1	Global evolutionary epidemiology, phylogeography and resistome dynamics of
2	Citrobacter species, Enterobacter hormaechei, Klebsiella variicola, and Proteeae clones: A
3	One Health analyses
4	John Osei Sekyere# and Melese Abate Reta
5	Department of Medical Microbiology, School of Medicine, Faculty of Health Sciences, University of
6	Pretoria, 0084 Prinshof, Pretoria, South Africa
7	#Address correspondence to Dr. John Osei Sekyere, Department of Medical Microbiology, School of
8	Medicine, University of Pretoria, 0084 Prinshof, Pretoria, South Africa. jod14139@gmail.com;
9	<u>u18392467@tuks.co.za</u>
10	Tweet: Global E. hormaechei, C. freundii, P. mirabilis, P. stuartii & P. rettgeri strains
11	contain multiple resistance mechanism to important and reserved antibiotics in globally
12	circulating clones. These portend the dawn of pandrug resistance and a return to the pre-
13	antibiotic era.
14	Running head: Global phylogenomics of resistant Enterobacteriaceae
15	Highlights/Importance
16	Citrobacter spp., Enterobacter hormaechei subsp., Klebsiella variicola and Proteae tribe
17	members are rarely isolated Enterobacteriaceae increasingly implicated in nosocomial
18	infections. The global phylogenomics, evolution, geographical distribution and resistome
19	repertoire of these species found them to be globally distributed, being isolated from human,
20	animal, plant, and environmental sources. E. hormaechei subsp., C. freundii, Proteus
21	mirabilis, Providencia stuartii, Providencia rettgeri and Morganella morganii contained
22	multidrug-resistant clades that harboured resistance to clinically important reserved
23	antibiotics, portending the dawn of pandrug resistance and a potential acceleration of the
24	post-antibiotic era.

25 Abstract

26	Background. The global epidemiology and resistomes dynamics of multidrug-resistant
27	Citrobacter spp., Enterobacter hormaechei, Klebsiella variicola, morganella morganii,
28	Proteus mirabilis and Providencia spp. have not been described, despite their importance as
29	emerging opportunistic clinical pathogens.
30	Methods. The genomes of the above-mentioned organisms were curated from PATRIC and
31	NCBI and used for evolutionary epidemiology, phylogeography and resistome analyses. The
32	phylogeny trees were drawn using RAXmL and edited with Figtree. The resistomes were
33	curated from GenBank and the phylogeography was manually mapped.
34	Results and conclusion. <i>Mcr-9</i> and other <i>mcr</i> variants were highly prevalent in <i>E</i> .
35	hormaechei subsp. and substantial in C. freundii whilst KPC, OXA-48, NDM, IMP, VIM,
36	TEM, OXA and SHV were abundant in global E. hormaechei subsp., Citrobacter freundii, P.
37	mirabilis, P. stuartii and P. rettgeri clones/clades. Species-specific ampCs were highly
38	conserved in respective species whilst fluoroquinolones, aminoglycosides, macrolides,
39	fosfomycin, chloramphenicol, tetracycline, sulphamethoxazole and trimethoprim resistance
40	mechanisms were abundantly enriched in almost all clades of most of the species, making
41	them extensively and pandrug resistant; K. variicola, C. amalonaticus and C, koseri had
42	relatively few resistance genes. Vertical and horizontal resistome transmissions as well as
43	local and international dissemination of strains evolving from common ancestors were
44	observed, suggesting the anthroponotic, zoonotic, and food-/water-borne infectiousness of
45	these pathogens. There is a global risk of pandrug resistant strains escalating local and
46	international outbreaks of antibiotic-insensitive infections, initiating the dawn of a post-
47	antibiotic era.

48 Keywords: Resistome; epidemiology; Citrobacter; Klebsiella variicola; Morganella;

49 Proteus; Providencia; Enterobacter hormaechei

50 Introduction

Antibiotic resistance is mainly disseminated via horizontal and vertical transmission through 51 52 mobile genetic elements such as plasmids and transposons and through clonal and multiclonal expansion of same species $^{1-6}$. Conjugative plasmids have been implicated in the transmission 53 of several resistance determinants within and across species, resulting in the presence of same 54 or very similar resistomes in same and different species and clones ^{1,4,7–9}. Thus, the 55 emergence of plasmid-borne resistance genes is always a cause for concern as they help 56 57 breach the species barrier and shuttle resistance genes (ARGs) from commensals and nonpathogenic bacteria to pathogenic ones or vice versa ^{3,4,10,11}. Such has been the case with the 58 59 emergence and rapid spread of extended-spectrum β -lactamases (ESBLs) viz., TEM, SHV, 60 OXA and CTX-M, carbapenemases such as NDM, IMP, VIM, KPC and GES, the mobile 61 colistin resistance gene mcr-1 (to mcr-10) and recently, the mobile tigecycline resistance gene, $tet(X)^{12-17}$. Thus, such conjugative plasmids influence the genomic plasticity of several 62 related and unrelated species and genera of bacteria^{8,11,18–21}. 63 64 Coupled with plasmid-borne dissemination of ARGs is the selection and expansion of specific drug-resistant clones ^{11,21}, which quickly spread under antibiotic pressure to 65 overpopulate their environments, facilitating their survival and subsequent spread to other 66 environments ^{14,22,23}. In cases where such clones harbour resistance plasmids, their expansion 67 68 almost always lead to the concomitant replication and intra-clonal as well as inter-clonal spread of such plasmids ^{4,5,7,8,24,25}. Thus, as such clones are disseminated through contact, 69 food, water, farms, hospitals, and the environment, they carry with them these resistance 70

plasmids to colonize new hosts and environments $^{6,26-28}$. It is thus not surprising to have same

clones hosting the same plasmids, contain the same resistomes ^{4-6,21,28}. This explains the
 presence of multi-drug resistance (MDR) in particular international clones such as *Klebsiella pneumoniae* ST258 and *E. coli* ST113 ^{21,25,29,30}.

75 Hence, tracing the phylogeography of clones and their associated resistance genes is highly critical in epidemiology and public health as it provides necessary data to contain the further 76 spread of ARGs ^{26,28,31}. In this work, the global evolutionary epidemiology and resistome 77 dynamics of clinically important but relatively less isolated Enterobacteriaceae pathogens are 78 described⁸. It is notable that most of the recently emerged or novel resistance genes in 79 80 bacteria have occurred in Enterobacteriaceae more than in any other family of bacteria, making Enterobacteriaceae particularly important medically ^{28,32,33}. These include ESBL-. 81 82 carbapenemase-, mcr- and tet(X)-producing producing Enterobacteriaceae, which have been 83 classified by the WHO as high and critical priority pathogens due to their implication in high mortalities and morbidities ^{32,33}. Although Citrobacter spp., Enterobacter hormaechei, 84 85 Klebsiella variicola, Morganella morganii, Proteus spp. and Providencia spp. are not mostly reported as Escherichia coli, Klebsiella pneumoniae, and Salmonella enterica, they have been 86 associated with multiple resistance and clinical fatalities ^{3,7,14,25,28,34}. Due to the transferability 87 of resistance plasmids between members of the Enterobacteriaceae, the global resistome 88 89 epidemiology of these six genera is important as they could be eventually transferred to commonly isolated Enterobacteriaceae species ^{11,14,21,25,35,36}. 90

- 91 **Results**
- 92 Included genomes

A total of 2,377 genomes from *C. freundii* (n=569 genomes), *C. koseri* (n=82 genomes), *C.*

- 94 *amalonaticus* (n=35 genomes), *E. steigerwaltii* and *E oharae* (n=121 genomes), *E.*
- 95 xiangfangensis (n= 90 genomes), E. hormaechei (n=563 genomes), K. variicola (n=574

4

96	genomes), M. morganii (n=59 genomes), P. mirabilis (n=156 genomes), and Providencia
97	spp. (n=128 genomes) were obtained from PATRIC and NCBI databases as at January 2020
98	and used for downstream analyses (Tables S1-S3). Included in C. freundii, C. koseri, E.
99	xiangfangesis, K. variicola and Providencia spp. genomes were genomes of other Gram-
100	negative bacterial species or genera that were initially classified within these respective
101	species but later reclassified by NCBI's ANI (average nucleotide identity) analysis. The
102	genomes of these reclassified species were however maintained and included in the resistome
103	analyses to serve as controls for comparison (Tables S1-S3).
104	The genomes were mainly isolated from human specimens, followed by animal (including
105	food animals), plants (including food crops) and environmental specimens. The human and
106	animal specimens used included urine, blood, stool, catheter tip, swabs etc. whilst the
107	environmental specimens used included soils, hospital environments, water, wastewater,
108	sinks etc. (Tables S1-S3). In all, these genomes were obtained from 67 countries globally,
109	with the USA having the most genomes for all species: C. freundii/spp. (USA=233,
110	China=34, France=14, Spain=11); C. amalonaticus (USA=17); C. koseri (USA=55); E.
111	steigerwaltii/oharae (USA=40, Japan=15); E. hormaechei (USA=142, China=78, Japan=72,
112	France=13, UK=10); E. xiangfangensis (USA=50, China=14, India=12); K. variicola
113	(USA=289, Germany=50, China=24, Bangladesh=23); M. morganii (USA=16); P. mirabilis
114	(USA=38, France=27, China=17); Providencia spp. (USA=61).
115	C. freundii, the only species among the species included in this analysis to have an MLST
116	scheme, had 84 different clones or sequence types (STs). ST100 (n=51), ST22 (n=51), ST62
117	(n=18), ST11 (n=14), ST299 (n=11), ST8 (n=10), ST114 (n=8), and ST98 (n=8) were the
118	commonest clones.

119 Species epidemiology

120 *Citrobacter species*

121	Amongst the C. freundii genomes were other Citrobacter spp. such as C. werkmanii, C.
122	youngae, C. brakii, C. portucalensis etc. C. werkmanii were isolated from humans, sprouts,
123	and sinks whilst C. brakii were obtained from humans, vegetables, and hospital
124	environments. Some C. werkmanii and C. brakii strains were found in USA, Germany, and
125	India (Fig. S1A-B). C. koseri were mainly found from humans and from a mouse (clade B2)
126	(Fig. S1A-B). A Citrobacter spp. (clade A) outbreak was observed in the US (Texas, Boston)
127	and Mexico (Fig. S1A-B). C. portucalensis of the same clade (but different clones) were
128	found in Nigeria (vegetables) and Brazil (turtle) as well as from effluents (UK), humans
129	(China), chives, carrots and salad (Germany); these clustered in C. freundii clade B1. C.
130	freundii strains of different STs and countries clustered together into clades, showing the
131	wide distribution of strains from the same ancestor (or of close evolutionary distance); they
132	were isolated from humans, plants, animals, and the environment (Fig. 1 & S1A-B).
133	C. werkmannii, C. brakii and C. youngae clustered within C. freundii clade A whilst C.
134	portucalensis and C. youngae, were clustered in clade B; C. koseri clustered in clade B3 of C.
135	freundii (Fig. 1 & S1A-B). C. freundii clades B2 and B3 had a richer resistome than clades A
136	and B1, although <i>bla</i> _{CMY} , <i>qnr</i> , <i>sul1/2</i> , <i>aac</i> (6'/3')-like ARGs were common in all the clades;
137	mph(A/E), catAB, dfrAB, aadA and bla _{TEM} were common in clades B2 and B3. Important
138	ARGs such as <i>mcr</i> , bla_{KPC} , bla_{CTX-M} , bla_{NDM} , bla_{VIM} , and bla_{OXA-48} were relatively rare and
139	mainly found in clades B2 and B3 than in A and B1. Comparatively, other Enterobacteriaceae
140	species (E. coli, K. pneumoniae, and S. marcescens) had strains with richer resistomes
141	diversity than C. freundii clades A and B1, including chromosomal mutations and MDR
142	efflux pumps. However, Clades B2 and B3 had comparable resistome diversity and
143	abundance to the above-mentioned Enterobacteriaceae species, in which CMY was well-nigh
1//	absent except in <i>E. coli</i> (Fig. 1).

145	A local outbreak	c of <i>C. braakii</i> wa	s observed in the UK	(in humans)), with closely related
-----	------------------	---------------------------	----------------------	-------------	-------------------------

- strains being isolated from biosolids (Canada), carrots (Germany), chicken (China) and beef
- 147 (Canada) (Fig. S1A-B). *C. amalonaticus* was also found in humans, animals, plants and the
- 148 environment (Fig. 2): bla_{CMY} was not common in this species, but bla_{SED} and OqxA/B were
- almost conserved in clades B1 and C, with clade B2 (all from France) having the richest
- resistome repertoire that included *bla*_{TEM}, *bla*_{SHV}, *bla*_{NDM} and *mcr*-9.1 (Fig. 2). *C. koseri* had
- a relatively limited resistome diversity, with $bla_{MAL-1/2}$ (clade B2), bla_{CKO} (clade B3) and
- 152 *fos*A7 (clade B2) being the commonest ARGs. Comparatively, the other Enterobacteriaceae
- 153 species (e.g. E. coli, K. pneumoniae, Enterobacter spp., Serratia spp., and Providencia spp.)
- had richer resistome diversity than *C. koseri* (Fig. 3).
- 155 Enterobacter species
- 156 The resistomes of *E. steigerwaltii* and *E. oharae* were extraordinarily rich and diverse,
- 157 although clade A of *E. steigerwaltii* had lesser resistome abundance and diversity compared
- to clades B and C (Fig. 4). E. oharae only clustered in clade B of E. steigerwaltii and had
- 159 most $bla_{\text{CTX-M}}$, bla_{NDM} , $bla_{\text{OXA-48}}$ and bla_{VIM} ARGs than *E. steigerwaltii* clade C.
- 160 bla_{ACT} was present in almost all *Enterobacter spp.* strains whilst other AmpCs such as bla_{LAP} ,
- 161 $bla_{\text{SCO-1}}$, bla_{SFO} , bla_{TMB} , bla_{DHA} , and bla_{CARB} were virtually absent. *E. cloacae* strains
- 162 clustered closely with *E. steigerwaltii* clades B and C. overall, *E. steigerwaltii* and *E. oharae*
- strains were richly endowed with clinically important ARGs including carbapenemases,
- 164 ESBLs, *aac*(6')-*like*, *aac*(3')-*like*, *aph*(3'/3'')-*like*, *aadA*, *dfrA*, *catA*, *fosA*, *oqxAB*,
- 165 *qnrA/B/S/D*, *sul1/2*, and *tet*(A/B/D). *Mcr-9* genes were particularly abundant in clade B than
- 166 in clades A and C of *E. steigerwaltii/cloacae* (Fig. 4).
- 167 E. cloacae strains clustered with all E. xiangfangensis strains except clade A1, from which it
- 168 was evolutionarily distant (Fig. 5). ARGs such as bla_{ACT} , catA/B, OqxA/B and fosA were

169	universally present in almost all the <i>E. xiangfangensis</i> and <i>E. cloacae</i> strains. Furthermore, <i>E.</i>
170	xiangfangensis clade A1 had the least ARGs diversity and abundance whilst E. cloacae A1
171	and the remaining E. xiangfangensis (clades A2 and B) were richly endowed with multiple
172	ARGs such as <i>bla</i> _{KPC} , <i>mcr-9</i> , <i>bla</i> _{CTX-M} , <i>bla</i> _{OXA} , <i>bla</i> _{NDM} , <i>bla</i> _{TEM} , and genes mediating
173	resistance to fluoroquinolones (aac(6'/3')-like, qnrA/B/S etc.) and aminoglycosides (armA,
174	<i>rmtC/G, aad</i> A, <i>aph</i> (4)-, <i>aph</i> (3'/3")- and <i>aph</i> -(6')-like) as well as <i>tet</i> (A/B/D), <i>dfrA</i> , and <i>arr</i>
175	(particularly in clades A2 and B). Thus, the resistomes diversity and abundance of <i>E</i> .
176	xiangfangensis and E. cloacae were comparable to that of E. oharae and E. steigerwaltii (Fig.
177	4-5).
178	An E. hormaechei outbreak was observed in Germany in 2017, evolving with the spread
179	(clade B) (Fig. 6 & S2). E. steigerwaltii and oharae were mainly isolated from humans whilst
180	E. xiangfangensis and E. hormaechei were from humans, plants (E. xiangfangensis from rice
181	in India), animals and the environment. Strains of closely related (i.e. close evolutionary
182	distance) E. hormaechei in clade B were from the US, South Africa, Colombia, China,
183	Germany, Australia and Lebanon from humans, animals, and plants (Fig. 4-6). Other closely
184	related E. hormaechei strains from humans, animals, plants, and the environment were found
185	in different countries, showing a gradual evolution of strains emanating from a common
186	ancestor and spreading across countries through different hosts. These observations were
187	made in E. hormaechei clades B and C, and represented local and international outbreaks
188	spanning UK, USA, China, Serbia, Japan etc. (Fig. 6 & S2).
189	Moreover, <i>bla</i> _{ACT} , <i>fos</i> A, <i>Oqx</i> A/B and <i>cat</i> A/B were almost conserved in almost all the clades
190	of E. hormaechei. As observed with the other E. hormaechei subsp. (oharae, steigerwaltii
191	and xiangfangensis), E. hormaechei clades B and C were richly endowed with ARGs than
192	some clade A strains (except clade A in Fig. S2A). Specifically, clades B and C strains were

193 relatively enriched with *bla*_{TEM-1}, *bla*_{OXA}, *bla*_{CTX-M}, *aph(3'/3'')*-like, *aac(3')*-like, *aac(6')*-like,

- 194 *dfrA/B, mcr-9, arr, qnrA/B/S, sul-1/2,* and *tet*(A/B/C/D). Further, clade B was mostly rich in
- 195 bla_{KPC} and bla_{NDM} whilst clade C was rich in bla_{NDM} and ble. A substantial number of clade
- 196 A strains also had *mcr-9* and *bla*_{TEM} (Fig. 6 & S2).
- 197 E. oharae was evolutionarily closer to E. xiangfangensis, clustering on the same branches,
- 198 with a relatively few *E. oharae* strains clustering with *E. steigerwaltii*. However, *E.*
- steigerwaltii was mostly distant from *E. oharae* and *E. xiangfangensis*, with a few *E.*
- 200 xiangfangensis strains (from rice in India) clustering within E. steigerwaltii clades A and C
- 201 (Fig. 2SB). Figure S2B summarises the ARGs in *E. hormaechei* and its subspecies: *bla*_{ACT},
- 202 fosA, OqxAB, qnrA/B/D/S, and catA/B were conserved whilst bla_{OXA}, ble, bla_{SHV}, bla_{TEM},
- 203 *bla*_{KPC}, *bla*_{NDM}, *bla*_{VIM}, *mcr*, *tet*, *mph*(*A*), *sul-1/2*, *dfrA*, and fluoroquinolone and
- aminoglycoside ARGs were richly abundant, particularly in clusters IV, V and VII.
- 205 *K. variicola*
- 206 *K. variicola* strains were isolated mainly from humans, with some being from animals, plants,
- and the environment. On the individual branches/clades were closely related strains with very
- 208 close evolutionary distance but disseminated across countries, suggesting international
- 209 dissemination of that clade and showing little evolution during the spread from host to host,
- e.g., clades A3, A4, A5, A6, B1, B2 and C (Fig. 7 & S3). As well, local outbreaks of closely
- related strains in the USA, Bangladesh, Canada, and Germany were observed. A
- reassessment of the *K. variicola* tree with genomes of *K. pneumoniae* and *K.*
- 213 *quasipneumoniae* largely confirmed the initial clustering of the K. variicola strains, with only
- a few rearrangements of some strains within different clades (Fig. S3A and S3B).
- 215 Notably, K. variicola had fewer resistome diversity and abundance than Citrobacter spp.,
- 216 Enterobacter spp., and K. pneumoniae spp. Conserved within the K. variicola genomes were
- 217 *emrD*, fosA, OqxAB and bla_{LEN-2}, whilst the other ARGs were sparse. Whilst bla_{SHV} was

218	conserved in K. pneumoniae, it was virtually absent in K. variicola; further, bla _{LEN} was
219	present in the latter but absent in the former. K. variicola clade B2 strains (on branch VIII),
220	specifically those from Bangladesh, had richer and more diverse resistomes than the other K .
221	variicola clades/clusters. Whilst mcr and bla _{NDM} were virtually absent in these genomes,
222	$bla_{\rm KPC}$ occurred in substantial abundance. These suggest that K. variicola is least likely to be
223	MDR and/or harbour ESBLs, carbapenemases, mcr and other clinically important ARGs
224	compared to other Enterobacteriaceae species (Fig. 7 & S3).
225	M. morganii
226	There were three <i>M. morganii</i> clusters/clades viz., A, B and C, which were mainly from
227	humans with a few in clades A and C being from animals (Fig. 8). Within each clade are
228	closely related strains with very close evolutionary distance that were distributed across
229	several countries; indeed, strains of the same clone were found in different countries,
230	suggesting international dissemination of the same clones. The branching order of the trees
231	within each clade shows the gradual evolution of the strains as they moved from host to host.
232	<i>bla</i> _{DHA} and <i>catA/B</i> genes were almost conserved in almost all the <i>M. morganii</i> genomes.
233	Other highly abundant ARGs in the <i>M. morganii</i> strains were <i>sul-1/-2</i> , <i>tet</i> (A/B/D/Y), <i>bla</i> _{OXA} .
234	1, <i>ble, dfrA1, aadA, aac(3)</i> -like and <i>aph(3'/3")</i> -like. Notably, clade B had more ARG
235	diversity and abundance than clade C and A; clade A had the least diversity and abundance of
236	ARGs (Fig. 8).
237	P. mirabilis

238 *P. mirabilis* clustered into three major clades and included isolates from humans, animals,

and the environment. Within the three clades were sub-clades consisting of closely related

240 strains from the same as well as different countries, showing local and international outbreaks

involving human and animal hosts, and in some cases environmental mediators (Fig. 9).

242 Specifically, local outbreaks were seen in the USA (clades A3, B2 and B3), France (clade 243 C2) and Japan (C3) whilst international dissemination of clades A2, A3, A4, B, C2 and C3 244 were observed. Clade C2 had the richest abundance of resistomes, with all the members having a uniform/conserved diversity of the same ARGs, except for *bla*_{CTX-M}, *bla*_{OXA}, *bla*_{TEM}, 245 and *Inu*(F/G). Clade C3 had the 2nd most abundant but more diverse ARGs than C2. Notably, 246 247 clade B and its subclades had lesser ARGs than clades A and C. CatA and tet(A/B/D/Y) 248 ARGs were virtually conserved in all the clades whilst *aadA*, *aac(3')*-like, *aph(3'/3'')*-like, 249 aph(6')-like, dfrA7, sat2, and sul-1/2/3 were substantially prevalent in all the clades. In 250 particular, *bla*_{CARB2} and *flor*R were highly conserved in clade C2; *flor*R was however less 251 abundant than *bla*_{CARB}. Notably, *mcr* was almost absent except in a few strains in B3. As 252 well, *bla*_{CTX-M}, *bla*_{CMY}, *bla*_{NDM}, *bla*_{OXA-1}, *bla*_{TEM} and *ble-O/Sh* were mainly found in clades A 253 and C3, with traces in B and C1. Thus, ESBLs, carbapenemases and mcr genes were 254 relatively less common in P. mirabilis strains, compared to other Enterobacteiaceae (Fig. 9). 255 *Providencia species* 256 There were five *Providencia spp.* viz., stuartii, rustigianii, alcalifaciens, heimbachae, and

257 *rettgeri*, with *P. rettgeri* being most isolated and branching into two clades, A and B (Fig.

10). The other species had single clades. *Providencia spp.* were isolated from animals,

humans, and the environment. Highly similar strains of the same species were found across

260 countries (*P. stuartii*, *P. alcalifaciens*, *P. heimbache* and *P. rettgeri*) and within countries (*P.*

261 *rettgeri* clade A). The distinction between the various species of Providencia was depicted by

the clustering patterns on the tree as strains of the same species clustered together;

263 Providencia spp. was closest evolutionarily to S. marcescens whilst E. coli was closest to

264 *Citrobacter spp.*, and *E. hormaechei*. As well, *K. pneumoniae*, *K. aerogenes*, and *K.*

michiganensis clustered together with relatively short evolutionary distance (Fig. 10).

266 The other Enterobacteriaceae species had more ARGs than *Providencia spp.* Within

- 267 Providencia spp., P. stuartii and P. rettgeri were most endowed with richer and more diverse
- 268 resistomes whilst *P. alcalifaciens* and *P. rustigianii* were almost bereft of ARGs. Common
- ARGs within *P. stuartii*, were *aac(2')-Ia*, *aph(3')*-like, *bla*_{OXA}, *bla*_{TEM}, *aadA1*, *dfrA/B*, *sul1*,
- 270 fosA, ampC, tet and catA/B whilst P. rettgeri had aac(6')-like, aph(3'/3'')-like, bla_{SRT},
- 271 bla_{OXA}, bla_{NDM}, aadA, dfrA/B, OqxAB, sul1, qnrA/B/D/E/S, ampC, catA/B, tet, arr, mph(A/E),
- 272 cmlA, msr(E), and Inu(F/G). Hence, P. rettgeri has the most abundant and diverse ARGs than
- all other *Providencia spp.* (Fig. 10).

274 Phylogeography

275 North America (particularly USA) and Europe (particularly Western and Southern Europe)

had the highest concentration of the various species, followed by South East Asia, South

277 America (particularly Brazil and Colombia) and South Africa. There were sparse reports on

these species from Australasia, the Middle East and Africa (except South Africa) and the

279 Caribbean (Fig. 11).

280 *C. freundii* clade A was distributed mainly in North America, Europe, and South-East Asia

281 whilst clade B was found worldwide on almost all continents. *C. amalonaticus* clade A was

found in North America and South Korea; clade B was found in Malawi, USA, Malaysia, and

283 France whilst clade C was only found in Malaysia, USA and Switzerland. C. koseri clade A

284 (USA) and clade B (USA, Spain, UK, France, Canada, China and Malaysia) were relatively

less reported with clade B being more widely distributed globally (Fig. 11).

286 E. oharae strains and E. hormaechei clades A, B and C were globally disseminated, with

- 287 clade C being most widely distributed, followed by clades B and A. E. steigerwaltii clade C
- was more globally distributed than clades A (USA, Japan and Europe) and B (Argentina,
- 289 USA, France and Germany). Although E. xiangfangensis was globally disseminated, the

290 respective clades A (China, India, USA, S. Africa, and France) and B (France, USA, Egypt,

- and China) were reported from very few countries (Fig. 11).
- 292 *K. variicola* strains, particularly clades B and C, were of wide geographical distribution;
- clade A was found in relatively fewer countries globally. *M. morganii* strains were found in
- 294 North America, Europe (including Russia), and South-East Asia, with clades B and C being
- found in South Africa. P. mirabilis clades A, B and C were found globally, with clade C
- being reported in most countries. P. rettgeri strains had the widest global distribution and
- reports from most countries among the *Providencia spp.*, followed by *P. stuartii. P. rettgeri*
- 298 clade A (China, Brazil, South Africa, Colombia, and USA) was found in fewer countries than
- clade B. P. stuartii strains were of global distribution whilst P. rustigianii (UK and USA), P.
- 300 alcalifaciens (USA and India) and P. heimbachae (France, China, and Germany) were not

301 (Fig. 11).

302 Frequency distribution of ARGs per species

303 MCR ARGs

- 304 *Mcr-9.1* ARGs were the commonest *mcr* variants identified, with very few *mcr-1* and *mcr-3*
- being found in *E. hormaechei* and *C. freundii* (*mcr-1*, -3 and -10) and a single *mcr-4.3* gene
- being found in *P. rettgeri*. Notably, the highest prevalence of *mcr-9* was in *E. hormaechei*
- 307 (n=67 mcr-9 genes), E. steigerwaltii/oharae (n=32 mcr-9 genes) and E.
- 308 xiangfangensis/cloacae (n=19 mcr-9 genes), followed by C. freundii (n=19), C. amalonaticus
- 309 (n=5) and other *Citrobacter spp.*, some of which had very few or no *mcr* genes (Fig. S4-S9).

310 *Carbapenemases*

- One of the most prevalent carbapenemase among the species was KPC, with KPC-2 (n=123),
- 312 KPC-3 (n=97), KPC-4 (n=14), and KPC-6 (n=1) being common. KPC-2 was higher in all the
- species except in *E. xiangfangensis* for which KPC-3 was more abundant (n=35) than KPC-2

314 (n=9). KPC was most prevalent in <i>E. hormaechei/oharae/steigerwaltii/xiangfang</i>	ensis and C
--	-------------

- 315 *freundii* strains whilst *C. amalonaticus*, *C. koseri*, and *Providencia spp. had no* KPC ARGs.
- After Ambler class A KPC, Ambler class D OXA-48-like serine carbapenemases (n=65)
- 317 were also very prominent in all species except *C. amalonaticus, E. xiangfangensis* and *K.*
- variicola, with other 0XA-48 variants such as OXA-181 (n=1, *M. morganii*) and OXA-396
- 319 (n=1, *P. rettgeri*) being relatively scarce. *C. freundii* (n=43), *E. hormaechei* (n=10), *E.*
- 320 oharae/steigerwaltii (n=9) and C. koseri (n=3) had OXA-48 genes whilst OXA-58 (n=2) and
- 321 OXA-23 (n=23) were only found in *P. mirabilis*. Other class A serine carbapenemases i.e.,
- 322 GES-5 (n=1, *M. morganii*) and IMI-2 (n=1, *E. hormaechei*), were also rare (Fig. S4-S9).
- NDM was the commonest class B carbapenemase (n=159), followed by IMP (n=97) and
- VIM (n=83). NDM-1 (n=137) was the most prevalent variant and was found in E.
- hormaechei (n=68), C. freundii (n=15), E. steigerwaltii (n=13), Providencia spp. (n=12), P.
- 326 mirabilis (n=10), E. xiangfangensis (n=6), C. amalonaticus (n=5), M. morganii (n=5), and K.
- 327 *variicola* (n=3), with NDM-5 (n=16; 12 in *E. hormaechei*, 3 in *E. xiangfangensis*, and 1 in *P*.
- 328 *mirabilis*), NDM-7 (n=3 in *E. hormaechei*) and NDM-9 (n=3 in *K. variicola*) being less
- prevalent. IMP-1 (n=71; 67 in *E. hormaechei* and 4 in *C. freundii*), IMP-8 (n=14; 13 in *C.*
- freundii, 1 in E. steigerwaltii), IMP-4 (n=9; 5 in C. freundii, 4 in E. hormaechei), IMP-27
- 331 (n=2 in *P. mirabilis*) and IMP-13 (n=1 in *E. oharae*) were the identified variants. VIM-1
- 332 (n=65; 26 in C. freundii, 14 in E. steigerwaltii, 21 in E. hormaechei, 1 in E. xiangfangensis, 2
- in Providencia spp., 1 in P. mirabilis), VIM-4 (n=12; 5 in in E. steigerwaltii, 5 in E.
- hormaechei, 2 in C. freundii), VIM-2 (n=2 in Providencia spp.), VIM-31 (n=2; E.
- steigerwaltii and E. hormaechei), VIM-5 (n=1 in E. hormaechei), and VIM-67 (n=1 in E.
- *hormaechei*) were identified in the strains (Fig. S4-S9).
- 337 ESBLs and ampCs

- 338 TEM was the commonest ESBL and TEM-1 was the most common variant to be identified in
- all species; particularly, TEM-1 was most abundant in *Enterobacter spp.* and *C. freundii*.
- 340 OXA (particularly OXA-1, -9, and -10), CTX-M (particularly CTX-M-15) and SHV
- 341 (particularly SHV-12) were also common in almost all species in a descending order of
- 342 prevalence, but were very abundant in *Enterobacter spp.*, specifically *E. hormaechei*; *C.*
- 343 *koseri, C. amalonaticus, P. mirabilis, and M. morganii* had relatively low abundance of SHV,
- 344 OXA and CTX-M genes. Other ESBLs genes such as bla_{SCO} , bla_{LAP} , bla_{VEB} , bla_{TMB} , bla_{SFO} ,
- bla_{SMB} , bla_{CARB} , bla etc. were also rare in the various species (Fig. S4-S9).
- 346 AmpC ARGs were basically strain-specific, with ACT, LEN, CMY, DHA, CKO/MAL and
- 347 SED being conserved in Enterobacter spp., K. variicola, C. fruendii, M. morganii, C.koseri
- and *C. amalonaticus* (except clade A) respectively; FOX was rare (Fig. S4-S9).
- 349 Aminoglycoside ARGs
- ARGs mediating resistance to aminoglycosides such as aadA, aph(2'')-like, aph(3')-like,
- 351 aph(4')-like, aac(6')-like, aac(3)-like, aph(6)-like, and ant(2'')-like were abundantly
- 352 prevalent in almost all the clades of *C. freundii, Enterobacter spp.*, and *P. mirabilis* and
- sparsely abundant in the other species; aadA, aph(4')-like, aac(6')-like and aac(3')-like
- ARGs were most common. 16S rRNA Methyltransferases such as *rmtB1* (E. steigerwaltii and
- 355 P. mirabilis,), rmtC/G (E. hormaechei, C. freundii and M. morganii), and armA (C. freundii,
- 356 E. xiangfangensis, P. mirabilis, P. stuartii, M. morganii and P. rettgeri) were rare (Fig. S4-
- 357 S9).
- 358 Fluoroquinolone ARGs
- 359 Aac(6')-like, OqxAB, QnrA/B/D/S and qepA ARGs were identified, albeit qepA (M.
- 360 *morganii*) was rare and *OqxA* was less prevalent than *OqxB* in all but one species. Notably,

361 *OqxAB* were virtually absent in *C. fruendii* clades. whilst chromosomal mutations in *gyrAB*

and *par*CE were only observed in *K. variicola* (Fig. S4-S9).

363 Other ARGs

364 Chloramphenicol ARGs, *cmlA*, *catA* and *catB* were found in all the species, albeit *cmlA* was

relatively rare in all the species whilst *catA/B* were conserved in *Enterobacter spp.* and *M*.

- 366 *morganii; catA* was more prevalent than *catB. catA/B* were also abundant in *Citrobacter spp.*,
- 367 P. mirabilis and Providencia spp. (Fig. S4-S9). Sulphamethoxazole-trimethoprim ARGs, sul-
- 368 1/2/3 and dfrA, were enriched in Providencia spp., P. mirabilis, M. morganii, Enterobacter
- spp., C. koseri (dfrA was virtually absent), C. amalonaticus clade B2, and C. freundii. Sull
- 370 was more prevalent than *Sul2*, with *Sul3* being relatively rare whilst the *dfrA* variants were
- remarkably diverse. Indeed, both *sul1*, *sul2* and/or *sul3* as well as several *dfrA* variants were

372 present concurrently in some single strains (Fig. S4-S9; Tables S2).

- 373 Several tetracycline ARGs such as *tet*(A), *tet*(B), *tet*(C), *tet*(D), *tet*(G), *tet*(J), *tet*(S), *tet*(Y),
- and *tet*(41), were present in all the species. Notably, *tet*(A), *tet*(B), and *tet*(D), were highly
- enriched in the various genomes with a descending order of frequency; *tet*(J) was most
- prevalent in *P. mirabilis* (Fig. S4-S9). *fosA* variants were present in all the species except *M*.
- 377 morganii, but were most enriched and conserved in Enterobacter spp. K. variicola, P. stuartii
- and *P. rettgeri*. As well, *ere*(A), *emr*(D), *erm*(B), *msr*(E), *mph*(A) and *mph*(E) macrolide
- ARGs were common in the various species, with mph(A) being richly abundant; mph(E) and
- 380 *msr*(E) were enriched in *C. freundii, Providencia spp.* and *P. mirabilis, emr*(D) was abundant
- in *K. variicola* whilst *ere*(A) was abundantly enriched in *E. hormaechei* and *E.*
- 382 *xiangfangensis*. Rifamycin ARG, *arr*, was identified in the various species, represented by
- 383 *arr-3 arr-2* and *arr-1* in all the species (Fig. S4-S9).

384 Discussion

385 Among Gram-negative bacterial species, *Pseudomonas aeruginosa*, *Acinetobacter* baumannii, and Enterobacteriaceae such as K. pneumoniae, E. coli, S. enterica, Vibrio 386 cholerae, and Shigella spp. are commonly isolated and implicated in nosocomial 387 388 (anthroponotic), zoonotic and water/food-borne infections with MDR, extensively and pandrug resistant (XDR and PDR respectively) phenomes ^{4,26,28,37,38}. However, other less 389 isolated Enterobacteriaceae species such as Citrobacter spp., Enterobacter hormaechei 390 391 subsp., K. variicola, P. mirabilis, M. morganii and Providencia spp., are increasingly being implicated in MDR, XDR and PDR infections globally as opportunistic pathogens ^{7,8,28,34,39–} 392 ⁴¹. We show herein, that *C. freundii, Enterobacter hormaechei subsp. hormaechei*, 393 394 xiangfangensis, oharae and steigerwaltii, and Proteeae strains harbour multiple resistance 395 mechanisms that can make them MDR, XDR and PDR pathogens. More concerning is the 396 global distribution and multiple (human, animal, plants and environmental) specimen sources 397 of these strains, which suggest that they can cause anthroponotic, zoonotic and food- and water-borne infections 42. 398 399 Hence, these opportunistic pathogens demand more attention than they have been given 400 hitherto as the rich resistome repertoire identified in their genomes makes them reservoirs of

401 ARGs ^{11,14,21,43}. Moreover, being intestinal denizens and commensals, they can easily share

402 these ARGs with facultative and obligate pathogens of humans and animals ^{22,44–46}. Further,

403 their presence on plants and the environment further suggests that they can share their ARGs

404 with food-borne and water-borne pathogens $^{44-46}$. Fortunately, the *E. xiangfangensis* strains

405 found in rice from India had very few ARGs, albeit a few had multiple ARGs (Fig. S2B).

406 Of greater concern is the rich resistome repertoire and abundance of globally distributed *E*.

407 hormaechei subsp. strains. Specifically, E. hormaechei subsp. contained clinically important

408 ARGs such as *mcr-9*, carbapenemases, and ESBLs, alongside fluoroquinolones,

409 aminoglycoside, tetracycline, macrolide, fosfomycin, chloramphenicol, rifamycin and

410	sulphomethoxazole-trimethoprim resistance mechanisms. This resistome repertoire was also
411	seen in C. freundii, P. rettgeri P. mirabilis, P. stuartii, and M. morganii, to a relatively lesser
412	degree in a descending order. This is a worrying observation as colistin, carbapenems and
413	tigecycline are last resort antibiotics used to treat fatal bacterial infections ^{47,48} . In most cases,
414	these antibiotics are used in combination with fosfomycin, fluoroquinolones and
415	aminoglycosides to treat carbapenem-resistant Enterobacteriaceae (CRE) infections ^{47,48} .
416	Evidently, the presence of all these resistance mechanisms to these antibiotics, could make
417	these species PDR and automatically qualify them as critical priority pathogens per the WHO
418	criteria ^{32,33} .
419	As well, members of the tribe Proteeae viz., M. morganii, P. mirabilis, and Providencia spp.,
420	are known to have intrinsic resistance to colistin, tigecycline, aminopenicillins, amikacin,
421	tobramycin, lincosamides, macrolides, fosfomycin and first- and second-generation

422 cephalosporins ^{1,7,49,50}. Thus, the presence of additional resistance determinants in this tribe is

423 especially worrying. Already, there are increasing reports on the isolation of Proteeae species

424 in recurrent urinary tract infections (UTIs) infections, which is facilitated by the increasing

425 use of colistin to treat MDR infections; their broad intrinsic resistance mechanisms enable

them to flourish during antibiotic chemotherapy ^{1,7,8,49,51,52}. These observations evince the
growing threat of antimicrobial resistance globally and its associated after-effects, supporting
the need for efficient antibiotic stewardship to safeguard current antibiotic arsenals as well as

429 discover novel ones 3,14 .

430 As shown in the phylogenomic and phylogeographic analyses, local and international

431 transmission, or outbreaks of strains within the same clone, clade and subclade i.e., of very

432 close evolutionary distance, were observed. Notably, these closely related strains were

433 isolated from humans, animals, plants, and the environment and they harboured important

434 resistance determinants as described above. The phylogenomics showed the gradual

435	evolution of a single strain during dissemination from host to host and depict the fact that
436	antibiotic resistance respects no boundaries. Notably, a large part of <i>E. hormaechei</i> clade C
437	consisted of strains from human stools/urine in Japan; these were closely related strains
438	evolving from Spain, Taiwan, China, and Greece (Fig. 6 & S2). A similar observation was
439	made with strains of close evolutionary distance from humans in Nigeria, France, Spain,
440	Portugal, and Lebanon as well as with strains from humans, animals, and the environment in
441	several countries such as France, Germany, USA, Pakistan, Morocco, Lebanon, and Poland in
442	clade C. E. hormaechei strains were also found in desert sands in Morocco, showing their
443	broad and diverse niches (Fig. 6 & S2).
444	Uniform and non-uniform resistome patterns were seen between strains of the same
445	clade/clone in almost all the species. For instance, the same resistome was seen in C.
446	amalonaticus clade B2 (Fig. 2), E. cloacae clade B (Fig. 5) and P. mirabilis clade C2 (Fig. 9)
447	whilst differing resistome patterns were observed in the other species and clades. This
448	observation supports two phenomena: firstly, the clonal expansion of strains harbouring the
449	same resistome repertoire on both chromosomes and plasmids and secondly, the horizontal
450	transmission of genetic elements bearing the same of different ARGs across clones and
451	species. During clonal expansion of strains, there is a concomitant replication of resistance
452	plasmids alongside chromosomal replication, leading to daughter cells with the same
453	resistome diversity ^{11,12,21,53} . As well, horizontal gene transfer of ARGs between bacteria can
454	alter the resistome diversity and composition of daughter clones emanating from the same
455	ancestor ^{11,12,21,53} . In this case, both phenomena are being observed, showing that both vertical
456	and horizontal transmission of ARGs are ongoing during the evolutionary epidemiology of
457	the various clades and species across the globe.
458	The presence of multiple ARGs in a single strain might not necessarily mean they are all

459 being expressed in the bacteria's phenome as antibiotic-susceptible strains have been found to

harbour ARGs. For instance, colistin- and fosfomocyin-sensitive Enterobacteriaceae have
have been reported in strains harbouring the *mcr-9* and *fosA* genes ^{1,5,7,8}. Nevertheless, the
ability of these ARGs to be expressed in the presence of strong promoter or transferred to
another host with a stronger promoter for subsequent expression cannot be gainsaid ⁵⁴.
Indeed, antibiotic abuse could serve as an inducer to trigger the transfer and expression of
these vast resistomes in the microbial phenomes ^{49,55}, necessitating the importance for
judicious antibiotic use.

467 It is revealing to note that *K. variicola, C. amalonaticus* and *C. koseri* strains had very few

ARGs except for *K. variicola* clade B2 and *C. amalonaticus* clade B2, despite the global

distribution of *K. variicola* (Fig. 2-3, 7, & S3). Notably, *C. amalonaticus* clade B2, which

470 were all from France, were remarkably enriched with ARGs including bla_{NDM} , representing a

471 local outbreak of XDR *C. amalonaticus* strains (Fig. 2). Thus, even in species with fewer

resistome diversity and abundance, there are MDR, XDR and PDR strains causing local

473 outbreaks.

474 Notably, most of the genomes included in this analysis were from the USA, Europe, and 475 South East Asia. This may be due to the fact that these regions have higher prevalence and 476 incidence of infections resulting from these pathogens or that these areas have enough 477 financial and technical means to undertake genomic sequencing of these isolates in periodic 478 surveillance studies. Specifically, genomes of these species were relatively scarce from a 479 large part of Russia, Middle and North-West Asia, Africa, the Caribbean and parts of South 480 America and Canada. Given the alarming resistome diversity and composition realised in this 481 analyses, it is incumbent for all nations to intensify and adopt genome-based epidemiological 482 studies to quickly identify the sources and reservoirs of ARGs to pre-empt outbreaks of 483 MDR, XDR and PDR pathogens.

484 Conclusion

485	In conclusion, less described Enterobacteriaceae species viz., Enterobacter hormaechei
486	subsp. hormaechei, xiangfangensis, steigerwaltii and oharae, C. freundii, M. morganii, P.
487	mirabilis, P. stuartii and P. rettgeri, contain globally distributed MDR, XDR and PDR strains
488	that cause local and international outbreaks, transmitting through humans, animals, food,
489	water and other environmental media or sources. Notably, the resistome repertoire of these
490	relatively rare species were equally or more abundant and diverse as those of commonly
491	isolated species. Hence, intensified efforts should be made to increase education on antibiotic
492	stewardship to safeguard the potency of available antibiotics and reduce the selection and
493	dissemination antibiotic-resistant Enterobacteriaceae. Infection prevention and control as well
494	periodic genomic surveillance of communities, hospitals, farms, water bodies and the general
495	environment (One Health) should be undertaken to pre-empt outbreaks of MDR strains and
496	inform infection control measures.
497	Notwithstanding the revealing details obtained in this study, strains with clinically important
498	ARGs whose genomes are not deposited in NCBI/PATRIC or whose genomes are not
499	sequenced before January 2020 will be missed; hence, the information contained herein are
500	true up to January 2020. Nevertheless, the global phylogeography and resistome
501	epidemiology of these emerging opportunistic pathogens provide an important picture of the
502	ARGs, sources and transmission patterns of these species.
503	Methods
504	Included genomes

- 505 Genomes of Citrobacter spp. (including amalonaticus, freundii, koseri, werkmanii, brakii,
- 506 portucalensis and youngae), Enterobacter hormaechei subsp. hormaechei, xiangfangensis,
- 507 steigerwaltii, and oharae, Providencia spp. (including alcalifaciens, burhodogranariea,

- 508 *heimbachae, rettgeri, rustigianii,* and *stuartii*) and *Proteus mirabilis* deposited at GenBank
- 509 (<u>https://www.ncbi.nlm.nih.gov/genbank/</u>) and PATRIC (<u>https://www.patricbrc.org/</u>) up to
- 510 January 2020 were pooled and filtered to remove poor genome sequences. These were used
- 511 for the downstream phylogenetics, phylogeography and resistome analyses.
- 512 *Phylogenetics and evolutionary epidemiology analyses*
- 513 Briefly, plasmid sequences, phages, poor genomes i.e., genomes with sizes below the average
- 514 genome size of each species viz., 3-4Mb, and genomes of strains that could not share at least
- 515 1000 core protein genes with all the included genomes were removed. The remaining
- genomes were aligned and run through RAXmL in batches of 200 genomes to draw
- 517 phylogenetic trees using the maximum-likelihood method. A minimum of 1000 genes were
- used for the alignment and a bootstrap resampling of 1000x was used. The trees were
- annotated using Figtree to show their sequence type (ST), host (species), country and year of
- 520 isolation. The various clades and sub-clades within each species or genera were visually
- 521 identified based on their clustering distance and accordingly labelled.

522 *Phylogeography*

- 523 The various clades and subclades per species were manually drawn unto maps to show their
- 524 phylogeographic distribution using Paint 3D. Different colour codes were used to distinguish
- 525 between the various species and clades.

526 *Resistome analyses*

- 527 The resistomes of the included genomes were individually obtained from the NCBI Pathogen
- 528 Detection database (<u>https://www.ncbi.nlm.nih.gov/pathogens/isolates#/search/</u>). The
- resistomes were aligned per strain and colour-coded per clade or species to show their
- association per species, clone, or clade. These were then associated with the phylogenomic
- trees to ascertain the resistome dynamics per clone, clade, species, and geographical location.

532 **References**

- Mbelle, N. *et al.* Genomic analysis of two drug-resistant clinical Morganella morganii strains isolated from UTI patients in Pretoria, South Africa. *Lett. Appl. Microbiol.* **70**, 21–28 (2020).
- 535 2. Osei Sekyere, J. Genomic insights into nitrofurantoin resistance mechanisms and epidemiology in clinical Enterobacteriaceae. *Futur. Sci. OA* 4, FSO293 (2018).
- 537 3. Osei Sekyere, J. & Asante, J. Emerging mechanisms of antimicrobial resistance in bacteria and fungi:
 538 advances in the era of genomics. *Future Microbiol.* 13, 241–262 (2018).
- For the second second
- 5. Mbelle, N. M. *et al.* Pathogenomics and Evolutionary Epidemiology of Multi-Drug Resistant Clinical
 Klebsiella pneumoniae Isolated from Pretoria, South Africa. *Sci. Rep.* 10, 1–17 (2020).
- 6. Osei Sekyere, J. & Mensah, E. Molecular epidemiology and mechanisms of antibiotic resistance in
 Enterococcus spp., Staphylococcus spp., and Streptococcus spp. in Africa: a systematic review from a
 One Health perspective. Ann. N. Y. Acad. Sci. 1465, 29–58 (2020).
- 547 7. Mbelle, N. M. *et al.* Genomic analysis of a multidrug-resistant clinical Providencia rettgeri (PR002)
 548 strain with the novel integron ln1483 and an A/C plasmid replicon. *Ann. N. Y. Acad. Sci.* 1462, 92–103
 549 (2019).
- Source Sekyere, J., Maningi, N. E., Modipane, L. & Mbelle, N. M. Emergence of mcr-9.1 in ESBLproducing Clinical Enterobacteriaceae in Pretoria, South Africa: Global Evolutionary Phylogenomics, Resistome and Mobilome. John. *mSystems* 5, e00148-20 (2020).
- 9. Mbelle, N. M. *et al.* The Resistome, Mobilome, Virulome and Phylogenomics of Multidrug-Resistant
 Escherichia coli Clinical Isolates from Pretoria, South Africa. *Sci. Rep.* 9, 1–43 (2019).
- 555 10. Chirindze, L. M. *et al.* Faecal colonization of E. coli and Klebsiella spp. producing extended-spectrum
 556 beta-lactamases and plasmid-mediated AmpC in Mozambican university students. *BMC Infect. Dis.* 18, 244 (2018).
- 55811.Decano, A. G. *et al.* Plasmids shape the diverse accessory resistomes of Escherichia coli ST131. *bioRxiv*5592020.05.07.081380 (2020). doi:10.1101/2020.05.07.081380
- Partridge, S. R., Kwong, S. M., Firth, N. & Jensen, S. O. Mobile Genetic Elements Associated with
 Antimicrobial Resistance. *Clin. Microbiol. Rev.* 31, 1–61 (2018).
- Böhm, M.-E., Razavi, M., Marathe, N. P., Flach, C.-F. & Larsson, D. G. J. Discovery of a novel
 integron-borne aminoglycoside resistance gene present in clinical pathogens by screening environmental
 bacterial communities. *Microbiome* 8, 41 (2020).
- Asante, J. & Osei Sekyere, J. Understanding antimicrobial discovery and resistance from a metagenomic and metatranscriptomic perspective: Advances and applications. *Environ. Microbiol. Rep.* 11, 62–86
 (2019).
- 568 15. Van Boeckel, T. P. *et al.* Global trends in antimicrobial resistance in animals in low- and middle-income countries. *Science (80-.).* 365, eaaw1944 (2019).
- 16. He, T. *et al.* Emergence of plasmid-mediated high-level tigecycline resistance genes in animals and humans. *Nat. Microbiol.* 4, 1450–1456 (2019).
- 572 17. Li, J. *et al.* Inter-host Transmission of Carbapenemase-Producing *Escherichia coli* among Humans and
 573 Backyard Animals. *Environ. Health Perspect.* 127, 107009 (2019).
- Jaidane, N. *et al.* Genomic analysis of in vivo acquired resistance to colistin and rifampicin in
 Acinetobacter baumannii. *Int. J. Antimicrob. Agents* 51, 266–269 (2018).
- 576 19. Olaitan, A. O., Diene, S. M., Assous, M. V. & Rolain, J.-M. Genomic Plasticity of Multidrug-Resistant
 577 NDM-1 Positive Clinical Isolate of Providencia rettgeri. *Genome Biol. Evol.* 8, 723–8 (2016).

578 20. Conlan, S. et al. Plasmid Dynamics in KPC-Positive Klebsiella pneumoniae during Long-Term Patient 579 Colonization. MBio 7, (2016). 580 21. Decano, A. G. et al. Complete Assembly of Escherichia coli Sequence Type 131 Genomes Using Long 581 Reads Demonstrates Antibiotic Resistance Gene Variation within Diverse Plasmid and Chromosomal 582 Contexts. *mSphere* **4**, 130–19 (2019). 583 22. Osei Sekyere, J., Maningi, N. E. & Fourie, P. B. Mycobacterium tuberculosis, antimicrobials, 584 immunity, and lung-gut microbiota crosstalk: current updates and emerging advances. Ann. N. Y. Acad. 585 Sci. 1467, 21-47 (2020). 586 23. Liu, B.-T. et al. Characteristics of Carbapenem-Resistant Enterobacteriaceae in Ready-to-Eat 587 Vegetables in China. Front. Microbiol. 9, 1147 (2018). 588 24. Tshisevhe, V. S., Lekalakala, M. R., Tshuma, N., Janse van Rensburg, S. & Mbelle, N. Outbreak of 589 carbapenem-resistant Providencia rettgeri in a tertiary hospital. S. Afr. Med. J. 107, 31-33 (2016). 590 25. Kopotsa, K., Osei Sekyere, J. & Mbelle, N. M. Plasmid evolution in carbapenemase-producing 591 Enterobacteriaceae: a review. Ann. N. Y. Acad. Sci. 1457, 61-91 (2019). 592 26. Weill, F. X. et al. Global phylogeography and evolutionary history of Shigella dysenteriae type 1. Nat. 593 Microbiol. 1, (2016). 594 27. Hargreaves, M. L. et al. Clonal Dissemination of Enterobacter cloacae Harboring bla KPC-3 in the 595 Upper Midwestern United States. Antimicrob. Agents Chemother. 59, 7723-7734 (2015). 596 28. Osei Sekyere, J. & Reta, M. A. Phylogeography and Resistome Epidemiology of Gram-Negative 597 Bacteria in Africa: A Systematic Review and Genomic Meta-Analysis from a One-Health Perspective. 598 medRxiv 2020.04.09.20059766 (2020). doi:10.1101/2020.04.09.20059766 599 29. Cerqueira, G. C. et al. Multi-institute analysis of carbapenem resistance reveals remarkable diversity, 600 unexplained mechanisms, and limited clonal outbreaks. Proc. Natl. Acad. Sci. U. S. A. 114, 1135-1140 601 (2017).602 30. Tijet, N. et al. Lateral dissemination and inter-patient transmission of blaKPC-3: role of a conjugative 603 plasmid in spreading carbapenem resistance. J. Antimicrob. Chemother. 71, 344–347 (2016). 604 31. Petty, N. K. et al. Global dissemination of a multidrug resistant Escherichia coli clone. Proc. Natl. Acad. 605 Sci. U. S. A. 111, 5694–5699 (2014). 606 32. Rello, J. et al. A global priority list of the TOp TEn resistant Microorganisms (TOTEM) study at 607 intensive care: a prioritization exercise based on multi-criteria decision analysis. Eur. J. Clin. Microbiol. 608 Infect. Dis. 38, 319-323 (2019). 609 33. Asokan, G. V, Ramadhan, T., Ahmed, E. & Sanad, H. WHO Global Priority Pathogens List: A 610 Bibliometric Analysis of Medline-PubMed for Knowledge Mobilization to Infection Prevention and 611 Control Practices in Bahrain. Oman Med. J. 34, 184-193 (2019). 612 34. Mbelle, N. et al. Genomic analysis of two drug-resistant clinical Morganella morganii strains isolated 613 from UTI patients in Pretoria, South Africa. Lett. Appl. Microbiol. 70, 21-28 (2020). 614 35. Lv, L. et al. Emergence of a Plasmid-Encoded Resistance-Nodulation-Division Efflux Pump Conferring 615 Resistance to Multiple Drugs, Including Tigecycline, in Klebsiella pneumoniae. *MBio* 11, (2020). 616 36. Ellem, J. A. et al. Locally Acquired mcr-1 in Escherichia coli, Australia, 2011 and 2013. Emerg. Infect. 617 Dis. 23, 1160-1163 (2017). Perez, A. et al. High incidence of MDR and XDR Pseudomonas aeruginosa isolates obtained from 618 37. 619 patients with ventilator-associated pneumonia in Greece, Italy and Spain as part of the MagicBullet 620 clinical trial. J. Antimicrob. Chemother. 74, 1244-1252 (2019). 621 38. D'Onofrio, V. et al. Epidemiology of colistin-resistant, carbapenemase-producing Enterobacteriaceae 622 and Acinetobacter baumannii in Croatia. Infect. Genet. Evol. 81, 104263 (2020). 623 39. Lob, S. H. et al. In vitro activity of imipenem-relebactam against resistant phenotypes of 624 Enterobacteriaceae and Pseudomonas aeruginosa isolated from intraabdominal and urinary tract

625		infection samples - SMART Surveillance Europe 2015-2017. J. Med. Microbiol. 69, 207–217 (2020).
626 627	40.	Lu, Y., Feng, Y., McNally, A. & Zong, Z. Occurrence of colistin-resistant hypervirulent Klebsiella variicola. <i>J. Antimicrob. Chemother.</i> (2018). doi:10.1093/jac/dky301
628 629	41.	Rodriguez-Medina, N., Barrios-Camacho, H., Duran-Bedolla, J. & Garza-Ramos, U. Klebsiella variicola: an emerging pathogen in humans. <i>Emerg. Microbes Infect.</i> 8 , 973–988 (2019).
630 631	42.	Exner, M. <i>et al.</i> Antibiotic resistance: What is so special about multidrug-resistant Gram-negative bacteria? <i>GMS Hyg. Infect. Control</i> 12 , Doc05 (2017).
632 633	43.	Yang, D. <i>et al.</i> The Occurrence of the Colistin Resistance Gene mcr-1 in the Haihe River (China). <i>Int. J. Environ. Res. Public Health</i> 14 , (2017).
634 635	44.	Lerner, A., Matthias, T. & Aminov, R. Potential effects of horizontal gene exchange in the human gut. <i>Front. Immunol.</i> 8 , (2017).
636 637	45.	Boto, L., Pineda, M. & Pineda, R. Potential impacts of horizontal gene transfer on human health and physiology and how anthropogenic activity can affect it. <i>FEBS J.</i> 286 , 3959–3967 (2019).
638 639	46.	Anderson, M. T. & Seifert, H. S. Opportunity and means: Horizontal gene transfer from the human host to a bacterial pathogen. <i>MBio</i> 2 , (2011).
640 641 642	47.	Osei Sekyere, J., Govinden, U., Bester, L. A. & Essack, S. Y. Colistin and tigecycline resistance in carbapenemase-producing Gram-negative bacteria: emerging resistance mechanisms and detection methods. <i>J. Appl. Microbiol.</i> 121 , 601–617 (2016).
643 644 645	48.	Osei Sekyere, J., Sephofane, A. K. & Mbelle, N. M. Comparative Evaluation of CHROMagar COL- APSE, MicroScan Walkaway, ComASP Colistin, and Colistin MAC Test in Detecting Colistin-resistant Gram-Negative Bacteria. <i>Sci. Rep.</i> 10 , 1–13 (2020).
646 647	49.	Liu, H., Zhu, J., Hu, Q. & Rao, X. Morganella morganii, a non-negligent opportunistic pathogen. International Journal of Infectious Diseases 50 , 10–17 (2016).
648 649	50.	Hope, R. <i>et al.</i> Tigecycline activity: low resistance rates but problematic disc breakpoints revealed by a multicentre sentinel survey in the UK. <i>J Antimicrob Chemother</i> 65 , 2602–2609 (2010).
650 651	51.	Hayakawa, K. <i>et al.</i> Growing prevalence of Providencia stuartii associated with the increased usage of colistin at a tertiary health care center. <i>Int. J. Infect. Dis.</i> 16 , e646-8 (2012).
652 653	52.	Gajdács, M. & Urbán, E. Comparative epidemiology and resistance trends of Proteae in urinary tract infections of inpatients and outpatients: A 10-year retrospective study. <i>Antibiotics</i> 8 , (2019).
654 655	53.	Carattoli, A. Plasmids in Gram negatives: Molecular typing of resistance plasmids. <i>Int. J. Med. Microbiol.</i> 301 , 654–658 (2011).
656 657 658	54.	Carroll, L. M. <i>et al.</i> Identification of novel mobilized colistin resistance gene mcr-9 in a multidrug- resistant, colistin-susceptible salmonella enterica serotype typhimurium isolate. <i>MBio</i> 10 , e00853-19 (2019).
659 660 661	55.	Liu, G., Bogaj, K., Bortolaia, V., Olsen, J. E. & Thomsen, L. E. Antibiotic-Induced, Increased Conjugative Transfer Is Common to Diverse Naturally Occurring ESBL Plasmids in Escherichia coli. <i>Front. Microbiol.</i> 10 , 2119 (2019).
662		
663		
664		
665		
666		
667		

668 Acknowledgements: None

- 669 **Funding:** None
- 670 **Transparency declaration:** None (Authors declare no conflict of interest)
- **Figure 1.** Evolutionary epidemiology and resistome of global *Citrobacter freundii* isolates.
- 672 C. freundii clustered into four main clades (A, B1, B2 and B3), highlighted with distinct
- 673 colours. Clade B3 had the most resistome abundance and diversity. Strains from humans
- 674 (blue labels), animals (red labels), plants (purple/mauve labels) and the environment (green
- labels) were found in the same clade/cluster. Bla_{CMY} was conserved in these genomes.
- **Figure 2.** Evolutionary epidemiology and resistome of global *Citrobacter amalonaticus*
- 677 isolates. C. amalonaticus strains clustered into clades A (red highlight), B1 (green highlight),

B2 (blue highlight) and C (mauve highlight); clade B2 had very rich resistome repertoire and

- 679 were all from France, but the other clades had very few resistance genes. Strains from
- humans (blue labels), animals (red labels), plants (purple/mauve labels) and the environment
- (green labels) were found in the same clade/cluster. Bla_{SED} and oqxAB were almost conserved
- 682 in these genomes.
- **Figure 3.** Evolutionary epidemiology and resistome of global *Citrobacter koseri* isolates. *C*.
- 684 koseri strains clustered into clades A (grey highlight), B1 (light blue highlight), B2 (orange
- highlight) and B3 (mauve highlight). Strains from humans (blue labels) and animals (red
- labels) were found in the same clade/cluster. Bla_{CKO} and bla_{MAL} were almost conserved in
- 687 these genomes.
- **Figure 4.** Evolutionary epidemiology and resistome of global *Enterobacter*
- 689 steigerwaltii/oharae isolates. E. steigerwaltii/oharae isolates clustered into clades A, B and
- 690 C, which were all obtained from humans from countries distributed across the globe. Clades
- B and C had very rich resistome repertoire; bla_{ACT} was conserved in these genomes..

692	Figure 5. Evolutionary epidemiology and resistome of global Enterobacter xiangfangensis
693	isolates. The E. xiangfangensis contained E. cloacae genomes and they clustered into clades
694	A1, A2 and B, with clades A2 and B having rich and diverse resistome repertoire; these
695	clades were distributed globally from humans (blue labels) and animals (red labels). bla_{ACT}
696	was conserved in these genomes.
697	Figure 6. Evolutionary epidemiology and resistome of global Enterobacter hormaechei
698	isolates. The E. hormaechei isolates clustered into three main clades A, B and C (with distinct
699	highlights) that contained strains distributed globally from humans (blue labels), and animals
700	(red labels), plants (purple/mauve labels) and the environment (green labels). Clades B and C
701	contained diverse and rich resistome repertoire. bla_{ACT} was conserved in these genomes.
702	Figure 7. Evolutionary epidemiology and resistome of global <i>Klebsiella variicola</i> isolates.
703	The K. variicola strains clustered into nine clades viz., A1, A2, A3, A4, A5, A6, B1, B2 and
704	C, which were highlighted with distinct colours and were isolated from countries around the
705	globe. The clades contained strains distributed globally from humans (blue labels), animals
706	(red labels), plants (purple/mauve labels) and the environment (green labels). Besides a few
707	strains in clade B2, the other strains contained very few resistance genes. bla_{LEN} was
708	conserved in these genomes.
709	Figure 8. Evolutionary epidemiology and resistome of global Morganella morganii isolates.
710	The <i>M. morganii</i> strains clustered into three clades, A (red highlight), B (light blue highlight)
711	and C (yellow/gold highlight), containing isolates obtained globally from humans (blue

712 labels) and animals (red labels).

Figure 9. Evolutionary epidemiology and resistome of global *Proteus mirabilis* isolates. The *P. mirabilis* isolates clustered into 10 clades, A-A3, B1-B3, and C1-C3 (shown with different
highlights), which contained diverse and abundant resistomes with conserved *catA* and *tet*

- 716 genes. The clades contained strains distributed globally from humans (blue labels), animals
- 717 (red labels), plants (purple/mauve labels) and the environment (green labels).
- **Figure 10.** Evolutionary epidemiology and resistome of global *Providencia spp.* isolates. The
- 719 Providencia spp. clustered into 12 branches, with P. stuartii, P. rustigianii, P. alcalifaciens,
- 720 P. heimbachei and P. rettgeri clustering into branch VIII to XII respectively. P. rettgeri
- clustered into clades A and B, consisting of globally distributed isolates. *P. stuartii* and *P.*
- 722 *rettgeri* contained richer and more abundant resistomes than the other *Providencia* strains and
- contained strains distributed globally from humans (blue labels), animals (red labels), plants
- 724 (purple/mauve labels) and the environment (green labels).
- 725 Figure 11. Global phylogeography of *Citrobacter freundii*, *Citrobacter amalonaticus*,
- 726 Citrobacter koseri, Enterobacter hormaechei subsp. hormaechei, xiangfangensis,
- 727 steigerwaltii and oharae, Klbesiella variicola, Morganella morganii, Proteus mirabilis, and
- 728 Providencia spp. Most of these genomes were obtained from USA, Europe, South-East Asia
- and South America in a descending order of frequency. C. freundii, Enterobacter spp., K.
- variicola, and *P. mirabilis* had more diverse distribution across the globe. Each species is
- 731 designated with a different colour code.
- **Supplemental dataset 1.** Raw metadata of downloaded genomes from PATRIC containing
- all the data associated with each genome.
- 734 Supplemental dataset 2. Species by species tabulation and analyses of the resistomes,
- specimen sources, country of isolation, MLST, Biosample accession number, and strain name
- of all the genomes according to their order on the phylogeny trees.
- 737 Supplemental dataset 3. Colour-coded species by species tabulation of the resistomes,
- specimen sources, country of isolation, MLST, Biosample accession number, and strain name
- of all the genomes according to their order on the phylogeny trees.

740	Figure S1 (A and B). Evolutionary epidemiology and resistome of global Citrobacter
741	freundii isolates, A and B. C. freundii clustered into four main clades (A, B1, B2 and B3),
742	highlighted with distinct colours. Clade B3 had the most resistome abundance and diversity.
743	Strains from humans (blue labels), animals (red labels), plants (purple/mauve labels) and the
744	environment (green labels) were found in the same clade/cluster. Bla _{CMY} was conserved in
745	these genomes.
746	Figure S2 (A and B). Evolutionary epidemiology and resistome of global Enterobacter
747	hormaechei isolates, A and B. The E. hormaechei isolates clustered into three main clades A,
748	B and C (with distinct highlights) that contained strains distributed globally from humans
749	(blue labels), and animals (red labels), plants (purple/mauve labels) and the environment
750	(green labels). Clades B and C contained diverse and rich resistome repertoire. bla_{ACT} was
751	conserved in these genomes.
752	Figure S3 (A and B). Evolutionary epidemiology and resistome of global Klebsiella
753	variicola isolates, A and B. The K. variicola strains clustered into nine clades viz., A1, A2,
754	A3, A4, A5, A6, B1, B2 and C, which were highlighted with distinct colours and were
755	isolated from countries around the globe. The clades contained strains distributed globally
756	from humans (blue labels), animals (red labels), plants (purple/mauve labels) and the
757	environment (green labels). Besides a few strains in clade B2, the other strains contained very
758	few resistance genes. bla_{LEN} was conserved in these genomes.
759	Figure S4. Frequency distribution of antibiotic resistance genes in Citrobacter freundii (A),
760	and Citrobacter species (B and C).
761	Figure S5. Frequency distribution of antibiotic resistance genes in <i>Citrobacter amalonaticus</i>
762	(A), and <i>Citrobacter koseri</i> (B).

- 763 Figure S6. Frequency distribution of antibiotic resistance genes in Enterobacter steigerwaltii
- and oharae (A), and Enterobacter xiangfangensis (B).
- **Figure S7.** Frequency distribution of antibiotic resistance genes in *Enterobacter hormaechei*
- 766 (A, B and C).
- 767 Figure S8. Frequency distribution of antibiotic resistance genes in *Klebsiella variicola* (A, B
- 768 and C).
- 769 Figure S9. Frequency distribution of antibiotic resistance genes in Morganella morganii (A),
- 770 *Proteus mirabilis* (B) and *Providencia species* (C).
- 771

772

E. coli E. hormaechei K. pneumoniae S. marcescens

JII ST13

lii Cla

S. marcescens YDC107-21/2018/01/17/JUSA: Pennsylvania/JHum. P. aeruginosa 23_P_PA||ST308||2019/05/13||stool||Germany U surfaces & sink sample C. freundii S2_003_000_R2_13||2018/06/18||hos

Streptomyces sp. MUSC164 C. freundii strain RU2 LB33||ST100||2015/10/26||USA: Houston, TX C. freundii strain RU2 LB32||ST100||2015/10/26|USA: Houston, TX C. freundii strain RU2 BH/17/(ST100)(2015/10/26)(USA: Houston, TX C. freundii strain RU2 BHI18||ST100||2015/10/26||USA: Houston, TX C. freundii strain RU2 LB34||ST1 00||2015/10/26||USA: Houston, TX C. freundii strain RU2 LB25||ST100||2015/10/26||USA: Houston, TX 5. freundii strain RU2 BHI16||ST100||2015/10/26||USA: Houston, TX

qnrA/B/S	tet(A/B/C/D/E/41)	ampC	fosA	floR	rmtC	mdtM	mexA/E	ere(A)	sul1/2/3	sat2	catA/B	mph(A/E)	msr (E)	sdeBY	smfY	SVIA_D87N	gyrA_S83L	pmrB_R256G	uhpT_E350Q	ampC_T-32A	cyaA_S352T	parC_S80I	parC_E84V	marR_S3N	parE_I529L	ptsI_V25I

Clade/species	aph(6/3'/3"/4)-like aac(6')-like	aphA16	ant(2"/3")-la aac(2'/3)-like	blaGIL	blacmy	blaKPC	blaOKP-B-36	blaLAP-1	blaACT-17	blaSED	blavim	apda apda	ble/bleO	blaCTX-M	blaOXA	blaOXA-48-like	blaSHV	blaTEM	blaPDC-19a		blaDHA-1	blaFOX-5	blaSFO-1	blaCFE	blaVEB-3	blaCARB-2	tet(A/B/C/D/Y)	vat	armA	mdtM	ere(A)	emrD	ampC	odxy/B	arr	mcr-1/9	acrF	CropP	floR	mph(A/E)	msr(E)	mexA/E/X	sul1/2/3	gyrA(S83T/I/L)	parC(S80I/E84V)	cyaA_S352T	parE(S458A/I529L)	marR S3N	uhpT_E350Q	ntel V251
Ci E. 8 Klei								_																							1																			
∢															-		3				-																	_												
B2 B1				-																	_										_					_														
E B B																-				-			-		_																									

E. hormaechei N018.G-23||stool||USA: Saint Louis, MO||Human E. hormaechei WCHEH090026||2017||China: Chengdu, Sichuan||Human E. hormaechei WCHEH090015))2017))China: Chengdu, Sichuan))Human

_____ Streptomyces sp. MUSC164

E. hormaechei UBA3514||metal||USA:New York City E. hormaechei strain TUM10687||ST78||Stool||2010-08-23||Japan||Human E. hormaechei strain TUM10666||ST78||Stool||2010-07-09||Japan||Human E. hormaechei strain TUM10662||ST78||Urine||2010-07-05||Japan||Human E. hormaechei strain TUM10680||ST78||Nasopharynx||2010-08-17||Japan||Human E. hormaechei strain TUM10691||ST78||Stool||2010-08-24||Japan||Human ⊂. hormaechei strain TUM10686||ST78||Stool||2010-08-23||Japan||Human

h ho

A

A

Α

Α

А

Clade	blaACT-15	blaSHV	blaCMIY	blaCTX-M	blaTEM-1	blaOXA-1	blaOXA-48	blaDHA-1	blaNDM	blaLAP	blaFONA	blaSFO-1	blaIMP	blaVIM-1	blaKPC	blaVEB-1	ble-O/-sh	aph(3'/3'')-Iike
A																		
B																		
											•							

Cluster	blaUMP blaMIR-21	blaTEM-15 blaTEM-15 blaCTX-M blaCTX-M blaOXA-48	blaXTML5-1 blaXTML1 blaNDML1 blaCARB-2 blaKPC	aph(3''/3')-Iike aph(3''/3')-Iike aac(3)-Iike aac(6')-Iike blaFONA	fosA arr-3 mcr-9.1 dfrA aph(2'')-IIa	ere(A) tet(A/B/C/D/G) sat2 sul1/2 oqxA/B/D/S floR	rmtC/E armA mph(A/E) cmlA erm ermB1

Clusters	blaLEN	ble	blaOKP-A/B	blaSHV	blaCTX-M	blaTEM	blaOXA	blaOXA-181	blaCMY-2	blaKPC	blaDHA-1	blaNDM-1	dfrA	erm(B)	emrD	fosA	floR	oqxA/B	qnrB/S	pmrB_R256G	sat2	sul1/2	tet(A/B/C/D/G)	catA/B	ant(2")-la	aac(3)-lla/d	aac(6')-Ib-like	aph(3'/3")-like	aph(6)-Id	arr-2/3	cmIA5	aadA	gyrA (D87A/Y/N S83I/F/Y)	parC (S801/E84K)	rmtB/F1	mph(A)
III IV V									I																. ,											
VI														I						•														I		
VII						i I								I I 						•														I		
								I			L3			l.											í.			<u>N-</u>		í.	1			I		
VIII																									1 1	6									ļ	
											1																				a a					

Clade	blaLEN	blaLAP-1	blaOKP-A	blaKPC-2/3	blaCMY	blaCTX-M	blaSHV	blaOXA-181	blaTEM-1	blaOXA	blaNDM-9	ble	arr-2/3	aadA1	dfrA	erm(B)	emrD	fosA	oqxA/B	qnrB/S	rmtF1	floR	sat2	sul1/2	tet(A/B/C/D)	catA1	ant(2")-la	aac(3)-IIa	aph(3'/3'')-like	aph(6)-Id	aac(6')-like	cmIA5	gyrA(S83I/F/Y D87A/N/Y)	parC(S80I/E84K)	pmrB_R256G
) 												
																																1			
																						l													•
IV																												0)		C.					
					I					U					_	L										ı						Ľ		I.	
V																							,								Ļ				
\/										1																	1								
VI																																			
VII					I			19		1 E																						I			
										1)		L.					i.					

140 160

