -53.13 -73.58
Number of Observations 1530 1530 1500

Total Sample

Average -26.59 -40.43 -55.22
Standard Deviation 19.98 26.23 34.87
Number of Observations 3366 3366 3300
Source: Unacast. This table reports summary statistics for the changes in Average Distance Traveled (column 1),
Non-Essential Visits (column 2) and Human Encounter Rate (column 3) Data from February 24th to April 29th.
Each observation is measured at the state by day level and represents an aggregate of mobile device-level travel
and social distancing behavior on a given day.

11

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 26, 2020. ; https://doi.org/10.1101/2020.05.23.20111211doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.23.20111211
http://creativecommons.org/licenses/by-nc-nd/4.0/


For the month of March, all three mobility measures experience large decreases rela-

tive to pre-COVID-19 levels, attesting to drops in average mobility and also social in-

teractions. In the month of March at least 75% of the observations experience negative

changes relative to baseline and in particular 75% of the observations have changes

in average distance traveled less than -3.7 percentage points, changes in non-essential

visits less than -7 percent, and changes in encounter rates less than -15.8 percentage

points. Travel reductions become even more dramatic in the month of April, with the

drops in all three measures exceeding in magnitude those in the two previous time

periods.

The change in distance traveled measure we use displays very high correlations

with travel data produced by other sources. To investigate the validity of our mea-

sures, we compare the Unacast measures with the mobility report measures from

Google’s COVID-19 Community Mobility Reports for the relative change for retail

and recreation travel [33]. For California, we observe a correlation of 0.9689, while for

New York we observe a correlation of 0.9821. The activity measures remain highly cor-

related when considering all the states, with the lowest correlation for the change in

average distance traveled and google retail and recreation measure being for Wyoming

(correlation of 0.75) and the minimum for the change in non essential visits measure

with the google measure being for Mississippi (correlation of 0.962). These strong

relationships across data providers suggest that our results are indicative of general

mobility patterns and not spurious results arising from anomalies of our chosen data

source.2

2See the data appendix for all state-specific correlations between the Unacast measures and the retail
and recreation measures from Google’s COVID-19 Community Mobility Reports.
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Stay-at-Home Mandate Data

To denote periods before or after a state implemented a “stay at home order,” we ob-

tain the date each statewide policy was issued [45] for all fifty states and the District

of Columbia. We define our early adopters as the first four states to implement a

stay-at-home mandate: California, Illinois, New Jersey, and New York. The second

group are the 39 late adoption states, and then the 8 remaining states that never im-

plement statewide mandates: Arkansas, Iowa, Nebraska, North Dakota, Oklahoma,

South Dakota, Utah, and Wyoming. The observed stay-at-home mandates all consist

of a mix of specific non-pharmaceutical interventions; each observed policy closes or

places considerable limits on non-essential businesses and requires residents to stay

at home except for essential activities. Essential services include grocery stores, gas

stations, pharmacies, banks, laundry services, and business essential to government

function [16]. Throughout this paper we refer to all mandates that implement this

combination of policies as a “stay-at-home mandate.”

While we focus our attention on statewide stay-at-home policies, many county and

local policies had already been implemented and were already affecting individual-

level mobility around the country. Six San Francisco Bay Area counties required res-

idents to stay-at-home beginning March 17, two days prior to the statewide man-

date [55]. By mid-March, schools of all levels had begun closing their doors and tran-

sitioning to online instruction. On March 9, Stanford University moved classes online

“to the extent possible,” with Harvard and many other institutions swiftly following

suit [38]. Further, business leaders including Google, Microsoft, Twitter, Facebook,

and Amazon transitioned some or all of their employees to working remotely well be-

fore statewide mandates entered into effect [7]. As a result, any behavioral response to
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statewide stay-at-home mandates represents only a partial response to the suite of the

actions and policies undertaken to combat the spread of COVID-19. Our estimated

“mandate effects” that follow therefore capture the behavioral responses specific to

statewide stay-at-home mandates and underestimate the effect of all combined poli-

cies. If local, county, and business policies had already incentivized residents to stay

at home, then we would expect minimal response to later statewide mandates which

would be reflected in weak small magnitude estimates in our models. Whatever im-

pact our empirical methods are able to pick up reflects mobility responses in addition

to those already realized for existing policies.

Health Outcome Data

We obtain information on hospitalizations and deaths due to COVID-19 by state from

the COVID Tracking Project (CVT) [22] for the period of February 24 to May 2, 2020.

CVT obtains data on positive and negative tests, deaths, hospitalizations, and the

counts of patients currently in intensive care units and on ventilators. Outcome data

are obtained directly from the respective public health authorities, supplemented with

additions from press conferences or trusted news sources. As the bulk of data is ob-

tained directly from state public health bodies, CVT represents one of the most trans-

parent and up-to-date source of COVID-19 mortality and morbidity data. We scale the

change in hospitalizations and deaths by state population in 100 millions. We obtain

population data by state from the 2010 U.S. Decennial Census [61].

While all states report both the change and running total of deaths, reporting of

hospitalizations is less consistent and often incomplete. Appendix Tables ***REF and

REF*** summarize the data quality and coverage for deaths and hospitalizations across
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all states and Washington D.C. for states reporting and not reporting hospitalization

data, respectively. As of May 2, 37 states report at least two days of hospitalization data

while 13 states and Washington D.C. report no hospitalization data. Missing states in-

clude three of the first four early adopters: California, Illinois, and New Jersey. While

states consistently report between 30 and 60 days of death data as both daily changes

and running totals, hospitalization data is much more sparse and reported in different

ways by different states. Alaska and Connecticut report hospitalization as both the

daily change and running total, while the remaining 35 states only report the cumula-

tive number of hospitalization by date. Hospitalization data coverage ranges from a

minimum of 2 days (Connecticut) to a maximum of 42 days (Colorado, Florida, Mas-

sachusetts, New York, North Dakota, Ohio, and Oklahoma). As we utilize the daily

change per 100 million residents as outcomes of interest in our main analyses, we con-

vert all hospitalization data provided as sums only to the daily change before dividing

by 100 million population.

Health outcome summary statistics are provided in Table 2. Table 2 is structured

like Table 1, presenting summary statistics for death and hospitalization rates per 100

million residents for the periods of February 24 to 29, March 1 to 31, and April 1 to May

2. In the top panel for the end of February, we see that the average death rate across all

states during the last week of February is 1.26 deaths per 100 million, with at least 75%

of the observations reporting death rates of zero. In the middle panel, for the month

of March, the average death rate rises to about 29 deaths per 100 million per day as

COVID-19 permeates the country. During this period there is extensive heterogeneity

in death rates across states: 50% of the states’ observations during this period indicate

zero deaths. Finally, in the month of April, only 25% of the observations report zero
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deaths, with the average death rate for the period roughly 337 deaths per 100 million

per day, with average hospitalization rates near 1080 per 100 million per day.

Table 2: Summary Statistics for Mortality and Morbidity

Death Rate Hospitalization Rate
per 100M per 100M

February 24 to February 29th

Average 1.26
25th percentile 0.00
Median 0.00
75th percentile 0.00
Number Observations 130 0

March 1 to March 31st

Average 28.75 706.63
25th percentile 0.00 113.12
Median 0.00 281.60
75th percentile 15.64 526.44
Number Observations 1307 171

April 1 to May 2nd

Average 336.67 1079.35
25th percentile 0.00 177.42
Median 106.63 491.29
75th percentile 308.69 1044.72
Number Observations 2183 983
Source: COVID Tracking Project (CVT). This table presents summary statistics for the death rates (column 1) and
hospitalization rates (column 2) due to COVID-19 for the period of Feb 24th to May 2nd. Each observation is
measured at the state by day level and represents the change in COVID-19 deaths or hospitalizations per 100
million population.

Mortality and morbidity data obtained from CVT correlate strongly with other

sources of COVID-19 health data. We chose CVT as our main source of health out-

come data as they were found to balance transparency with coverage and stood as the

most complete source of hospitalization data. We find evidence that the CVT mea-

sure of COVID-19 mortality correlates strongly with comparable measures obtained

from other sources – see the Data Appendix for tables correlating CVT, the New York
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Times, and Johns Hopkins’ death rates. This provides evidence for the insensitivity of

our health findings to our choice of data source.

While the measures of mortality and morbidity we employ represent the most up-

to-date data available, they are still preliminary and likely represent underestimates

of the true impacts of COVID-19. Widespread lack of access to testing, especially in

rural areas and early on in the U.S. outbreak, means many deaths (especially at-home

deaths) due to respiratory issues caused by COVID-19 may have gone uncounted [14].

As more information becomes known, state health authorities are likely to update

their reported counts. As CVT actively updates their data and we pull data directly

from CVT each day, the numbers used in this paper accurately reflect mortality and

morbidity information as is currently known at the time of writing. The true public

health impact of COVID-19 will likely not be known for years to come as reporting

protocol is improved and prior deaths are verified.

Empirical Framework

Descriptive Event Study

To investigate how travel activity and social distancing behavior evolved day-to-day

during the COVID-19 period, we begin by estimating an event study regression for

each mobility measure:

Ẏsd = α +
42∑

k=−6

βk1{k Days Since First Case}sd + εsd (1)

Here the change in mobility measure Ẏ is expressed as a function of a constant and

a set of 49 indicator variables, equal to one in state s on the date k days since the state’s
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first reported case and equal to zero otherwise. The coefficient β−1 is normalized to

zero, such that all estimated coefficients β̂k measures the difference in the predicted

change in mobility outcome Y relative to the day prior to a state’s first case. We re-

port estimates from Eq 1 using event study figures, allowing us to understand how

behavior changes in a state are correlated with spread of COVID-19 within that state.

As no additional controls are included, these figures merely report differences in con-

ditional means and provide evidence of substantial changes in mobility patterns prior

to states’ implementation of stay-at-home mandates.

Difference-in-Differences Statistical Model

To determine the effect of statewide stay-at-home mandates on travel activity, we be-

gin by estimating the following model:

Ẏsd = α + βSAHsd + ηs + δd +
3∑
0

γjs t
j + εsd (2)

Here the outcome Ẏsd denotes the change in a given measure of travel activity

( ˙ADT , ˙NEV , or ˙ENC) for state s on date d relative to the baseline level, and is ex-

pressed as a function of a constant α, whether a state has a statewide mandate in

effect, time controls, and state fixed effects. SAH is an indicator equal to one if state s

has a stay-at-home mandate in place on date d and zero otherwise. In the sections that

follow we consider the two cases where SAH includes variation for just the first four

states to adopt statewide mandates and for all states that ever adopt a statewide man-

date. The vector of state fixed effects ηs controls for time-invariant characteristics of

states that affect travel behavior while date fixed effects δd control for factors affecting

travel on a given date common to all states (i.e. executive branch press conferences or

18

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 26, 2020. ; https://doi.org/10.1101/2020.05.23.20111211doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.23.20111211
http://creativecommons.org/licenses/by-nc-nd/4.0/


daily changes in nationwide total deaths/hospitalizations). In our preferred specifica-

tion we also include state-specific cubic time trends,
∑3

0 γjs t
j = γ0s+γ1st+γ2st

2+γ3st
3,

allowing the effect of time elapsed since February 24 to affect each state differently in

a flexible fashion. ε is an idiosyncratic error comprised of unobserved determinants

of changes in travel activity that are not controlled for by the variables specified in the

linear Eq 2.

The coefficient β measures the difference in the change in average daily travel ac-

tivity for states that implement the stay-at-home mandate relative to the change in

activity in states that have yet to or never implement such policies, after controlling

for state and time-varying factors that also correlate with changes in daily activity. In

this way β̂ provides an estimate of the average treatment effect for treated states (ATT).

We estimate the model in Eq 2 using a daily state-level panel data set on changes in

average travel activity by state and day.

This empirical approach allows us to identify the relationship between stay-at-

home mandates and daily changes in each of the three measures while also explicitly

controlling for other confounding factors that are specific to each state or date. The

share of local population previously working from home or employed in specific in-

dustries are controlled for with η, while day-to-day changes in activity common to

all states – motivated by new information on the virus’ spread and nationwide media

coverage or federal appeals to social distancing – are controlled for through δ. We in-

clude state-specific cubic trends,
∑3

j=0 γjs t
j = γ0s + γ1st + γ2st

2 + γ3st
3, allowing the

effect of time elapsed since late February to flexibly affect travel behavior in state s.3

The mandate effect β is identified under the assumption that, after controlling for the

3As our outcome variables are defined relative to levels from a baseline period not used in estima-
tion, this is equivalent to estimating Eq 2 with data beginning February 24 and including a baseline
fixed effect.
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state-specific trends, common day-to-day trends, and time-invariant state character-

istics, stay-at-home mandates are as good as random. Equivalently, the day-to-day

travel activity changes in states that have yet to adopt or never adopt a mandate are

what the change in travel would have been for stay-at-home states absent the man-

date. Given the time-varying nature of adoption, we can express this underlying as-

sumption as the weighted average of parallel trends for each simple two-by-two DD

estimators [32]. Our approach is identified using changes in travel behavior that dif-

fer from typical pre-COVID-19 levels for a state and the states average change during

the COVID-19 time. A remaining source of bias would be if the early mandate states

were trending differently than the control states before March 8 in ways that differed

from trends after March 8. Standard errors of the estimated parameters are clustered

by state to account for variation in state policies potentially affecting the magnitude of

the error term ε.

Weighting

All empirical results that follow are obtained through unweighted ordinary least squares

(OLS). We choose to report results for unweighted linear regression as we prefer the

potential loss in efficiency from using heteroskedasticity-robust standard error pro-

cedures to the implications of a misspecified form of variance with weighted least

squares (by imposing variance proportional to state population). Implicitly OLS would

assign even weight to each state regardless of population in a two-by-two difference-

in-differences estimand with uniform adoption timing. However, weights become less

straightforward in the panel setting with staggered adoption timing; applying popu-

lation weights in this setting will apply additional weighting schemes on top of exist-
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ing weights due to variation in policy timing and group comparisons [32]. Further,

weighting would not allow us to recover a consistent estimator for the population av-

erage effect in the presence of over or under-sampling of particular groups in our state

averages [57].

Given that group membership is determined by location of residence, individual

observations within a state are likely not independent and the population of a state

may not substantively influence the variance of the population residual. In this case,

weighting by population could reduce efficiency of the estimator and bias standard

errors [24]. Given an error-components model for single period individual error terms

of the form

εij = ci + uij

the variance for a particular state’s average error becomes

V ar(vi) = σ2
c +

σ2
u

Ji

where σ2
c represents a group-specific variance and σ2

u the idiosyncratic error, with Ji

the number of devices observed in group i. Given that each observation in our sample

is an aggregation of travel activity conducted by millions of individuals, the second

term will be negligible in comparison to the group-level variance component. In this

case, introducing population weights would exacerbate heteroskedasticity and lead to

lower precision than in OLS [24]. Here, the number of individuals contained in each

states average is very large and we have no evidence that these sampled individuals

are more or less likely to respond to SAH policies than the average american. Given

the lack of evidence of endogenous sampling, use of population weights in our chosen
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control structure would not offer a consistency gain [57]. To allow more transparent

understanding as to how our overall ATT estimate is obtained, we explore the role

of policy timing and group comparisons in informing the DD estimator weights in

the Appendix ***REF***. Further, our later use of partially pooled synthetic control

weights in a weighted event study designs in decomposes the ATT by time elapsed

since mandate adoption while controlling for endogenous treatment timing.

Synthetic Control Method under Staggered Adoption

A primary concern for violation of the difference-in-differences identifying assump-

tion rests on the endogeneity of mandate adoption timing. If states that chose to adopt

mandates early did so due to larger initial case counts or earlier realizations of a first

death from COVID-19, then travel behavior by that states’ residents may have already

been trending differently than that for residents of states that had not yet adopted

a mandate. To account for differences between early and late adoption states, we

conduct analysis using the weighted event study approach of [10] that extends the

synthetic control method to the staggered adoption panel setting and the event study

framework that nests within the fixed effects approach employed earlier.

The synthetic control method (SCM), developed by [1], creates a “synthetic” con-

trol group for a single treated unit using weights to balance the treatment and synthetic

control groups on pre-treatment outcomes. As SCM does not require as strong a par-

allel trend assumption as difference-in-differences (now requiring that an appropriate

counterfactual can be obtained using the convex hull of untreated units), it quickly

became a preferred tool of applied researchers. While this offered a clear advantage

for identifying a valid counterfactual, it was not immediately clear how to extend the
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approach into panel data settings with multiple treated units receiving treatment po-

tentially at different points in time.

Partially Pooled Synthetic Control Method

Partially pooled SCM integrates the two most common ad-hoc approaches (applying

synthetic control separately to each treated unit before taking an average across treated

units, and estimating weights to fit the average pre-treatment outcome for all treated

units) in a manner that simultaneously minimizes error arising from both the single-

unit fits and the pooled fit [10]. While the approach does not guarantee perfect balance

of both unit-specific and overall pre-treatment outcomes, it offers a way to minimize

the sources of bias associated with each choice on its own.

Let Yit(1) be the potential outcome for unit i in period t after having received the

treatment, and let Yit(0) be the potential outcome for a unit in the absence of treatment

(i.e. that has yet to receive treatment or never receives the treatment). In our setting,

43 units eventually adopt a stay-at-home mandate (42 states and Washington D.C.),

and are denoted by Wi = 1. Wi = 0 for the eight states that never adopt a mandate.

We can then express the observed outcome for the units that adopt a mandate at time

Ti as Yit = Yit(0)I{t < Ti} + Yit(1)I{t ≥ Ti} and as Yit = Yit(0) for the never-mandate

states.

In this framework an estimate for the average treatment effect on the treated (ATT)

is given by

ATTk =
A

J

J∑
j=1

Yj,Tj+k(1)− Ŷj,Tj+k(0) =
A

J

J∑
j=1

Yj,Tj+k(1)−
N∑
i=1

τ̂ijYi,Tj+k

where k indicates the “event time” elapsed relative to the treatment time Tj , given
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by k = t − Tj . Yj,Tj+k(1) is observed for all treated units after mandate adoption,

and following [10] the unobserved potential outcome Ŷj,Tj+k(0) is obtained through a

modified SCM approach using the available donor pool at time Tj + k (units that have

yet to receive treatment or never receive treatment). For treated units j1, ..., jJ , the

N-vector SCM weights τ̂j are the solution to the partially pooled SCM optimization

problem:

min
τ1,...,τJ∈4scm

j

ν

2
qpool(Γ) +

1− ν
2

qsep(Γ) + λ
J∑
j=1

N∑
i=1

f(τij) (3)

In contrast to [1], weights are based solely on lagged outcomes with the potential

addition of the penalization term λ
J∑
j=1

N∑
i=1

f(τij) to promote uniformity.4 qpool is the

mean square error for the average of the pre-treatment periods across all J treated

units when running SCM separately for each unit, and qsep the equivalent object when

SCM is applied to the “pooled” average of all treated units. ν ∈ [0, 1] is the hyper-

parameter determining the weight given to each SCM approach; a value of ν = 0

corresponds to separate SCM weights while ν = 1 yields weights derived from the

pooled SCM approach. In this way the partially pooled SCM weights trade off im-

balance resulting from state-specific matches with the pooled imbalance; see [10] for

additional discussion of the balance possibility frontier.

The partially pooled SCM approach can obtain a causal estimate of the average

treatment effect on the treated (ATT) under two key assumptions [8]. First, we assume

that a treated unit’s potential outcomes prior to receiving treatment are equal to the

control unit’s potential outcomes: Yit(s) = Yit(0) for t < s. This assumption serves

as a generalization of SUTVA, ruling out interference across states in our setting [54].

4We set λ = 0 for our estimation as we have a sufficiently large donor pool to obtain pre-treatment
balance
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Second, we must assume that, for a given unit with Wi = 1, the potential outcomes

following treatment are identical to the observed treated potential outcome: Yit(s) =

Yit(1) for any 0 < s ≤ t . This assumption imposes stability of the treatment effect over

time within a given unit while still allowing {Yit(0), Yit(1)} to vary across units.

Weighted Event Studies

To correct for imperfect pre-treatment balance in partially pooled SCM, we augment

the partially pooled SCM estimator with a fixed effects outcome model and estimate

weighted event studies. Synthetic controls are constructed based on the balance of

residualized pre-treatment outcomes; in this way the approach builds upon recent

research on doubly-robust estimators with an extension to the staggered adoption set-

ting [2, 5, 6, 10, 20].

The weighted event study obtains the counterfactual for treated unit j, k periods

after adopting a mandate as

Ŷ aug
j,Tj+k

= m̂ijk +
n∑
i=1

τ̂ ∗ij(Yi,Tj+k − m̂ijk) (4)

Where τ̂ ∗ij are partially pooled SCM weights obtained using residualized outcomes

and m̂ijk is obtained as the uniformly-weighted average of pre-period outcomes, equiv-

alent to augmentation with unit fixed effects. This approach yields a unit-specific ATT

estimate k periods post-adoption as

ÂTT
aug

jk =

(
Yj,Tj+k −

Tj−1∑
`=1

1

Tj − 1
Yi,Tj−`

)
−

N∑
i=1

τ̂ ∗ij

(
Yi,Tj+k −

Tj−1∑
`=1

1

Ti − 1
Yi,Tj−`

)
(5)
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This approach builds upon the robustness properties of the intercept-shifted or de-

meaned SCM estimators in a way that allows for staggered adoption [25, 29]. ÂTT
aug

jk

can be thought of as a doubly-weighted difference in differences estimator, wherein

the change in the treatment unit is obtained as the difference between the treatment

unit’s outcome in period k and its pre-period average, and the change in the control

group is the average for equivalent changes for all donor units, weighted by partially

pooled synthetic control weights. Averaging ÂTT
aug

jk across all treated units at a given

point in event time yields a period-specific treatment effect ÂTT
aug

k that can be thought

of as equivalent to the typical dynamic ATT obtained from an event study design. Av-

eraging across all post-treatment periods yields the overall treatment effect estimate,

ÂTT
aug

. Standard errors are obtained using a jackknife approach [6].

Model for Health Outcomes and Past Changes in Mobility and Encounter Rates

Finally, we consider a distributed lag model specification to empirically test whether

changes in mobility weeks prior have an effect on current health outcomes from COVID-

19. Across models we control for day-to-day changes common to all states and state-

specific factors affecting health outcomes, state-specific trends affecting health out-

comes, and distinguish between mandate and non-mandate states. We model daily

new COVID 19 deaths and hospitalizations per 100 million residents by state as

Hsd = α +
3∑

k=1

˙MOBs,−kβ−k + δd +
3∑
j=0

γjs t
j + εsd (6)

Where Hsd is the daily health outcome reported for state s on date d, and ˙MOBs,−k is

the lagged change in the chosen mobility measure (one of average distance traveled,

˙ADT , non-essential visits ˙NEV , or human encounters ˙ENC). k ∈ {1, 2, 3} so that
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˙ADT s,−1, ˙ADT s,−2 and ˙ADT s,−3 are the changes in the average distance traveled in the

previous week, 2 weeks, and 3 weeks, respectively.

In each of the empirical analyses, the coefficient α is a constant,
∑3

0 γjs t
j are state

specific cubic trends controlling for time-variant state characteristics that affect health

outcomes, and δd date fixed effects controlling for common time shocks measured rel-

ative to the first period. The disturbance εsd are unobserved determinants of health

outcomes that vary over time within a given state that cannot be explained by the flex-

ible trend. For changes in average distance traveled, in Eq 6, the coefficient on ˙ADT s,−3

captures the estimated effects of reducing activity three weeks prior. Inclusion of ad-

ditional lags for one and two weeks prior allows us to estimate a lagged long term

impact of reducing activity; in this case, the long term impact of changes in activity

is given by the sum of the three lagged variable coefficients of the lagged changes in

average distance traveled one, two and three weeks prior. Similar interpretation ap-

plies to the models for the other two lagged measures. We estimate the equation for

all states, and then separately for early mandate and for all mandate states.

Results

Across the United States, COVID-19 upended daily routines. As a result of layoffs,

revised work-from-home guidelines, school closures, family needs, and state policies,

travel behavior has changed dramatically in the U.S. over the last two months. Figure 1

plots over time the changes in average distance traveled ( ˙ADT ), visits to non-essential

businesses ( ˙NEV ), and the unique human encounter rate ( ˙ENC) per day for all U.S.

states, measured as the percent change relative to typical pre-COVID-19 levels. The

solid line plots the average for the first four states to implement mandatory stay-at-
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home policies: California (implemented March 19) [41], Illinois (March 21) [51], New

Jersey (March 21) [37], and New York (March 22) [49]. The dotted line plots the average

for the 15 states that adopt stay-at-home mandates later in the sample period while the

dashed line plots the daily average for the remaining 30 states who had yet to adopt a

stay-at-home mandate by end-of-day March 25.5

Travel behavior in late February and through the first week of March looks largely

typical for distances traveled and visits to non-essential businesses, with small fluc-

tuations relative to baseline activity levels for all states. The change in the human

encounter rate exhibits much greater variation throughout the week, increasing over

the course of the work week before falling considerably over the weekend. Despite

this greater within-week variation, the average human encounter rate for all states

finishes the work week of March 2-6 above baseline levels.

Beginning the week of March 9, residents across the country began deviating from

typical travel patterns. By Wednesday March 11, residents of all states had begun

reducing their distances traveled, trips to non-essential businesses, and encounters

with others relative to pre-COVID-19 norms. Initially, changes to mobility patterns in

early-adoption states is largely indistinguishable from those for other states; by March

15, residents across all three groups had reduced travel distance by 8 to 13 percentage

points, unique human encounters by 28 to 29 percentage points, and visits to non-

essential visits by 12 to 17 percentage points.

By March 18, before the first statewide mandate went into effect, these declines had

grown dramatically in magnitude. The decline in travel distances grew in magnitude

5Colorado, Connecticut, Delaware, Hawaii, Idaho, Indiana, Louisiana, Michigan, New Mexico,
Ohio, Oregon, Vermont, Washington, West Virginia, and Wisconsin all implement similar stay-at-home
mandates between March 23 and March 26. Massachusetts adopted a stay-at-home advisory, recom-
mending but not requiring that residents stay home.
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Figure 1: Each series represents the change in each day’s mobility measure relative
to pre-COVID-19 levels for the given groups of states. The solid line corresponds to
the average change for the four states that implemented stay-at-home mandates by
end-of-day March 22 (California, Illinois, New Jersey, and New York). The dotted line
plots the average for the 39 states that adopted statewide mandates at later points,
while the dashed line represents the average for the eight states that never adopted a
statewide mandate. The first panel plots changes in average distance traveled, the sec-
ond changes in unique human encounters per square kilometer, and the third changes
in visits to non-essential businesses. The gray bars designate weekend days while
the vertical line indicates March 19, the date the first state policy was implemented in
California.

to between 12 and 23 percentage points, and between 34 to 49 percentage points fewer

non-essential visits. Unique human encounters had already fallen between 61 and 71

percentage points relative to pre-COVID-19, a dramatic indicator of extensive social

distancing occurring even before statewide orders requiring such behavior.

By the time many state implemented their policies in the coming weeks, travel
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behavior and social interactions had already largely bottomed out. While gaps be-

gin appearing in mobility patterns for residents of early adoption, later adopters, and

never adopter states at this time, these gaps and weekly patterns remain remarkably

consistent through mid-April.

Figure 1 provides initial evidence of changes in travel behavior being correlated

with the decisions of whether and when to adopt stay-at-home mandates. Following

the start of statewide mandate adoption on March 19, residents of early adopter states

exhibit larger magnitude reductions every single day through April 29 across all three

measures. Mean encounter rates in early adoption states are consistently 10 to 16 per-

centage points lower than in states that never adopted mandates each week during

this period, with a larger weekly gap in travel distance between 13 and 19 percent-

age points, and a similar 12 to 22 percentage point gap for non-essential visits. Late

adoption states similarly display greater reductions in comparison to never adopters,

albeit smaller in magnitude (between 5 and 7 percentage points for human encounter

rates, 7 and 10 percentage points for travel distance, and 6 and 10 percentage points

for non-essential visits).

Travel Behavior Changes and COVID-19 Outbreaks in a State

To investigate how changes in travel activity evolved in response to a state’s COVID-

19 outbreak, we next present estimates from the event study model in Eq 1 in Figure

2. Each panel plots the point estimates and 95% confidence interval for the effect of

being k days away from the state’s first reported COVID-19 case. As the effect for the

baseline period k = −1 is normalized to zero, all coefficient estimates are interpreted

as the difference in mobility changes relative to the day before a state’s first case.

30

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 26, 2020. ; https://doi.org/10.1101/2020.05.23.20111211doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.23.20111211
http://creativecommons.org/licenses/by-nc-nd/4.0/


�

�
�

�
� �

�

�
�

�
�

�

�

�

�

�

�
�

�

�

�

�

�

�
�

�

�

�
�

�
� �

�

�

� �

�

� �

�
�

�
� � � �

�
� �

First
Case

Mean SAH 
Date

−40

−30

−20

−10

0

C
ha

ng
es

 in
 A

ve
ra

ge
 D

ai
ly

 D
is

ta
nc

e 
Tr

av
el

ed
 (%

)

� �

�

�

�

�

�

� �

�

�
�

�

�

�

�

�

�
�

�
� �

�

� � � � �
� �

�
� � � � � �

� �
� � �

�
� �

�

�
�

�

−75

−50

−25

0

C
ha

ng
es

 in
 H

um
an

 E
nc

ou
nt

er
 R

at
e 

(%
)

� �
�

�
�

�
�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

� �
� �

�
�

�
� � �

�
�

�
� �

�

�
�

� �
�

� �

�

�
�

�

−60

−40

−20

0

0 10 20 30 40
Days Since First Case

C
ha

ng
es

 in
 V

is
its

 to
 N

on
−e

ss
en

tia
l B

us
in

es
se

s 
(%

)

Distance
Traveled

Unique
Human 

Encounters

Non-Essential
Visits

Figure 2: Travel change event study. Each series represents the change in each day’s mobility measure
for being k days since a state’s first case. The dotted line plots the daily difference in the travel change
relative to the day prior to a state’s first case, while the gray band denotes the 95% confidence interval
(clustered at the state level). The Mean SAH Date line denotes the average date of statewide stay-at-
home mandate adoption relative to a state’s first case (21 days later).
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The leftmost vertical line of First Case denotes the baseline period, while the second

line for Mean SAH Date denotes the average date of mandate adoption relative to a

state’s first case (21 days later). If individuals began working from and staying at

home well in advance of statewide mandates, this would manifest as negative and

statistically significant coefficient estimates for the period k = 1, ..., 20.

Figure 2 provides further evidence of increasing behavioral responses over time.

Across our three mobility measures, we observed a decline nearly monotonic in time

elapsed since a state’s first case. While travel activity is generally slightly higher or

indistinguishable from baseline levels for the few pre-case periods in our sample, ac-

tivity begins a nearly linear decline after the first case. This roughly linear trend con-

tinues for distances traveled for the next thirty days, before bottoming out around a 40

percentage point reduction. The unique human encounter rate displays a similar pat-

tern, with its decline slowing after 2 weeks’ time before reaching a stable level around

an 80 percentage point reduction. Changes in non-essential visits follow suite, declin-

ing rapidly over the first two weeks of outbreak before fluctuating between a 50 to 60

percentage point reduction.

Additionally, we see that dramatic reductions in travel behavior occurred prior

to statewide SAH mandates. By the time the average adopter has implemented its

statewide mandate, average travel distances had already fallen by 38 percentage points,

the human encounter rate by 76 percentage points, and non-essential visits by 52 per-

centage points. While small reductions in travel activity measures occur more than 21

days after a first COVID-19 case, they are generally not distinguishable from effects on

the 21st day. For periods 22 or more days after the first case, only 5 days for travel dis-

tance, 2 days for human encounters, and 7 days for non-essential visits are statistically
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distinguishable at the 95% level from comparable changes on the 21st day.

Effect of Early Stay-at-Home Mandates on Daily Travel

While Figures 1 and 2 provide preliminary evidence that residents across the country

have drastically reduced travel activity and engaged in social distancing in response

to COVID-19 and that residents of mandate states differentially modified their travel

behavior, it is difficult to visually isolate the share of the difference attributable to

states’ stay-at-home mandates from time trends and characteristics of state residents

and policies. To investigate the role of stay-at-home mandates for early adopter states

further, we next present results of empirical specifications designed to isolate the effect

of stay-at-home policies on changes in travel activity and social distancing for the first

four states to adopt them.

In the empirical regression approaches that follow in this section, we attempt to

isolate the effect of states’ stay-at-home mandates on travel behavior. We start by fo-

cusing our attention on estimating the average treatment effect on the treated (ATT)

for early adopter states (CA, IL, NJ, and NY). Given that, unlike in many other loca-

tions, residents of these states had yet to reach their minimum travel levels before their

states’ mandates came into effect. Restricting our attention to policy variation in these

four states initially will help shed light on whether the greater propensity of residents

in these states to further reduce travel in the post-mandate period plays a role in the

size of any “mandate effect” we obtain. After discussing results for early adopters, we

expand our focus to all states that adopt stay-at-home mandates.

We begin by presenting the results of the linear fixed effects model from Eq 2 in Ta-

ble 3 for changes in average distances traveled before presenting results for preferred
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specifications across all three mobility outcomes in Table 4.

Table 3: Effect of Early Stay-at-Home Mandates on Changes in Average Daily Distance Trav-
eled

˙ADT

(1) (2) (3) (4) (5) (6) (7)

SAHit −21.830∗∗∗ −37.573∗∗∗ −5.859∗∗ −4.454∗∗ −10.158∗∗∗ −4.075∗∗∗ −4.136∗∗∗

(2.761) (1.385) (2.307) (2.074) (0.597) (0.973) (1.010)

After 1st Mandate −34.798∗∗∗

(1.119)

State FE No Yes Yes Yes St x Wk Yes Yes
Date FE No No No Yes St x Wk Yes Yes
Time Trend No No No No No Spl x St Cub X St
Weekday No No Yes No Yes Yes Yes
N 3,366 3,366 3,366 3,366 3,366 3,366 3,366
Adjusted R2 0.053 0.135 0.842 0.926 0.938 0.961 0.961

* p < 0.10, ** p < 0.05, ** p < 0.01. Standard errors are clustered at the state level. These models estimate the effect of
the first four (CA, IL, NJ, and NY) statewide stay-at-home mandates on travel activity. The dependent variable is the
percentage change in average distance traveled per day for the same day of the week relative to the four weeks before
March 8 (pre-COVID-19 time). A coefficient of one indicates a marginal effect of a 1 percentage point increase in travel
relative to pre-COVID-19 levels, controlling for time and the average COVID-19 mobility change in the case of state
fixed effects. “After 1st Mandate” indicates an indicator for periods after March 19. “St x Wk” indicates state by week
fixed effects, while “Spl x St” indicates state-specific cubic splines with knots on Feb 29, Mar 19, Apr 1, and Apr 15.
‘Cub x St” indicates state-specific cubic time trends.

Table 3 is organized into seven columns, where in column (1) we present results

from a naive ordinary least squares model of changes in average distance traveled

regressed on a constant and an indicator for mandates being in effect in the first four

states to adopt statewide stay-at-home mandates (California, Illinois, New Jersey, and

New York). In this naive specification, we find that a stay-at-home policy is correlated

with a reduction of average distance traveled by a significant 21.8% relative to pre-

COVID-19 levels and control states. The estimate ATT grows in magnitude to -37.6

percentage points with the addition of state fixed effects in column (2). The mandate

effect estimate attenuates to -5.9 percentage points with the addition of a post-March

19 indicator and day-of-week fixed effects in column (3). Estimates in columns (4) to
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(7) correspond to the staggered difference-in-differences estimator with various time

controls.

In column (2) we add state fixed effects, and in column (3) we further add an in-

dicator for all days following implementation of the first state mandate on March 19

(After 1st Mandate) and dummy variables for each day of the week. In column (4) we

add date fixed effects, which controls day-to-day changes common to all states, and

estimate a -4.5 change due to early mandates. Columns (5) to (7) include state-specific

trend controls: in column (5) we control for state-by-week fixed effects, in column (6)

for state-specific cubic splines with knots on Feb 29, Mar 19, Apr 1, and Apr 15, and

in column (7) we control for a state-specific cubic trend. When we add state-by-week

fixed effects to day-of-week controls in column (5) we see that the estimated treatment

effect of the early mandates increases in magnitude to -10.2 percentage points. Includ-

ing state-specific flexible trends in columns (6) and (7) results in ATT estimates closer

in magnitude to those of the two-way fixed effects estimator in column (4), with an

estimate of -4.1 with either state-specific cubic splines or state-specific cubic trends. In

column (6) and (7) we use the residual variation in average distance traveled that is

not explained by state-specific time trends to estimate the treatment effects of the early

stay at home mandates. We see that our estimates for the changes in average distances

traveled stand as quite robust to considering state-specific time factors, which is the

most conservative variation to use.

Table 4 consolidates estimates for the effect of early stay-at-home mandates on

travel activity and presents results across all three mobility measures. For each mea-

sure we present estimates from the two-way fixed effects specification and with state-

specific cubic time trends. Columns (1) and (2) present results for changes in travel
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activity from columns (4) and (7) in Table 3, while columns (3) and (4) present re-

sults from corresponding models for changes in non-essential visits, with results for

changes in human encounter rates in columns (5) and (6).

Table 4: Effect of Early Stay-at-Home Mandates on Travel Activity and Social Distancing

˙ADT ˙NEV ˙ENC

(1) (2) (3) (4) (5) (6)

SAHit −4.454∗∗ −4.136∗∗∗ −6.088∗∗∗ −5.185∗∗∗ −6.895∗∗∗ −4.683∗∗∗

(2.074) (1.010) (1.455) (1.307) (1.223) (1.270)

State FE Yes Yes Yes Yes Yes Yes
Date FE Yes Yes Yes Yes Yes Yes
State Cubic Trends No Yes No Yes No Yes
N 3,366 3,366 3,366 3,366 3,300 3,300
Adjusted R2 0.926 0.961 0.970 0.983 0.968 0.974

* p < 0.10, ** p < 0.05, ** p < 0.01. Standard errors are clustered at the state level. These models estimate the effect
of the first four (CA, IL, NJ, and NY) statewide stay-at-home mandates on travel activity and social distancing.
The dependent variables measure the change in percentage points for the same day of the week relative to the
four weeks before March 8 (pre-COVID-19 time). A coefficient of one indicates a marginal effect of a 1 percentage
point increase in travel relative to pre-COVID-19 levels, controlling for time and the average COVID-19 mobility
change in the state during the sample period.

Across all columns and time control structures, we estimate large magnitude changes

in travel activity due to early stay-at-home mandates. Looking at estimates for changes

in visits to non-essential businesses, we observe treatment effect estimates of -6.1 and

-5.2 percentage points for columns (3) and (4), respectively, with both statistically sig-

nificant beyond the 1% level. That is, once a mandate is implemented, we estimate a

5.2 to 6.1 percentage point reduction in the change in average visits to non-essential

businesses per day relative to control states. Given an average reduction of 59 percent-

age points across all states during the month of April, this corresponds to an additional

9 to 10% reduction in addition to prior reductions.

Turning next to changes in human encounter rates in columns (5) and (6), we once

again observe a relatively large response to stay-at-home mandates. We obtain ATT
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estimates of−6.9 and−4.7 percentage points once a mandate is implemented, indicat-

ing that unique human encounters per square kilometer declined in response to early

stay-at-home mandates. Once again the treatment effects are statistically significant

beyond the 1% level. While individuals had reduced their daily encounter rates by 79

percentage points on average for the month of April, early mandates encouraged an

additional 6-9% reduction.

Changes in Travel Activity Across All Adopting States

Table 5: Effect of All State Stay-at-Home Mandates on Travel Activity and Social Distancing

˙ADT ˙NEV ˙ENC

(1) (2) (3) (4) (5) (6)

SAHit −5.508∗∗∗ −2.809∗∗∗ −5.196∗∗∗ −4.491∗∗∗ −4.621∗∗∗ −3.648∗∗∗

(1.036) (0.863) (0.721) (0.652) (0.654) (0.771)

State FE Yes Yes Yes Yes Yes Yes
Date FE Yes Yes Yes Yes Yes Yes
State Cubic Trends No Yes No Yes No Yes
N 3,366 3,366 3,366 3,366 3,300 3,300
Adjusted R2 0.929 0.961 0.972 0.983 0.968 0.974

* p < 0.10, ** p < 0.05, ** p < 0.01. Standard errors are clustered at the state level. These models estimate the effect
of all statewide stay-at-home mandates on travel activity and social distancing. The dependent variables measure
the change in percentage points for the same day of the week relative to the four weeks before March 8 (pre-
COVID-19 time). A coefficient of one indicates a marginal effect of a 1 percentage point increase in travel relative
to pre-COVID-19 levels, controlling for time and the average COVID-19 mobility change in the state during the
sample period. ‘State Cubic Trends” indicate state-specific cubic time trends.

To understand whether later adopters attained reductions in travel activity akin to

those observed for early adopters, we next present results of Eq 2 utilizing variation in

mandate timing for all states that ever adopted a statewide stay-at-home mandate. We

present the difference-in-differences results for all states’s mandates in Table 5. Using

all adopting states provides much greater variation in treatment timing; in this way

the ATT estimates will be identified both through comparisons of changes in treated

units to changes in states that never adopted a mandate and through comparisons of
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states that have adopted and have yet to adopt at a given point in time.

Across all columns and time control structures, we find continued evidence of man-

dates’ effects on travel behavior. ATT estimates in Table 5 are all statistically significant

beyond the 1% level and appear similar to those found for the first four adopters, al-

beit with smaller magnitude changes when allowing for state-specific time trends. In

column (1) under the two-way fixed effects control structure we see that, once a man-

date is implemented, residents reduce their average distance traveled by an additional

5.5 percentage points relative to control states (states that never adopt and those that

have yet to adopt. This point estimate is larger than the ATT estimate of−4.5 when re-

stricting attention just to early mandates. When we add flexible state-specific trends in

column (2), the ATT estimates decreases in magnitude to−2.8, below the−4.1 estimate

for early mandates, but remains distinguishable from no effect.

Changes in visits to non-essential businesses and human encounters display a simi-

lar pattern. Across all states that ever adopt a statewide mandate, we estimate a “man-

date effect” of−5.2 and−4.5 for changes in non-essential visits without and with cubic

state time trends, respectively. These estimates are within 0.7 − 0.9 of the comparable

estimates for early adopters, suggesting that much of the mandate’s impact remained

even for mandates adopted much later in the pandemic. Turning to changes in human

encounter rates, we similarly estimate a treatment effect of −4.6 percentage points

per day with two-way fixed effects and −3.6 when including state-specific cubic time

trends.

These findings provide evidence that the effectiveness of states’ mandates was not

entirely dependent on early adoption. While estimated effects of stay-at-home man-

dates are slightly larger in magnitude than for early adopters than those adopted at
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any point during the spread of pandemic, all ATT estimates are markedly different

from zero. The larger magnitude effect for early mandates may simply be a product

of individuals’ propensity to reduce travel when the mandates came into effect. When

California, Illinois, New Jersey, and New York adopted their mandates, travel activ-

ity across the country was still in decline. By the time many later adopters’ policies

entered into effect in late March or Early April, residents were already largely staying

home and social distancing – either due to local mandates, loss of a job or work from

home policies, or voluntary decisions to self-mitigate risk of infection. The fact that we

are able to find evidence of additional reductions in travel activity for later mandates

supports the effectiveness of these policies in achieving their states goals.

Taken together, we find that people across the U.S. decreased their travel and rate of

human encounters early in the pandemic, preempting statewide requirements. More-

over, we find that statewide stay-at-home mandates are related to significant reduc-

tions in all our measures of travel activity, with residents of early mandate states en-

gaging in social distancing at greater rates than individuals not subject to such policies.

This mandate effect persists when considering all statewide policies, suggesting that

adoption early in a states’ pandemic curve was not a necessity for inducing additional

behavior modification.

Distance traveled is positively linked to an increased number of social trips across

all modes of transportation [62], suggesting that the observed decreases likely reflect

a decline in unique trips away from home as well. As travel activity is a main source

of social interaction beyond one’s immediate family [56] and travel to non-work lo-

cations increases the probability of co-location with others [59], these reductions in

distances traveled likely reflect commensurate decreases in physical interactions with
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those outside of one’s immediate family. Our estimates for changes in unique hu-

man encounters reflect these previous studies, providing evidence of further social

distancing once states adopted a stay-at-home mandate. Further, these findings are

not limited to the Unacast mobility measures; use of Google’s COVID-19 Commu-

nity Mobility Reports estimates similarly large and statistically significant effects of

statewide mandates.6 All this provides consistent, preliminary evidence that stay-at-

home mandates are having the intended effect of inducing greater social distancing

than would occur otherwise, helping to reduce the opportunities for communication

of COVID-19 within communities.

Decomposing the Difference-in-Differences ATT

A potential concern of the difference-in-differences estimator relates to the weighting

of individual periods. Under staggered adoption, the estimated treatment effect can

be expressed as a weighted average of all unique two-period by two-group difference-

in-difference estimators [32]. Weights are implicitly assigned to each timing cohort

and unit, proportional to the variance of the treatment indicator in each period and

the size of each cross-sectional group. A key implication of these weights is a favoring

of units treated near the middle of the sample period, with non-convexity indicating a

potential for negative weights ( [2, 12, 23]. Another consequence is that negative treat-

ment effects could also be obtained even when the effect of stay-at-home mandates for

all adopting states are positive [17].

To shed light on how the difference-in-differences ATT estimates presented earlier

rely on these timing and group weights, we decompose the two-way fixed effects esti-

6See the Appendix for the complete complementary google mobility analysis, replicating the same
methodology controlling for state specific flexible trends, state, and day fixed effects.
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mates from column (4) of Tables 4 and 5 into their component two-by-two comparisons

following [32]. We find that after decomposing the ATT for early adopters’ mandates

into its nine simple comparisons, over 99% of the weight falls on comparisons of treat-

ment vs. control units (states that never adopt or adopt later). Of these comparisons,

Illinois and New Jersey versus control states receives the majority of the ATT weight

(50.2%). Equivalent comparisons for California and New York each receive 24-25%

weight, with negative estimates for all three states and across all measures.

When considering mandate effects for all states, greater weight is placed on within-

treatment group comparisons. With adoption timing spanning March 19 to April 8,

two-by-two comparisons can be made across many more cohorts and donor pools; in

total 18 comparisons are made between treatment cohorts and never treated states,

with 306 different comparisons between early and later adopters. More than half the

ATT weight is still given to treatment cohorts versus pure control units, comprising

56-57% of the estimate across activity measures. The remaining weight is split evenly

between comparisons of timing cohorts, with 21-22% of ATT weight given to com-

parisons of early treated units against later treated units still in the donor pool, and

to later treated units post-treatment relative to previously treated states. Across all

three types of comparisons we observe consistently negative average ATT estimates,

showing that treatment effect heterogeneity is primarily constrained to the size of re-

ductions in travel activity. See Appendix ***REF*** for detailed presentation of the

decomposition results and a more thorough discussion of the approach.
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Weighted Event Study

To address concerns regarding imbalances in changes to mobility patterns in the pre-

mandate period, we next present results from the weighted event study. As these esti-

mates construct a counterfactual balanced on pre-treatment outcomes for each adopt-

ing state, the estimated ATT now more closely reflects the comparison of the post-

adoption oeriod for each state to an appropriate trend from the pool of donor units

available at each point in time.

We begin by presenting the weighting event study figures for the heuristic ν of [10],

equal to ν =
√
qpool/

√
qsep the ratio of the square roots of pooled to separate SCM im-

balance. A larger ν trades off reductions in pooled imbalance for increases in separate

state imbalances. We compare the results to an unweighted event study approach and

discuss the evolution of mandate effects with time elapsed post-treatment.

We next present overall mandate effect estimates across the space of ν. While an

interior nu of 0.01− 0.99 offers substantial imbalance reductions relative to the pooled

or separate SCM cases, the optimal choice of ν is not immediately obvious. Estimating

weighted event studies over the range of ν allow us to better understand how sensitive

the overall ATT estimate is to the shift in weight from separate SCM for each state to a

purely pooled SCM approach.

Figure 3 plots the results of a typical event study regression against the weighted

event study results with the heuristic ν for all states’ mandates. The x-axis reports

event time, indicating the number of days elapsed since a state’s stay-at-home man-

date entered into effect. An event time of zero indicates the first full day a state’s man-

date was in effect. The typical event study relies on the parallel trends assumption

required for the overall difference-in-differences approach, while the doubly-robust
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approach of the weighted event study necessarily imposes balance on changes in pre-

treatment outcomes.

The typical event study (left panel) plots day-to-day ATT estimates averaged across

all adopting states obtained from a two-way fixed effects control approach akin to

columns (1), (3), and (5) in table 5 with a vector of dummy variables for being each of

k ∈ {−44, 21} days relative to mandate adoption. The day prior to adoption (k = −1)

is normalized to zero, such that all point estimates are interpreted as a differential

change in a given travel outcome on the kth day since mandate adoption relative to

the day immediately preceding adoption. 95% confidence intervals clustered at the

state level are reported in the gray band. Estimates statistically distinguishable from

zero in the post-period measure the treatment effect of stay-at-home mandates on mo-

bility patterns, decomposed by day. Non-zero estimates in the pre-mandate period

(k < 0) are evidence that the difference-in-differences parallel trends assumption is

likely violated: residents of adopting states were already differentially modifying their

travel behavior relative to residents of control states prior to any statewide mandates

requiring such behavior.

Typical event studies for all three travel activity show both an immediate, short-

term mandate effect and considerable differential trends in the pre-mandate periods.

Looking first at changes in average distance traveled in Figure 3, we observe a statisti-

cally significant treatment effect of −3 to −4 percentage points immediately following

mandate adoption that persists for five days. An immediate drop of 5 − 6 percentage

points is observed for non-essential visits and human encounter rates on the day fol-

lowing mandate adoption. While both effects remain distinguishable from zero for a

longer period of time than for distance traveled, neither effect persists for more than
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Typical vs. Weighted Event Study, Average Distance Traveled
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Weighted Event Study for changes in visits to non-essential businesses (%) with ν = 0.29
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Figure 3: Standard and weighted event studies for changes in average distance trav-
eled following state mandates. The standard event study (left panel) plots regression
coefficients for dummy variables equal to one for being k days away from the first
effective date of each statewide stay-at-home mandate, with 95% clustered standard
errors represented in the gray band. A point estimate of -10 indicates a 10 percentage
point greater decline in the average distance traveled per day for a state k days since
mandate adoption relative to the day prior to mandate adoption (k = −1). The left
panel plots equivalent point estimates and jackknife standard errors from a weighted
event study, with partially pooled synthetic controls constructed to match treated units
on residualized pre-treatment outcomes.

two weeks following mandate adoption. All three panels display considerable differ-

ences in trends between treatment and control groups; travel activity levels in mandate

states begin 20-25 percentage points lower than in control states. These trends follow

roughly linear trends, and remain non-parallel for the entire pre-mandate period for

both non-essential visits and the human encounter rate.

Once differences in pre-trends are correctly internalized, a much clearer picture

of stay-at-home mandates’ effectiveness becomes visible. Results from the weighted

event studies presented in the right panels of Figures 3, 4, and 5 show the consider-

able improvements in pre-treatment balance, with a total of three out of 129 pre-period

estimates distinguishable from zero (in contrast to a combined 89 for the standard

event studies). Further, we now observe persistence of the estimated mandate effects,

with travel behavior falling discontinuously immediately after a mandate and per-
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Typical vs. Weighted Event Study, Non-Essential Visits
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Figure 4: Standard and weighted event studies for changes in non-essential visits fol-
lowing state mandates. The standard event study (left panel) plots regression coeffi-
cients for dummy variables equal to one for being k days away from the first effective
date of each statewide stay-at-home mandate, with 95% clustered standard errors rep-
resented in the gray band. A point estimate of -10 indicates a 10 percentage point
greater decline in non-essential visits per day for a state k days since mandate adop-
tion relative to the day prior to mandate adoption (k = −1). The left panel plots equiv-
alent point estimates and jackknife standard errors from a weighted event study, with
partially pooled synthetic controls constructed to match treated units on residualized
pre-treatment outcomes.

sisting below levels observed in the synthetic control units across all but four total

post-mandate periods. Averaging event day-specific ATT estimates across the entire

mandate period yields magnitudes in line with those obtained through the staggered

difference-in-differences approach. We obtain an overall ATT of−6.47 for average dis-

tance traveled, roughly one percentage point larger in magnitude than column (1) of

table 5. A similar pattern is observed with the human encounter rate, with an overall

ATT of −5.89, 1.3 percentage points larger than column (5) of 5. The weighted event

study ATT for non-essential visits is−4.16, one percentage point smaller in magnitude

than the corresponding difference-in-differences estimate. These estimates are highly

robust to the specific choice of ν.7

The consistency of estimates between the difference-in-differences and weighted

7See Appendix ***REF*** for overall ATT estimates across the entire space of ν.
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Typical vs. Weighted Event Study, Human Encounter Rate
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Figure 5: Standard and weighted event studies for changes in human encounter rates
following state mandates. The standard event study (left panel) plots regression coef-
ficients for dummy variables equal to one for being k days away from the first effective
date of each statewide stay-at-home mandate, with 95% clustered standard errors rep-
resented in the gray band. A point estimate of -10 indicates a 10 percentage point
greater decline in unique human encounters per day for a state k days since mandate
adoption relative to the day prior to mandate adoption (k = −1). The left panel plots
equivalent point estimates and jackknife standard errors from a weighted event study,
with partially pooled synthetic controls constructed to match treated units on residu-
alized pre-treatment outcomes.

event study approaches provides confirming evidence that statewide stay-at-home

mandates elicited further reductions in travel activity by affected residents. Weighted

event studies provide additional detail as to how these responses evolved, showing

that reductions occur immediately upon policy implementation and persist even as

residents are subject to the policies for three full weeks. This pattern is especially true

for human encounters, suggesting that residents of mandate states continued to so-

cially distance, a key avenue for reducing the transmission of COVID-19.

Early Signs of Flattening the Curve

While stay-at-home mandates reducing travel activity and promoting increased social

distancing behavior provides evidence that individuals are listening to their states’
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ordinances even after substantial earlier behavior modification, what matters from a

public health perspective is the impact of these behavioral changes on the spread of

and outcomes from COVID-19. Increased social distancing and reduced travel away

from home and non-essential trips are mechanisms through which the transmission

of COVID-19 can be reduced, and are main mechanisms affected by statewide stay-

at-home mandates. Merging the daily state-level changes in travel activity and so-

cial distancing [63] with the daily changes in COVID-19 deaths and hospitalizations

per state [22], we are able to provide early indications of whether the stay-at-home

mandates are having their intended effects of mitigating the pandemic’s health conse-

quences.

Prior to the implementation of stay-at-home policies we find no statistical evidence

of differential trends for early-adopter states relative to the rest of the US for the pe-

riod February 24 through March 8. Conducting a difference-in-means test for the two

groups, we fail to reject the null hypothesis that the average change in distance trav-

eled (t-statistic of -1.67) and deaths per million (t = 0.72) each day are different for CA,

IL, NJ, and NY relative to other states.8

To investigate the time patterns of health outcomes we start by breaking up the

average death rate by day separately for two groups of states: those that are mandate

states and the eight states that are not. In Figure 6 we see that average death rates

increase more for states that are not implementing mandates than for those states that

do and that the patterns for hospitalization rates are noisier, as show in the bottom

panel of this figure.

8We do not conduct a comparable test for hospitalization, ICR and ventilator rates due to the lack of
consistent data and possibly inconsistent reporting across states in the weeks prior to March 19. We also
have data for the share of COVID-19 positive tests by day and by state but we reject the null hypothesis
of no difference in means for the share of positive tests (t = 4.11), which we take as further evidence
that testing volumes and protocols differ extensively from state to state.
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Figure 6: Source: Health Data source COVID-19 Tracking Project. Mandate states are
all states that adopt at some point a stay at home mandate. The eight non mandate
states are Arkansas, Iowa, Oklahoma, Nebraska, North Dakota, South Dakota, Utah,
and Wyoming. The red vertical line indicates March 19, the date the first state policy
was implemented in California.

Looking at the time patterns for states that experience the largest reductions in

mobility and distinguish from the average death rates for the states that experience

the lowest mobility reductions (lower than the median drop), as measured by daily

changes in non essential visits, we show in Figure 7 that the increase in death rates is

steeper for those states that have the smallest reductions in mobility while once again

the hospitalization rate patterns are noisy.9

While Figures 6 and 7 provide preliminary evidence of variation over time in death

rates across states that are correlated with stay-at-home mandate adoption decisions

9The pattern is similar for other break downs along average distance traveled and encounter rates
as shown in the Appendix.
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Figure 7: Source: Health Data source COVID-19 Tracking Project. The evolution is
broken up by two groups of states, those with drops in the change in Non Essential
Visits (NEV) larger than the median drop by state, and those with drops lower than
the median (where the median drop is -67%). The states with higher than median drop
in NEV are CA, CO, CT, DE, HI, IA, IL, MA, MD, MI, MN, MT, NH, NJ, NV, NY, PA,
RI, VT, WI. The red vertical line indicates March 19, the date the first state policy was
implemented in California.

and differential mobility behavior by residents, it is difficult to visually isolate the

share of these differences directly attributable to changes in travel behavior. States’

outbreaks developed over time during this period and depended on both the extent

of states’ actions and the responses of their residents. Further, changes in mobility be-

havior would be expected to affect health outcomes with a delay. Reductions in travel

activity and increased social distancing would potentially impact the transmission of

COVID-19, evidence of which can take days to manifest in infected individuals. To

investigate the relationship past changes in mobility patterns on current health out-
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comes, we next present results from statistical analyses designed to isolate the varia-

tion in mortality and morbidity associated with changes in travel activity.

In particular, we present results of estimating Eq 6 to test whether changes in dis-

tance traveled, non-essential visits, and human encounter rates one, two, and three

weeks prior have an effect on current health outcomes. We specify daily changes in

deaths and hospitalizations per 100 million population as our dependent variables.

Eq 6 controls for state-specific flexible time trends, day-to-day changes common to all

states, and state-specific factors affecting health outcomes. The inclusion of lagged

effects for one and two weeks prior allows us to measure any cumulative long-term

impact of reducing activity during the prior three weeks. Finding evidence of any such

cumulative long-term effects of lagged mobility changes on current deaths would pro-

vide preliminary evidence that these behavioral changes may ultimately play a valu-

able role in flattening the curve and reducing the severity of COVID-19 pandemic.

In addition to estimating Eq 6 using nationwide data, we also run analyses limiting

the sample to the first four early adopters. We observe a greater post-mandate period

for these states, during which the nature of non-essential visits and human encoun-

ters would likely differ from that in states yet to adopt mandates. Residents of early

adoption states would have more rapidly seen non-essential businesses adopt policies

targeted at restricting foot traffic and improving sanitation. Similarly, the propensity

for transmission from human encounters differs when wearing face coverings and

maintaining at least six feet of distance from others. To the extent that we find a dif-

ferential impact in early mandate states, this provides preliminary evidence that the

suite of non-pharmaceutical interventions set in place for early stay-at-home mandates

convey positive cumulative long-term health impacts.

50

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 26, 2020. ; https://doi.org/10.1101/2020.05.23.20111211doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.23.20111211
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 6: Past Changes in Average Distance Traveled and Current Changes in COVID-19 Mor-
tality and Morbidity

(1) (2) (3)
Deaths Hospitalizations Deaths

Change in Distance Traveled 1 week prior -0.779 -0.787 4.633
(1.886) (12.672) (23.501)

Change in Distance Traveled 2 weeks prior 2.670 1.349 6.348
(1.906) (12.065) (25.043)

Change in Distance Traveled 3 weeks prior 2.759 -0.008 59.382∗∗

(1.821) (11.794) (26.194)

Sample All States All States Early Mandate States
State FE Yes Yes Yes
Date FE Yes Yes Yes
State Cubic Trends Yes Yes Yes
N. 2193 1165 156
R2 0.82 0.63 0.92
F 15.42 1.87 10.04
* p < 0.10, ** p < 0.05, ** p < 0.01. Robust standard errors reported in parentheses. These models estimate the
relationship between changes in average distances traveled per day and COVID-19 health outcomes. The dependent
variables measure the number of new daily deaths or hospitalizations per 100 million population in a given state.
Columns (1) and (2) use the entire sample for all U.S. states and Washington D.C., while column (3) only uses data
for the first four states to adopt statewide stay-at-home mandates (CA, IL, NJ, and NY). A coefficient of one indicates
the marginal effect of a 1 percentage point increase in travel relative to pre-COVID-19 levels. ‘State Cubic Trends”
indicate state-specific cubic time trends.
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The results from the estimation of Eq 6 for changes in average distance traveled per

day are presented in Table 6. Given that we use three weeks’ lagged data on changes in

distance traveled, our first day in the estimation sample is March 16th. The day-to-day

fixed effects therefore measure changes in the health outcomes common to all states

relative to March 16th. We also include state-specific cubic trends to account for vari-

ations in outbreak development over time unique to each state. Column (1) presents

the estimates for new daily COVID-19 deaths per 100 million residents by state while

column (2) reports equivalent estimates for COVID-19 hospitalizations per 100 mil-

lion. Column (3) reports estimates for new daily COVID-19 deaths per 100 million

residents limiting the sample to the first four mandate states. Changes in hospital-

ization and death rates reflect a direct pathway through which reduced transmission

due to decreased social interaction could manifest. A positive coefficient indicates that

predicted hospitalization or death rates increase with more travel; as we primarily in-

terpret results with respect to decreases in distance traveled, a positive sign suggests

declines in hospitalizations or deaths for a reduction in travel activity or in-person

social interaction.

The first row reports the coefficient on the change in average distance traveled one

week prior, followed by the standard error, then the coefficient for two weeks prior,

followed by three weeks prior. We cannot reject the null that none of these coefficients

are different from zero. The long-term impact, which corresponds to the cumulative

effect of−0.779+2.67+2.76 = 4.65 over all lagged weeks is positive but not statistically

significant, with an F statistic of 4.7 for the null hypothesis of the sum being equal

to zero (p-value of 0.11). We find no evidence of a significant estimated long-term

impacts for hospitalizations in column (2). Finally focusing at column (3), changes in
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average distance traveled three weeks prior in early mandate states is associated with

significant effects on current death rates. The long-term impact, which corresponds to

the cumulative effect of 4.63 + 6.35 + 59.38 = 68.36 fewer daily deaths per 100 million,

is a positive and significant effect with an F statistic of 4.6 (p-value of 0.04).

Table 7: Past Changes in Non-Essential Visits and Current Changes in COVID-19 Mortality
and Morbidity

(1) (2) (3)
Deaths Hospitalizations Deaths

Change in Non-Essential Visits 1 week prior -0.068 3.504 -5.796
(2.038) (13.904) (18.355)

Change in Non-Essential Visits 2 weeks prior 2.640 12.348 15.543
(2.001) (12.949) (17.107)

Change in Non-Essential Visits 3 weeks prior 6.589∗∗∗ 2.684 24.025∗

(1.940) (12.756) (14.395)

Sample All States All States Early Mandate States
State FE Yes Yes Yes
Date FE Yes Yes Yes
State Cubic Trends Yes Yes Yes
N 2193 1165 156
R2 0.82 0.63 0.92
F 15.53 1.88 9.75
* p < 0.10, ** p < 0.05, ** p < 0.01. Robust standard errors reported in parentheses. These models estimate the relation-
ship between changes in the average number of visits to non-essential visits per day and COVID-19 health outcomes.
The dependent variables measure the number of new daily deaths or hospitalizations per 100 million population in a
given state. Columns (1) and (2) use the entire sample for all U.S. states and Washington D.C., while column (3) only
uses data for the first four states to adopt statewide stay-at-home mandates (CA, IL, NJ, and NY). A coefficient of one
indicates the marginal effect of a 1 percentage point increase in non-essential visits relative to pre-COVID-19 levels.
‘State Cubic Trends” indicate state-specific cubic time trends.

Focusing now on changes in visits to non-essential businesses ( ˙NEV ), we present

the results from the estimation of Eq 6 in Table 7. The regressions are comparable to

those presented in Table 6, and measure the effect of changes in NEV on deaths or

hospitalizations per 100 million residents. As in Table 6 all columns include state and

date fixed effects, and state-specific cubic trends.

Once again we find evidence of long-term health benefits following reductions in
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non-essential travel for all states. A one percentage point reduction in ˙NEV three

weeks prior is associated with 6.6 fewer daily deaths per 100 million across all states in

column (1) and 24 fewer deaths per 100 million in early mandate states (column 3). We

estimate no significant lagged effects on hospitalization rates in column (2). Looking at

column (1), the estimated cumulative effect for daily deaths of−0.068+2.64+6.59 = 9.2

over lagged weeks for the entire U.S. is positive. This long-run effect displays strong

statistical significance, with an F statistic of 6.6 for the null hypothesis of the sum being

equal to zero (p-value of 0.01). The estimated long-term impact for early mandates

states in column (3) is not statistically significant (p value of 0.27).

Finally, we present evidence of changes in social distancing behavior on COVID-19

health outcomes in Table 8. While point estimates of the long-term cumulative effects

of prior reductions in human encounters on COVID-19 death rates are positive for all

states and for only early adopters, none exhibit statistical significance. Once again we

find no statistical evidence of changes in hospitalization rates.
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Table 8: Past Changes in Human Encounter Rates and Current Changes in COVID-19
Mortality and Morbidity

(1) (2) (3)
Deaths Hospitalizations Deaths

Change in Encounters 1 week prior -0.429 -13.832 -11.341
(1.978) (15.310) (20.854)

Change in Encounters 2 weeks prior -0.477 -15.043 15.190
(1.392) (9.780) (13.879)

Change in Encounters 3 weeks prior 1.098 -6.661 5.648
(1.081) (7.432) (8.395)

Sample All States All States Early Mandate States
State FE Yes Yes Yes
Date FE Yes Yes Yes
State Cubic Trends Yes Yes Yes
N 2150 1165 156
R2 0.82 0.64 0.92
F 15.06 1.92 9.66
* p < 0.10, ** p < 0.05, ** p < 0.01. Robust standard errors reported in parentheses. These models estimate
the relationship between changes in the average number of unique human encounters per km2 per day and
COVID-19 health outcomes. The dependent variables measure the number of new daily deaths or hospital-
izations per 100 million population in a given state. Columns (1) and (2) use the entire sample for all U.S.
states and Washington D.C., while column (3) only uses data for the first four states to adopt statewide stay-
at-home mandates (CA, IL, NJ, and NY). A coefficient of one indicates the marginal effect of a 1 percentage
point increase nunique human encounters relative to pre-COVID-19 levels. ‘State Cubic Trends” indicate
state-specific cubic time trends.
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Long-Term Impacts and Robustness Complementary Analysis

The estimated significant long-term impact of past changes in non-essential visits of

9.2 fewer deaths per 100 million is robust to including other controls, such as lagged

changes in other mobility measures. In particular, we estimate a significant long-term

impact of non-essential visits, controlling for changes in lagged encounter rates and

also state specific trends, and find that a drop of non-essential visits of one percent-

age point three weeks prior has a long term impact of reducing daily death rates by

8.2 deaths per 100 million and we reject the null of no long-term impact given the F

statistic of 4.95 (p value of 0.02). Focusing on the early mandate states, the estimated

long term impact of changes in average distance traveled is also robust to controlling

for lagged changes in encounter rates. We estimate that a drop in average distance

traveled by one percentage point results in 68.36 fewer deaths per 100 million per day,

which is statistically significant (F stat of 4.45 and p value 0.05).

Additional and consistent evidence is found when projecting the variation of health

outcomes on lagged mobility measures from alternative sources. Use of the Google

measures results in similar patterns of lagged health effects, attesting once again to

the robustness of our earlier findings to the particular source of mobility measures. In

particular, we find that a one percentage point increase in the time spent at one’s place

of residence is associated with a long-term impact three weeks later of 6 fewer daily

daily deaths per million. Given that we estimate a 0.02 percentage point increase in

time spent at home due to stay-at-home mandates, this is equivalent to 1.2 fewer daily

deaths (0.02× 6) per million.10

10See the Appendix for estimated results and more details on this additional robustness analysis and
for the complete complementary Google health analysis.
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Economic Benefits from Improved Health Outcomes

Our estimates are an average of the effects of behavioral changes that occurred early

in the COVID-19 pandemic as well as after states began implementing health policies.

We estimate significant cumulative long-term effects of lagged mobility on current

deaths, which provides preliminary evidence that the behavioral changes of reduc-

tions in mobility do contribute to flattening the health outcome curves weeks later.

Specifically, we estimate that a one percent reduction in non-essential travel three

weeks earlier has a significant long-term correlation of reducing deaths by 9.2 per 100

million each day. Given that residents across the U.S. averaged a decline of 40 per-

centage points in non-essential visits relative to baseline levels in the months of March

and April, this would correspond to an estimated 360 (40 × 9) fewer daily deaths per

100 million residents. Using the estimated mandate-induced changes in non-essential

visits of -4 percentage points from the weighted event study analyses, this is 10% of

the overall reductions during this period and corresponds to a decline of 36 deaths

per day due to mandate-induced behavior changes. We estimate a differential impact

in mandate states which provides preliminary evidence that mandate policies convey

long-term health impacts.

Further, we estimate a differential impact in mandate states, providing prelimi-

nary evidence that stay-at-home mandates may convey positive cumulative long-term

health impacts. Specifically, we estimate that a one percent reduction in average dis-

tance traveled three weeks earlier is significantly associated with 70 fewer deaths per

100 million per day. Given that on average residents across the U.S. reduced average

distances traveled by 30 percentage points in the months of March and April, this cor-

responds to 70 × 30 = 2100 fewer deaths per 100 million each day, or 21 fewer daily
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deaths per million. Given the estimated mandate effect of a 6 percentage point reduc-

tion in average distance traveled obtained from the weighted event studies, this im-

plies that 20% of these overall declines in deaths are attributable to mandate-induced

behavioral changes, or roughly 4 fewer daily deaths per million residents.

When considering the extent of pre-mandate and mandate-induced behavior changes,

there is evidence of considerable economic benefits across a range of value of statistical

life (VSL) estimates. A value of $10 million corresponds to the United States Environ-

mental Protection Agency’s central VSL estimate, recommended for benefit calculation

use “regardless of the age, income, or other population characteristics of the affected

population” [27]. While this value may reasonably capture the average impact of air

or water pollution on the population at large, it does not accurately reflect the de-

mographics of those most affect by COVID-19: the elderly [19, 53]. To account for the

greater mortality risk associated with older cohorts, we also present calculations using

two alternate VSL estimates.

First is the cohort-adjusted value utilized by the Council of Economic Advisers

(CEA) for pandemic guidelines [18], adjusted for current COVID-19 death rates. In

their report for mitigating future pandemic from influenza, the estimates from the

semi-logarithmic hedonic wage regression with compensating replacement rates ap-

proach of [3] and applies adjustments by age cohort to account for differences in pan-

demic mortality rates. Their approach yields a population-weighted average of $8.87

million in 2018 dollars, or $9.06 million in 2020. When adjusting this estimate for age

cohort death rates for COVID-19, [58] obtain a revised estimate of $5.77 million per

statistical life. This $5.77 million estimate more accurately reflects the conditions of

pandemic in the United States.
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Second, we employ the value of a statistical life year (VLSY) estimate of [58] that

further reflects the nature of mortality from COVID-19. While age-adjusted, the CEA

approach makes several limiting assumptions as to the VSL for both the youngest and

oldest populations. For all individuals aged 24 and younger, the CEA approach uses

the same $3.43 million estimate. More critically, every person over 62 is assigned the

$3.43 million VSL for the aged 55-62 group. In order to accurately reflect the differ-

ences in COVID-19 death rates within elderly cohorts, [58] use cohort-specific life ex-

pectancy values for individuals aged 65-74, 75-84, and 85 or older which are multiplied

by the inflation-adjusted VLSY estimate of [3] to derive cohort-specific VSL estimates

for narrower elderly cohorts. The authors obtain estimates of “$3.63 million for the

65-74 age group, $2.18 million for the 75-84 age group, and $1.1 million for the 85 and

up age group,” which translate into an overall estimate of $3.35 million per statistical

life.

Table 9 provides estimates of the economic benefits due to averted deaths from

mandate-induced changes in travel activity in early adoption states. Using the EPA

and adjusted CEA estimates give estimates that more closely reflect values used for

federal policy guidance, while the life expectancy-adjusted approach of [58] provides

a more targeted estimate than the utilized government guidelines that more closely

reflects the economic costs associated with lives lost from COVID-19.

To obtain an estimate of the economic benefit from stay-at-home mandate-induced

travel activity changes in early adoption states, we multiply the 4 fewer daily deaths

per million obtained earlier with estimates of the mandate-induced travel activity

changes attained from the difference-in-differences and weighted event study approaches.

Column (4) of Table 4 yielded a mandate ATT of a−4.1 percentage point change in av-
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Table 9: Calculations of Economic Benefit of Averted Deaths Due to Mandate-Induced Behav-
ioral Changes, Early Adopters

Variation in Travel Activity Mandate-Induced
Sample Early Adopters

Avoided state-level Deaths (per
PP decline in activity) 70 per 100M population

Average State Population (per
100M)

0.2

Mandate Length 30 days
# Early Adoption States 4

Total Averted Deaths per 1 pp
change in travel activity 1680

Difference-in-Differences Weighted Event Study
PP Change in travel activity due
to Mandate

-4.1 -5.9

EPA CEA S&S EPA CEA S&S
VSL Estimates $10M $5.77M $3.35M $10M $5.77M $3.35M

Total Economic Benefit $68.9B $39.7B $23.1B $99.1B $57.2B $33.1B
This table presents estimates for the total economic benefit of averted deaths resulting from travel activity change in
states that implemented early mandates (CA, IL, NJ, and NY). PP refers to percentage point. EPA is the Environmental
Protection Agency’s central value of a statistical life (VSL) estimate, CEA the age-adjusted Council of Economic Adviser’s
2019 pandemic estimate, and S&S the COVID-19 life-expectancy adjusted estimate from [58] .
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erage distance traveled in direct response to states’ stay-at-home mandates. When

adjusting for pre-treatment imbalances between treatment and control units in the

weighted event study approach, we estimate an overall ATT of −5.9. 11 Multiplying

each of these estimated mandate effects by the averted deaths per percentage point

decline in travel (70) per 100 million population and each VSL estimate in turn yields

six estimates of the reductions in COVID-19 deaths per 100 million population per

day associated with statewide mandate-induced travel reductions. Multiplying these

by the average population of early adopter states (0.20 hundred million residents), by

four early adopters, and extrapolating results to a 30 day-long mandate yields six es-

timates of the total direct mortality benefit from “flattening the curve” with statewide

mandates.

Using the estimated mandate effect from the difference-in-differences model in

conjunction with the [58] VSL yields a lower bound estimate of a $23.1 billion eco-

nomic benefit from averted deaths for a month-long mandate in early adoption states.

This estimate grows to $39.7 billion when using the age cohort-adjusted CEA value of

a statistical life, and grows to a considerable $69.8 billion for the EPA central VSL esti-

mate. Comparable estimates are larger when using the weighted event study estimate

of the mandate ATT, yielding estimates$99.1 billion for the EPA VSL, $57.2 billion for

the CEA value, and $33.1 billion for the [58] COVID-19-specific value.

A similar approach yields valuations of the benefits of travel reductions from all

sources during the COVID-19 period in Table 10. As seen in Figures 1 and 2, residents

across the country greatly reduced visits to non-essential businesses well before states

implemented their mandates. Results from the health analyses in Table 7 found a

11The−6 estimate is obtained from a model comparable to Figure 3 using only the first four adoption
states as the treated group with ν = 0.49. See Appendix ***REF*** for a summary of overall ATT
estimates for weighted event studies specific to early adoption states.
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long-run cumulative association of 360 fewer daily deaths per 100 million residents

for the average decline in non-essential visits for the average state. Multiplying this

by the three VSL estimates, the average population of all states (0.065 hundred million

residents) and extrapolating to the period of March and April (61 days) yield an overall

estimate of the economic benefits of reduced travel activity during COVID-19.

Table 10: Calculations of Economic Benefit of Nationwide Reductions in Travel Activ-
ity due to COVID-19

Variation in Travel Activity Nationwide

Avoided state-level Deaths (per PP decline in NEV ) 9.2 per 100M population

Average Daily Change in NEV for March and April
relative to pre-COVID-19 Levels 40 PP

Average State Population (per 100M) 0.065
Days in March and April 61 days
# Early Adoption States & Washington D.C. 51

Total Nationwide Averted Deaths in March and
April 74,415

EPA CEA S&S
VSL Estimates $10M $5.77M $3.35M

Total Economic Benefit $744.7B $429.4B $249.3B
This table presents estimates for the total economic benefit of averted deaths resulting from nationwide
travel activity change in response to COVID-19 in the months of March and April. PP refers to per-
centage point. EPA is the Environmental Protection Agency’s central value of a statistical life (VSL)
estimate, CEA the age-adjusted Council of Economic Adviser’s 2019 pandemic estimate, and S&S the
COVID-19 life-expectancy adjusted estimate from [58].

Given the greater time period and number of states, the estimated nationwide ben-

efits dwarf those of early mandates alone. On the upper bound, use of the EPA central

VSL estimate yields an overall benefit of $744.7 billion for reductions in non-essential

visits equal to the nationwide averages for March and April. This estimate falls to

$429.4 billion when using the age cohort-adjusted CEA value. Using the most conser-

vative VSL estimate from [58] yields an overall economic benefit of $249.3 billion due

to behavioral reductions in the months of March and April.
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Conclusion

Temporarily closing non-essential businesses and mandating residents stay at home

except for essential activity is the prime policy instrument currently employed by

states to promote social distancing and slow the transmission of COVID-19. If ef-

fective, these policies will have reduced strain on the medical system and provided

much-needed time for the development of pharmaceutical treatments that can reduce

transmission rates and end the pandemic. If unsuccessful, states will have incurred

large economic costs with few lives saved. Whether these mandates cause people to

stay at home and engage in social distancing is a key requirement of a successful pol-

icy. Knowing whether such policies will have their intended effect is of increasing

policy relevance as all but eight states eventually adopted such policies. Understand-

ing if and how individuals reduce travel activity in response to stay-at-home mandates

and maintain social distance is the primary empirical question we tackle in this paper.

First, we find that by the time the average adopter has implemented its statewide

mandate, residents had already reduced travel by considerable amounts relative to

pre-COVID-19 levels. Average travel distances had already fallen by 38 percentage

points, human encounter rates by 76 percentage points, and non-essential visits by

52 percentage points before the first statewide mandate came into effect, providing

evidence of extensive social distancing occurring even before they were required by

statewide orders.

Second, we find evidence that adoption of state-level stay-at-home mandates in-

duced further reductions in all three travel activity measures. The mandate effect per-

sists not just for the early adoption states (where residents’ travel activity had not yet

stabilized at new, lower norms) but also for mandates adopted weeks later. For the

63

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 26, 2020. ; https://doi.org/10.1101/2020.05.23.20111211doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.23.20111211
http://creativecommons.org/licenses/by-nc-nd/4.0/


early mandate states of California, Illinois, New Jersey, and New York, our staggered

difference-in-differences models estimate a reduction in average distance traveled of

4.1 percentage points, a decline in visits to non-essential businesses of 5.2 percentage

points, and a decrease in the rate of unique human encounters of 4.7 percentage points

relative to pre-COVID-19 baselines. These effects remain present when considering all

mandates implemented, albeit to a slightly smaller degree, with mandate ATT esti-

mates of a −2.8 change in distance traveled, −4.5 change in non-essential visits, and a

−3.6 change in unique human encounters. Estimated magnitudes remain highly com-

parable when directly accounting in differences in pre-mandate behavior for treatment

and control states. Through the weighted event studies that construct control units to

balance pre-treatment travel behavior net of state fixed effects, we find large, statisti-

cally significant drops immediately following mandate implementation that persist for

the duration of the sample period. Resulting estimates of the overall mandate effects

range between -7.29 and -6.47 for changes in average distance traveled, between -4.38

and -4.14 for non-essential visits, and between -5.87 and -4.98 for any mix of pooled

and separate synthetic control weights.

Our estimates suggest that, importantly, residents subject to stay-at-home man-

dates are on average responding as desired to curb the spread of COVID-19. Our

empirical approaches isolate the mandate effect from other drivers of daily changes

in travel activity levels, state-specific trends, and controls for a host of potential con-

founding factors that differ between states that adopted early policies relative to other

states. In spite of these rigorous control approaches, we find persistent evidence of

state mandates inducing further reductions in travel activity even after considerable

earlier declines around the country. Further, our estimates are average treatment ef-
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fects in response to statewide mandates only; given the extents of prior school closures,

new work from home abilities, and county-level stay-at-home policies, our findings

represent only a portion of the way individuals responded to COVID-19 policies and

are a considerable lower bound on how individuals responded to all COVID-19 poli-

cies.

Linking changes in travel activity and social distancing to health outcomes, we

find evidence that these reductions help “flatten the curve” and reduce health conse-

quences. We find that, on average, a one percentage point decrease in non-essential

visits per day three weeks prior has a long-term average effect of reducing nationwide

death rates by 0.92 fewer deaths per million per day. Converting these reductions in

deaths to economic benefits, we find that the observed reduced travel activity nation-

wide during the months of March and April translate into savings of $249-$755 billion

due to associated reductions in deaths.

Further, we find evidence of differential declines in deaths from shorter distances

traveled in the first four states to adopt statewide mandates. Residents of these state

were subject to modified business policies and face covering requirements for greater

periods of time; our findings provide preliminary evidence that the non-pharmaceutical

interventions employed by statewide mandates helped further flatten these states’ epi-

demic curves. The reductions in deaths from a month-long mandate in these states are

associated with total savings between $23.1 and $99.1 billion.

Our findings have important policy implications for the fight against COVID-19.

First, individuals on average responded as intended to statewide mandates. Despite

considerable prior reductions, residents heeded their states’ requests and stayed at

home. Second, the declines in economic activity directly attributable to statewide
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mandates may be much smaller than previously thought. As individuals around the

country had already more than halved the quantity of trips taken to non-essential

retail and service businesses, much of the lost business and resulting unemployment

would have likely still occurred even if states had not adopted their stay-at-home poli-

cies. Further, as the mandate-induced reductions in visits to non-essential businesses

amount to only one-tenth of the overall reductions since COVID-19, it is likely that

loosening or removing statewide policies on their own will not be sufficient to induce

mobility patterns to quickly return to pre-COVID-19 levels. Further policies will be

needed to ensure that individuals can resume activity and return to local businesses

in a manner that is safe.

Our estimates do not take into account the benefits from avoided hospitalizations

and other indirect health benefits from reduced travel activity and social distancing.

As reductions in travel distance and increased social distance likely decrease exposure

to other potentially deadly illnesses, this is likely an underestimation of the overall

health benefit of these policies. Further, the patterns in under-reporting and under-

counting of COVID-19 deaths provide further evidence that we likely underestimate

the direct benefits of these policies. Future identification of additional COVID-19

deaths may prove difficult, as many death certificates list only the immediate cause

of death and fail to report underlying diseases – likely understating the presence of

COVID-19 [40]. Further, procedures for counting COVID-19 deaths may be correlated

with adoption of stay-at-home mandates. If adoption of a state-level ordinance indi-

cates additional preparedness on the part of the adopting state, then states that were

slower to (or had yet to) pass stay-at-home mandates may also have been slower to

properly attribute deaths to COVID-19, resulting in our estimated effects being under-
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statements of the true effect. Given the challenges to proper identification of COVID-

19 deaths we may not know the true death count for years, or ever. As a result it may

not ever be possible to determine the exact loss of life due to COVID-19, and accord-

ingly we heed caution in interpreting our result as capturing a de-facto relationship.

We support continued efforts to obtain accurate counts of the mortality and morbid-

ity consequences from COVID-19 to help ensure future research can provide sufficient

policy guidance in the case of future pandemics.

While this paper sets out to understand an important and timely question and pro-

vides benefit estimates to help policymakers evaluate tradeoffs and weigh the costs

and benefits of extending and relaxing such policies, there are avenues for future re-

search that could be explored. First, whether these policies result in a true flattening

of the epidemic curve or merely postpone illness is an avenue that deserves additional

attention. Particularly as states weigh the difficult decisions of reopening business as

usual, it is necessary to understand how caseloads and health consequences may re-

bound. Second, future work should also consider within-state policy variation and the

relationship between local and national policies. Knowing whether county-level man-

dates that preceded statewide policies conveyed additional benefits will help improve

our understanding of the full set of policy tools available to combat future pandemics.

Further, the economic forces and psychological incentives behind compliance with

stay-at-home mandates are complex, and additional work is needed that can charac-

terize the mechanisms behind the policy effects we observe.
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