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Tweet: Global E. hormaechei, C. freundii, P. mirabilis, P. stuartii & P. rettgeri strains
contain multiple resistance mechanism to important and reserved antibiotics in globally
circulating clones. These portend the dawn of pandrug resistance and a return to the pre-

antibiotic era.

Running head: Global phylogenomics of resistant Enterobacteriaceae

Highlights/Importance

Citrobacter spp., Enterobacter hormaechei subsp., Klebsiella variicola and Proteae tribe
members are rarely isolated Enterobacteriaceae increasingly implicated in nosocomial
infections. The global phylogenomics, evolution, geographical distribution and resistome
repertoire of these species found them to be globally distributed, being isolated from human,
animal, plant, and environmental sources. E. hormaechei subsp., C. freundii, Proteus
mirabilis, Providencia stuartii, Providencia rettgeri and Morganella morganii contained
multidrug-resistant clades that harboured resistance to clinically important reserved
antibiotics, portending the dawn of pandrug resistance and a potential acceleration of the

post-antibiotic era.
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Abstract

Background. The global epidemiology and resistomes dynamics of multidrug-resistant
Citrobacter spp., Enterobacter hormaechei, Klebsiella variicola, morganella morganii,
Proteus mirabilis and Providencia spp. have not been described, despite their importance as

emerging opportunistic clinical pathogens.

Methods. The genomes of the above-mentioned organisms were curated from PATRIC and
NCBI and used for evolutionary epidemiology, phylogeography and resistome analyses. The
phylogeny trees were drawn using RAXmL and edited with Figtree. The resistomes were

curated from GenBank and the phylogeography was manually mapped.

Results and conclusion. Mcr-9 and other mcr variants were highly prevalent in E.
hormaechei subsp. and substantial in C. freundii whilst KPC, OXA-48, NDM, IMP, VIM,
TEM, OXA and SHV were abundant in global E. hormaechei subsp., Citrobacter freundii, P.
mirabilis, P. stuartii and P. rettgeri clones/clades. Species-specific ampCs were highly
conserved in respective species whilst fluoroquinolones, aminoglycosides, macrolides,
fosfomycin, chloramphenicol, tetracycline, sulphamethoxazole and trimethoprim resistance
mechanisms were abundantly enriched in almost all clades of most of the species, making
them extensively and pandrug resistant; K. variicola, C. amalonaticus and C, koseri had
relatively few resistance genes. Vertical and horizontal resistome transmissions as well as
local and international dissemination of strains evolving from common ancestors were
observed, suggesting the anthroponotic, zoonotic, and food-/water-borne infectiousness of
these pathogens. There is a global risk of pandrug resistant strains escalating local and
international outbreaks of antibiotic-insensitive infections, initiating the dawn of a post-

antibiotic era.
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Introduction

Antibiotic resistance is mainly disseminated via horizontal and vertical transmission through
mobile genetic elements such as plasmids and transposons and through clonal and multiclonal
expansion of same species ' °. Conjugative plasmids have been implicated in the transmission
of several resistance determinants within and across species, resulting in the presence of same
or very similar resistomes in same and different species and clones "*"~°. Thus, the
emergence of plasmid-borne resistance genes is always a cause for concern as they help
breach the species barrier and shuttle resistance genes (ARGs) from commensals and non-

3,4,10,11

pathogenic bacteria to pathogenic ones or vice versa . Such has been the case with the

emergence and rapid spread of extended-spectrum B-lactamases (ESBLs) viz., TEM, SHV,
OXA and CTX-M, carbapenemases such as NDM, IMP, VIM, KPC and GES, the mobile
colistin resistance gene mcr-1 (to mcr-10) and recently, the mobile tigecycline resistance

gene, tet(X) ', Thus, such conjugative plasmids influence the genomic plasticity of several

related and unrelated species and genera of bacteria ''*2!,

Coupled with plasmid-borne dissemination of ARGs is the selection and expansion of

11,21

specific drug-resistant clones ', which quickly spread under antibiotic pressure to

overpopulate their environments, facilitating their survival and subsequent spread to other
environments '****_ In cases where such clones harbour resistance plasmids, their expansion

almost always lead to the concomitant replication and intra-clonal as well as inter-clonal

4,5,7.8,

spread of such plasmids %25 Thus, as such clones are disseminated through contact,

food, water, farms, hospitals, and the environment, they carry with them these resistance

6,26-28

plasmids to colonize new hosts and environments . It is thus not surprising to have same
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clones hosting the same plasmids, contain the same resistomes * *"**. This explains the
presence of multi-drug resistance (MDR) in particular international clones such as Klebsiella

pneumoniae ST258 and E. coli ST113 '3,

Hence, tracing the phylogeography of clones and their associated resistance genes is highly
critical in epidemiology and public health as it provides necessary data to contain the further
spread of ARGs ****3'In this work, the global evolutionary epidemiology and resistome
dynamics of clinically important but relatively less isolated Enterobacteriaceae pathogens are
described ®. It is notable that most of the recently emerged or novel resistance genes in
bacteria have occurred in Enterobacteriaceae more than in any other family of bacteria,
making Enterobacteriaceae particularly important medically **~>*°. These include ESBL-,
carbapenemase-, mcr- and tet(X)-producing producing Enterobacteriaceae, which have been
classified by the WHO as high and critical priority pathogens due to their implication in high
mortalities and morbidities ****. Although Citrobacter spp., Enterobacter hormaechei,
Klebsiella variicola, Morganella morganii, Proteus spp. and Providencia spp. are not mostly
reported as Escherichia coli, Klebsiella pneumoniae, and Salmonella enterica, they have been
associated with multiple resistance and clinical fatalities >"'****3* Due to the transferability
of resistance plasmids between members of the Enterobacteriaceae, the global resistome
epidemiology of these six genera is important as they could be eventually transferred to

. . - 11,14,21,2535.36
commonly isolated Enterobacteriaceae species ~ * 77 .

Results
Included genomes

A total 0f 2,377 genomes from C. freundii (n=569 genomes), C. koseri (n=82 genomes), C.
amalonaticus (n=35 genomes), E. steigerwaltii and E oharae (n=121 genomes), E.

xiangfangensis (n= 90 genomes), E. hormaechei (n=563 genomes), K. variicola (n=574
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genomes), M. morganii (n=59 genomes), P. mirabilis (n= 156 genomes), and Providencia
spp. (n=128 genomes) were obtained from PATRIC and NCBI databases as at January 2020
and used for downstream analyses (Tables S1-S3). Included in C. freundii, C. koseri, E.
xiangfangesis, K. variicola and Providencia spp. genomes were genomes of other Gram-
negative bacterial species or genera that were initially classified within these respective
species but later reclassified by NCBI’s ANI (average nucleotide identity) analysis. The
genomes of these reclassified species were however maintained and included in the resistome

analyses to serve as controls for comparison (Tables S1-S3).

The genomes were mainly isolated from human specimens, followed by animal (including
food animals), plants (including food crops) and environmental specimens. The human and
animal specimens used included urine, blood, stool, catheter tip, swabs etc. whilst the
environmental specimens used included soils, hospital environments, water, wastewater,
sinks etc. (Tables S1-S3). In all, these genomes were obtained from 67 countries globally,
with the USA having the most genomes for all species: C. freundii/spp. (USA=233,
China=34, France=14, Spain=11); C. amalonaticus (USA=17); C. koseri (USA=55); E.
steigerwaltii/oharae (USA=40, Japan=15); E. hormaechei (USA=142, China=78, Japan=72,
France=13, UK=10); E. xiangfangensis (USA=50, China=14, India=12); K. variicola
(USA=289, Germany=50, China=24, Bangladesh=23); M. morganii (USA=16); P. mirabilis

(USA=38, France=27, China=17); Providencia spp. (USA=61).

C. freundii, the only species among the species included in this analysis to have an MLST
scheme, had 84 different clones or sequence types (STs). ST100 (n=51), ST22 (n=51), ST62
(n=18), ST11 (n=14), ST299 (n=11), ST8 (n=10), ST114 (n=8), and ST9I8 (n=8) were the

commonest clones.

Species epidemiology
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Citrobacter species

Amongst the C. freundii genomes were other Citrobacter spp. such as C. werkmanii, C.
youngae, C. brakii, C. portucalensis etc. C. werkmanii were isolated from humans, sprouts,
and sinks whilst C. brakii were obtained from humans, vegetables, and hospital
environments. Some C. werkmanii and C. brakii strains were found in USA, Germany, and
India (Fig. S1A-B). C. koseri were mainly found from humans and from a mouse (clade B2)
(Fig. S1IA-B). A Citrobacter spp. (clade A) outbreak was observed in the US (Texas, Boston)
and Mexico (Fig. SIA-B). C. portucalensis of the same clade (but different clones) were
found in Nigeria (vegetables) and Brazil (turtle) as well as from effluents (UK), humans
(China), chives, carrots and salad (Germany); these clustered in C. freundii clade B1. C.
freundii strains of different STs and countries clustered together into clades, showing the
wide distribution of strains from the same ancestor (or of close evolutionary distance); they

were isolated from humans, plants, animals, and the environment (Fig. 1 & S1A-B).

C. werkmannii, C. brakii and C. youngae clustered within C. freundii clade A whilst C.
portucalensis and C. youngae, were clustered in clade B; C. koseri clustered in clade B3 of C.
freundii (Fig. 1 & S1A-B). C. freundii clades B2 and B3 had a richer resistome than clades A
and B1, although blacmy, gnr, sull/2, aac(6’/3”)-like ARGs were common in all the clades;
mph(A/E), catAB, dfrAB, aadA and blargym were common in clades B2 and B3. Important
ARGs such as mcr, blagpc, blactxm, blanpm, blayiv, and blapxa-as were relatively rare and
mainly found in clades B2 and B3 than in A and B1. Comparatively, other Enterobacteriaceae
species (E. coli, K. pneumoniae, and S. marcescens) had strains with richer resistomes
diversity than C. freundii clades A and B1, including chromosomal mutations and MDR
efflux pumps. However, Clades B2 and B3 had comparable resistome diversity and
abundance to the above-mentioned Enterobacteriaceae species, in which CMY was well-nigh

absent except in E. coli (Fig. 1).
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A local outbreak of C. braakii was observed in the UK (in humans), with closely related
strains being isolated from biosolids (Canada), carrots (Germany), chicken (China) and beef
(Canada) (Fig. STA-B). C. amalonaticus was also found in humans, animals, plants and the
environment (Fig. 2): blacmy was not common in this species, but blasgp and OgqxA/B were
almost conserved in clades B1 and C, with clade B2 (all from France) having the richest
resistome repertoire that included blargy, blasyy, blanpm and mer-9.1 (Fig. 2). C. koseri had
a relatively limited resistome diversity, with blayar .12 (clade B2), blacko (clade B3) and
fosA7 (clade B2) being the commonest ARGs. Comparatively, the other Enterobacteriaceae
species (e.g. E. coli, K. pneumoniae, Enterobacter spp., Serratia spp., and Providencia spp.)

had richer resistome diversity than C. koseri (Fig. 3).

Enterobacter species

The resistomes of E. steigerwaltii and E. oharae were extraordinarily rich and diverse,
although clade A of E. steigerwaltii had lesser resistome abundance and diversity compared
to clades B and C (Fig. 4). E. oharae only clustered in clade B of E. steigerwaltii and had
most blacrx.m, blaspy, blanpwm, blaoxa.as and blayiy ARGs than E. steigerwaltii clade C.
blasct was present in almost all Enterobacter spp. strains whilst other AmpCs such as blaj ap,
blasco.1, blasro, blarus, blapua, and blacars were virtually absent. E. cloacae strains
clustered closely with E. steigerwaltii clades B and C. overall, E. steigerwaltii and E. oharae
strains were richly endowed with clinically important ARGs including carbapenemases,
ESBLs, aac(6°)-like, aac(3°)-like, aph(3 /3 ”)-like, aadA, dfrA, catA, fosA, 0gxAB,
gnrA/B/S/D, sul1/2, and tet(A/B/D). Mcr-9 genes were particularly abundant in clade B than

in clades A and C of E. steigerwaltii/cloacae (Fig. 4).

E. cloacae strains clustered with all E. xiangfangensis strains except clade A1, from which it

was evolutionarily distant (Fig. 5). ARGs such as blascr, catA/B, OgxA/B and fosA were
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169  universally present in almost all the E. xiangfangensis and E. cloacae strains. Furthermore, E.
170  xiangfangensis clade A1 had the least ARGs diversity and abundance whilst E. cloacae Al
171  and the remaining E. xiangfangensis (clades A2 and B) were richly endowed with multiple
172 ARGs such as blagpc, mer-9, blacrx.m, blaoxa, blanpwm, blargm, and genes mediating

173 resistance to fluoroquinolones (aac(6°’/3”)-like, gnrA/B/S etc.) and aminoglycosides (armA,
174  rmtC/G, aadA, aph(4)-, aph(3°/3”)- and aph-(6’)-like) as well as tet (A/B/D), dfrA, and arr
175  (particularly in clades A2 and B). Thus, the resistomes diversity and abundance of E.

176  xiangfangensis and E. cloacae were comparable to that of E. oharae and E. steigerwaltii (Fig.

177 4-5).

178  An E. hormaechei outbreak was observed in Germany in 2017, evolving with the spread

179  (clade B) (Fig. 6 & S2). E. steigerwaltii and oharae were mainly isolated from humans whilst
180  E. xiangfangensis and E. hormaechei were from humans, plants (E. xiangfangensis from rice
181  in India), animals and the environment. Strains of closely related (i.e. close evolutionary

182  distance) E. hormaechei in clade B were from the US, South Africa, Colombia, China,

183  Germany, Australia and Lebanon from humans, animals, and plants (Fig. 4-6). Other closely
184  related E. hormaechei strains from humans, animals, plants, and the environment were found
185 in different countries, showing a gradual evolution of strains emanating from a common

186  ancestor and spreading across countries through different hosts. These observations were

187  made in E. hormaechei clades B and C, and represented local and international outbreaks

188  spanning UK, USA, China, Serbia, Japan etc. (Fig. 6 & S2).

189  Moreover, blascrt, f0SA, OgxA/B and catA/B were almost conserved in almost all the clades
190  of E. hormaechei. As observed with the other E. hormaechei subsp. (oharae, steigerwaltii
191  and xiangfangensis), E. hormaechei clades B and C were richly endowed with ARGs than
192  some clade A strains (except clade A in Fig. S2A). Specifically, clades B and C strains were

193  relatively enriched with blargm.1, blaoxa, blacrx.m, aph(37/37)-like, aac(3’)-like, aac(6’)-like,
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dfrA/B, mcr-9, arr, gnrA/B/S, sul-1/2, and tet(A/B/C/D). Further, clade B was mostly rich in
blaxpc and blanpym whilst clade C was rich in blanpym and ble. A substantial number of clade

A strains also had mcr-9 and blargy (Fig. 6 & S2).

E. oharae was evolutionarily closer to E. xiangfangensis, clustering on the same branches,
with a relatively few E. oharae strains clustering with E. steigerwaltii. However, E.
steigerwaltii was mostly distant from E. oharae and E. xiangfangensis, with a few E.
xiangfangensis strains (from rice in India) clustering within E. steigerwaltii clades A and C
(Fig. 2SB). Figure S2B summarises the ARGs in E. hormaechei and its subspecies: blaacr,
fosA, OgxAB, qnrA/B/DIS, and catA/B were conserved whilst blapxa, ble, blasyy, blargwm,
blakpc, blanpm, blayiv, mer, tet, mph(A), sul-1/2, dfrA, and fluoroquinolone and

aminoglycoside ARGs were richly abundant, particularly in clusters IV, V and VII.

K. variicola

K. variicola strains were isolated mainly from humans, with some being from animals, plants,
and the environment. On the individual branches/clades were closely related strains with very
close evolutionary distance but disseminated across countries, suggesting international
dissemination of that clade and showing little evolution during the spread from host to host,
e.g., clades A3, A4, A5, A6, B1, B2 and C (Fig. 7 & S3). As well, local outbreaks of closely
related strains in the USA, Bangladesh, Canada, and Germany were observed. A
reassessment of the K. variicola tree with genomes of K. pneumoniae and K.
quasipneumoniae largely confirmed the initial clustering of the K. variicola strains, with only

a few rearrangements of some strains within different clades (Fig. S3A and S3B).

Notably, K. variicola had fewer resistome diversity and abundance than Citrobacter spp.,
Enterobacter spp., and K. pneumoniae spp. Conserved within the K. variicola genomes were

emrD, fosA, OgxAB and bla; gn.o, whilst the other ARGs were sparse. Whilst blasyy was
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conserved in K. pneumoniae, it was virtually absent in K. variicola; further, bla; gn was
present in the latter but absent in the former. K. variicola clade B2 strains (on branch VIII),
specifically those from Bangladesh, had richer and more diverse resistomes than the other K.
variicola clades/clusters. Whilst mcr and blaxpy were virtually absent in these genomes,
blakpc occurred in substantial abundance. These suggest that K. variicola is least likely to be
MDR and/or harbour ESBLs, carbapenemases, mcr and other clinically important ARGs

compared to other Enterobacteriaceae species (Fig. 7 & S3).

M. morganii

There were three M. morganii clusters/clades viz., A, B and C, which were mainly from
humans with a few in clades A and C being from animals (Fig. 8). Within each clade are
closely related strains with very close evolutionary distance that were distributed across
several countries; indeed, strains of the same clone were found in different countries,
suggesting international dissemination of the same clones. The branching order of the trees
within each clade shows the gradual evolution of the strains as they moved from host to host.
blapna and catA/B genes were almost conserved in almost all the M. morganii genomes.
Other highly abundant ARGs in the M. morganii strains were sul-1/-2, tet(A/B/D/Y), blaoxa.-
1, ble, dfrAl, aadA, aac(3)-like and aph(3°/3”)-like. Notably, clade B had more ARG
diversity and abundance than clade C and A; clade A had the least diversity and abundance of

ARGs (Fig. 8).

P. mirabilis

P. mirabilis clustered into three major clades and included isolates from humans, animals,
and the environment. Within the three clades were sub-clades consisting of closely related
strains from the same as well as different countries, showing local and international outbreaks

involving human and animal hosts, and in some cases environmental mediators (Fig. 9).

10
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Specifically, local outbreaks were seen in the USA (clades A3, B2 and B3), France (clade
C2) and Japan (C3) whilst international dissemination of clades A2, A3, A4, B, C2 and C3
were observed. Clade C2 had the richest abundance of resistomes, with all the members
having a uniform/conserved diversity of the same ARGs, except for blactx.m, blaoxa, blarem,
and Inu(F/G). Clade C3 had the 2" most abundant but more diverse ARGs than C2. Notably,
clade B and its subclades had lesser ARGs than clades A and C. CatA and tet(A/B/D/Y)
ARGs were virtually conserved in all the clades whilst aadA, aac(3°)-like, aph(3 /3 ”)-like,
aph(6°)-like, dfrA7, sat2, and sul-1/2/3 were substantially prevalent in all the clades. In
particular, blacarg> and florR were highly conserved in clade C2; florR was however less
abundant than blacarg. Notably, mcr was almost absent except in a few strains in B3. As
well, blactx-m, blacmy, blanpm, blaoxa-1, blarem and ble-O/Sh were mainly found in clades A
and C3, with traces in B and C1. Thus, ESBLs, carbapenemases and mcr genes were

relatively less common in P. mirabilis strains, compared to other Enterobacteiaceae (Fig. 9).
Providencia species

There were five Providencia spp. viz., stuartii, rustigianii, alcalifaciens, heimbachae, and
rettgeri, with P. rettgeri being most isolated and branching into two clades, A and B (Fig.
10). The other species had single clades. Providencia spp. were isolated from animals,
humans, and the environment. Highly similar strains of the same species were found across
countries (P. stuartii, P. alcalifaciens, P. heimbache and P. rettgeri) and within countries (P.
rettgeri clade A). The distinction between the various species of Providencia was depicted by
the clustering patterns on the tree as strains of the same species clustered together;
Providencia spp. was closest evolutionarily to S. marcescens whilst E. coli was closest to
Citrobacter spp.,and E. hormaechei . As well, K. pneumoniae, K. aerogenes, and K.

michiganensis clustered together with relatively short evolutionary distance (Fig. 10).
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The other Enterobacteriaceae species had more ARGs than Providencia spp. Within
Providencia spp., P. stuartii and P. rettgeri were most endowed with richer and more diverse
resistomes whilst P. alcalifaciens and P. rustigianii were almost bereft of ARGs. Common
ARGs within P. stuartii, were aac(2’)-1a, aph(3°)-like, blapxa, blatem, @aadAl, dfrA/B, sull,
fosA, ampC, tet and catA/B whilst P. rettgeri had aac(6’)-like, aph(3 /3 ”)-like, blasgr,
blaoxa, blanpm, @aadA, dfrA/B, OgxAB, sull, gnrA/B/D/E/S, ampC, catA/B, tet, arr, mph(A/E),
cmlA, msr(E), and Inu(F/G). Hence, P. rettgeri has the most abundant and diverse ARGs than

all other Providencia spp. (Fig. 10).

Phylogeography

North America (particularly USA) and Europe (particularly Western and Southern Europe)
had the highest concentration of the various species, followed by South East Asia, South
America (particularly Brazil and Colombia) and South Africa. There were sparse reports on
these species from Australasia, the Middle East and Africa (except South Africa) and the

Caribbean (Fig. 11).

C. freundii clade A was distributed mainly in North America, Europe, and South-East Asia
whilst clade B was found worldwide on almost all continents. C. amalonaticus clade A was
found in North America and South Korea; clade B was found in Malawi, USA, Malaysia, and
France whilst clade C was only found in Malaysia, USA and Switzerland. C. koseri clade A
(USA) and clade B (USA, Spain, UK, France, Canada, China and Malaysia) were relatively

less reported with clade B being more widely distributed globally (Fig. 11).

E. oharae strains and E. hormaechei clades A, B and C were globally disseminated, with
clade C being most widely distributed, followed by clades B and A. E. steigerwaltii clade C
was more globally distributed than clades A (USA, Japan and Europe) and B (Argentina,

USA, France and Germany). Although E. xiangfangensis was globally disseminated, the
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respective clades A (China, India, USA, S. Africa, and France) and B (France, USA, Egypt,

and China) were reported from very few countries (Fig. 11).

K. variicola strains, particularly clades B and C, were of wide geographical distribution;
clade A was found in relatively fewer countries globally. M. morganii strains were found in
North America, Europe (including Russia), and South-East Asia, with clades B and C being
found in South Africa. P. mirabilis clades A, B and C were found globally, with clade C
being reported in most countries. P. rettgeri strains had the widest global distribution and
reports from most countries among the Providencia spp., followed by P. stuartii. P. rettgeri
clade A (China, Brazil, South Africa, Colombia, and USA) was found in fewer countries than
clade B. P. stuartii strains were of global distribution whilst P. rustigianii (UK and USA), P.

alcalifaciens (USA and India) and P. heimbachae (France, China, and Germany) were not

(Fig. 11).
Frequency distribution of ARGs per species
MCR ARGs

Mcr-9.1 ARGs were the commonest mcr variants identified, with very few mcr-1 and mcr-3
being found in E. hormaechei and C. freundii (mcr-1, -3 and -10) and a single mcr-4.3 gene
being found in P. rettgeri. Notably, the highest prevalence of mcr-9 was in E. hormaechei
(n=67 mcr-9 genes), E. steigerwaltii/oharae (n=32 mcr-9 genes) and E.
xiangfangensis/cloacae (n=19 mcr-9 genes), followed by C. freundii (n=19), C. amalonaticus

(n=5) and other Citrobacter spp., some of which had very few or no mcr genes (Fig. S4-S9).

Carbapenemases

One of the most prevalent carbapenemase among the species was KPC, with KPC-2 (n=123),
KPC-3 (n=97), KPC-4 (n=14), and KPC-6 (n=1) being common. KPC-2 was higher in all the

species except in E. xiangfangensis for which KPC-3 was more abundant (n=35) than KPC-2
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(n=9). KPC was most prevalent in E. hormaechei/oharae/steigerwaltii/xiangfangensis and C.
freundii strains whilst C. amalonaticus, C. koseri, and Providencia spp. had no KPC ARGs.
After Ambler class A KPC, Ambler class D OXA-48-like serine carbapenemases (n=65)
were also very prominent in all species except C. amalonaticus, E. xiangfangensis and K.
variicola, with other 0XA-48 variants such as OXA-181 (n=1, M. morganii) and OXA-396
(n=1, P. rettgeri) being relatively scarce. C. freundii (n=43), E. hormaechei (n=10), E.
oharae/steigerwaltii (n=9) and C. koseri (n=3) had OXA-48 genes whilst OXA-58 (n=2) and
OXA-23 (n=23) were only found in P. mirabilis. Other class A serine carbapenemases i.e.,

GES-5 (n=1, M. morganii) and IMI-2 (n=1, E. hormaechei), were also rare (Fig. S4-S9).

NDM was the commonest class B carbapenemase (n=159), followed by IMP (n=97) and
VIM (n=83). NDM-1 (n=137) was the most prevalent variant and was found in E.
hormaechei (n=68), C. freundii (n=15), E. steigerwaltii (n=13), Providencia spp. (n=12), P.
mirabilis (n=10), E. xiangfangensis (n=6), C. amalonaticus (n=5), M. morganii (n=5), and K.
variicola (n=3), with NDM-5 (n=16; 12 in E. hormaechei, 3 in E. xiangfangensis, and 1 in P.
mirabilis), NDM-7 (n=3 in E. hormaechei) and NDM-9 (n=3 in K. variicola) being less
prevalent. IMP-1 (n=71; 67 in E. hormaechei and 4 in C. freundii), IMP-8 (n=14; 13 in C.
freundii, 1 in E. steigerwaltii), IMP-4 (n=9; 5 in C. freundii, 4 in E. hormaechei), IMP-27
(n=2 in P. mirabilis) and IMP-13 (n=1 in E. oharae) were the identified variants. VIM-1
(n=65; 26 in C. freundii, 14 in E. steigerwaltii, 21 in E. hormaechei, 1 in E. xiangfangensis, 2
in Providencia spp., 1 in P. mirabilis), VIM-4 (n=12; 5 in in E. steigerwaltii, 5 in E.
hormaechei, 2 in C. freundii), VIM-2 (n=2 in Providencia spp.), VIM-31 (n=2; E.
steigerwaltii and E. hormaechei), VIM-5 (n=1 in E. hormaechei), and VIM-67 (n=1 in E.

hormaechei) were identified in the strains (Fig. S4-S9).

ESBLs and ampCs
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TEM was the commonest ESBL and TEM-1 was the most common variant to be identified in
all species; particularly, TEM-1 was most abundant in Enterobacter spp. and C. freundii.
OXA (particularly OXA-1, -9, and -10), CTX-M (particularly CTX-M-15) and SHV
(particularly SHV-12) were also common in almost all species in a descending order of
prevalence, but were very abundant in Enterobacter spp., specifically E. hormaechei; C.
koseri, C. amalonaticus, P. mirabilis, and M. morganii had relatively low abundance of SHV,
OXA and CTX-M genes. Other ESBLs genes such as blasco, blapap, blayes, blarvs, blasro,

blasms, blacars, bla etc. were also rare in the various species (Fig. S4-S9).

AmpC ARGs were basically strain-specific, with ACT, LEN, CMY, DHA, CKO/MAL and
SED being conserved in Enterobacter spp., K. variicola, C. fruendii, M. morganii, C.koseri

and C. amalonaticus (except clade A) respectively; FOX was rare (Fig. S4-S9).

Aminoglycoside ARGS

ARGs mediating resistance to aminoglycosides such as aadA, aph(2”)-like, aph(3')-like,
aph(4’)-like, aac(6')-like, aac(3)-like, aph(6)-like, and ant(2")-like were abundantly
prevalent in almost all the clades of C. freundii, Enterobacter spp., and P. mirabilis and
sparsely abundant in the other species; aadA, aph(4’)-like, aac(6’)-like and aac(3’)-like
ARGs were most common. 16S rRNA Methyltransferases such as rmtB1 (E. steigerwaltii and
P. mirabilis,), rmtC/G (E. hormaechei, C. freundii and M. morganii), and armA (C. freundii,
E. xiangfangensis, P. mirabilis, P. stuartii, M. morganii and P. rettgeri) were rare (Fig. S4-

S9).

Fluoroquinolone ARGs

Aac(6°)-like, OqxAB, QnrA/B/D/S and gqepA ARGs were identified, albeit gepA (M.

morganii) was rare and OgxA was less prevalent than OgxB in all but one species. Notably,
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OQgxAB were virtually absent in C. fruendii clades. whilst chromosomal mutations in gyrAB

and parCE were only observed in K. variicola (Fig. S4-S9).

Other ARGs

Chloramphenicol ARGs, cmlA, catA and catB were found in all the species, albeit cmIA was
relatively rare in all the species whilst catA/B were conserved in Enterobacter spp. and M.
morganii; catA was more prevalent than catB. catA/B were also abundant in Citrobacter spp.,
P. mirabilis and Providencia spp. (Fig. S4-S9). Sulphamethoxazole-trimethoprim ARGs, sul-
1/2/3 and dfrA, were enriched in Providencia spp., P. mirabilis, M. morganii, Enterobacter
spp., C. koseri (dfrA was virtually absent), C. amalonaticus clade B2, and C. freundii. Sull
was more prevalent than Sul2, with Sul3 being relatively rare whilst the dfrA variants were
remarkably diverse. Indeed, both sull, sul2 and/or sul3 as well as several dfrA variants were

present concurrently in some single strains (Fig. S4-S9; Tables S2).

Several tetracycline ARGs such as tet(A), tet(B), tet(C), tet(D), tet(G), tet(J), tet(S), tet(Y),
and tet(41), were present in all the species. Notably, tet(A), tet(B), and tet(D), were highly
enriched in the various genomes with a descending order of frequency; tet(J) was most
prevalent in P. mirabilis (Fig. S4-S9). fosA variants were present in all the species except M.
morganii, but were most enriched and conserved in Enterobacter spp. K. variicola, P. stuartii
and P. rettgeri. As well, ere(A), emr(D), erm(B), msr(E), mph(A) and mph(E) macrolide
ARGs were common in the various species, with mph(A) being richly abundant; mph(E) and
msr(E) were enriched in C. freundii, Providencia spp. and P. mirabilis, emr(D) was abundant
in K. variicola whilst ere(A) was abundantly enriched in E. hormaechei and E.
xiangfangensis. Rifamycin ARG, arr, was identified in the various species, represented by

arr-3 arr-2 and arr-1 in all the species (Fig. S4-S9).

Discussion
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Among Gram-negative bacterial species, Pseudomonas aeruginosa, Acinetobacter
baumannii, and Enterobacteriaceae such as K. pneumoniae, E. coli, S. enterica, Vibrio
cholerae, and Shigella spp. are commonly isolated and implicated in nosocomial
(anthroponotic), zoonotic and water/food-borne infections with MDR, extensively and
pandrug resistant (XDR and PDR respectively) phenomes 426283738 However, other less
isolated Enterobacteriaceae species such as Citrobacter spp., Enterobacter hormaechei
subsp., K. variicola, P. mirabilis, M. morganii and Providencia spp., are increasingly being
implicated in MDR, XDR and PDR infections globally as opportunistic pathogens "****3%~
1 We show herein, that C. freundii, Enterobacter hormaechei subsp. hormaechei,
xiangfangensis, oharae and steigerwaltii, and Proteeae strains harbour multiple resistance
mechanisms that can make them MDR, XDR and PDR pathogens. More concerning is the
global distribution and multiple (human, animal, plants and environmental) specimen sources

of these strains, which suggest that they can cause anthroponotic, zoonotic and food- and

water-borne infections 2.

Hence, these opportunistic pathogens demand more attention than they have been given
hitherto as the rich resistome repertoire identified in their genomes makes them reservoirs of
ARGs ""'**'8 Moreover, being intestinal denizens and commensals, they can easily share
these ARGs with facultative and obligate pathogens of humans and animals *****° Further,
their presence on plants and the environment further suggests that they can share their ARGs
with food-borne and water-borne pathogens ***°. Fortunately, the E. xiangfangensis strains

found in rice from India had very few ARGs, albeit a few had multiple ARGs (Fig. S2B).

Of greater concern is the rich resistome repertoire and abundance of globally distributed E.
hormaechei subsp. strains. Specifically, E. hormaechei subsp. contained clinically important
ARGs such as mcr-9, carbapenemases, and ESBLs, alongside fluoroquinolones,

aminoglycoside, tetracycline, macrolide, fosfomycin, chloramphenicol, rifamycin and
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sulphomethoxazole-trimethoprim resistance mechanisms. This resistome repertoire was also
seen in C. freundii, P. rettgeri P. mirabilis, P. stuartii, and M. morganii, to a relatively lesser
degree in a descending order. This is a worrying observation as colistin, carbapenems and
tigecycline are last resort antibiotics used to treat fatal bacterial infections ***. In most cases,
these antibiotics are used in combination with fosfomycin, fluoroquinolones and
aminoglycosides to treat carbapenem-resistant Enterobacteriaceae (CRE) infections *7*.
Evidently, the presence of all these resistance mechanisms to these antibiotics, could make
these species PDR and automatically qualify them as critical priority pathogens per the WHO

criteria >33,

As well, members of the tribe Proteeae viz., M. morganii, P. mirabilis, and Providencia spp.,
are known to have intrinsic resistance to colistin, tigecycline, aminopenicillins, amikacin,
tobramycin, lincosamides, macrolides, fosfomycin and first- and second-generation
cephalosporins "“"***°. Thus, the presence of additional resistance determinants in this tribe is
especially worrying. Already, there are increasing reports on the isolation of Proteeae species
in recurrent urinary tract infections (UTIs) infections, which is facilitated by the increasing
use of colistin to treat MDR infections; their broad intrinsic resistance mechanisms enable

1,7,8,49,51,52 . .
78495152 These observations evince the

them to flourish during antibiotic chemotherapy
growing threat of antimicrobial resistance globally and its associated after-effects, supporting

the need for efficient antibiotic stewardship to safeguard current antibiotic arsenals as well as

. 3,14
discover novel ones ™.

As shown in the phylogenomic and phylogeographic analyses, local and international
transmission, or outbreaks of strains within the same clone, clade and subclade i.e., of very
close evolutionary distance, were observed. Notably, these closely related strains were
isolated from humans, animals, plants, and the environment and they harboured important

resistance determinants as described above. The phylogenomics showed the gradual
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evolution of a single strain during dissemination from host to host and depict the fact that
antibiotic resistance respects no boundaries. Notably, a large part of E. hormaechei clade C
consisted of strains from human stools/urine in Japan; these were closely related strains
evolving from Spain, Taiwan, China, and Greece (Fig. 6 & S2). A similar observation was
made with strains of close evolutionary distance from humans in Nigeria, France, Spain,
Portugal, and Lebanon as well as with strains from humans, animals, and the environment in
several countries such as France, Germany, USA, Pakistan, Morocco, Lebanon, and Poland in
clade C. E. hormaechei strains were also found in desert sands in Morocco, showing their

broad and diverse niches (Fig. 6 & S2).

Uniform and non-uniform resistome patterns were seen between strains of the same
clade/clone in almost all the species. For instance, the same resistome was seen in C.
amalonaticus clade B2 (Fig. 2), E. cloacae clade B (Fig. 5) and P. mirabilis clade C2 (Fig. 9)
whilst differing resistome patterns were observed in the other species and clades. This
observation supports two phenomena: firstly, the clonal expansion of strains harbouring the
same resistome repertoire on both chromosomes and plasmids and secondly, the horizontal
transmission of genetic elements bearing the same of different ARGs across clones and
species. During clonal expansion of strains, there is a concomitant replication of resistance
plasmids alongside chromosomal replication, leading to daughter cells with the same
resistome diversity 11122153 A5 well, horizontal gene transfer of ARGs between bacteria can
alter the resistome diversity and composition of daughter clones emanating from the same
ancestor '"'**'>* In this case, both phenomena are being observed, showing that both vertical
and horizontal transmission of ARGs are ongoing during the evolutionary epidemiology of

the various clades and species across the globe.

The presence of multiple ARGs in a single strain might not necessarily mean they are all

being expressed in the bacteria’s phenome as antibiotic-susceptible strains have been found to
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harbour ARGs. For instance, colistin- and fosfomocyin-sensitive Enterobacteriaceae have
have been reported in strains harbouring the mer-9 and fosA genes '>7*. Nevertheless, the
ability of these ARGs to be expressed in the presence of strong promoter or transferred to
another host with a stronger promoter for subsequent expression cannot be gainsaid >*.

Indeed, antibiotic abuse could serve as an inducer to trigger the transfer and expression of

49,55

these vast resistomes in the microbial phenomes , necessitating the importance for

judicious antibiotic use.

It is revealing to note that K. variicola, C. amalonaticus and C. koseri strains had very few
ARGs except for K. variicola clade B2 and C. amalonaticus clade B2, despite the global
distribution of K. variicola (Fig. 2-3, 7, & S3). Notably, C. amalonaticus clade B2, which
were all from France, were remarkably enriched with ARGs including blanpwm, representing a
local outbreak of XDR C. amalonaticus strains (Fig. 2). Thus, even in species with fewer
resistome diversity and abundance, there are MDR, XDR and PDR strains causing local

outbreaks.

Notably, most of the genomes included in this analysis were from the USA, Europe, and
South East Asia. This may be due to the fact that these regions have higher prevalence and
incidence of infections resulting from these pathogens or that these areas have enough
financial and technical means to undertake genomic sequencing of these isolates in periodic
surveillance studies. Specifically, genomes of these species were relatively scarce from a
large part of Russia, Middle and North-West Asia, Africa, the Caribbean and parts of South
America and Canada. Given the alarming resistome diversity and composition realised in this
analyses, it is incumbent for all nations to intensify and adopt genome-based epidemiological
studies to quickly identify the sources and reservoirs of ARGs to pre-empt outbreaks of

MDR, XDR and PDR pathogens.
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Conclusion

In conclusion, less described Enterobacteriaceae species viz., Enterobacter hormaechei
subsp. hormaechei, xiangfangensis, steigerwaltii and oharae, C. freundii, M. morganii, P.
mirabilis, P. stuartii and P. rettgeri, contain globally distributed MDR, XDR and PDR strains
that cause local and international outbreaks, transmitting through humans, animals, food,
water and other environmental media or sources. Notably, the resistome repertoire of these
relatively rare species were equally or more abundant and diverse as those of commonly
isolated species. Hence, intensified efforts should be made to increase education on antibiotic
stewardship to safeguard the potency of available antibiotics and reduce the selection and
dissemination antibiotic-resistant Enterobacteriaceae. Infection prevention and control as well
periodic genomic surveillance of communities, hospitals, farms, water bodies and the general
environment (One Health) should be undertaken to pre-empt outbreaks of MDR strains and

inform infection control measures.

Notwithstanding the revealing details obtained in this study, strains with clinically important
ARGs whose genomes are not deposited in NCBI/PATRIC or whose genomes are not
sequenced before January 2020 will be missed; hence, the information contained herein are
true up to January 2020. Nevertheless, the global phylogeography and resistome
epidemiology of these emerging opportunistic pathogens provide an important picture of the

ARGs, sources and transmission patterns of these species.

Methods

Included genomes

Genomes of Citrobacter spp. (including amalonaticus, freundii, koseri, werkmanii, brakii,
portucalensis and youngae), Enterobacter hormaechei subsp. hormaechei, xiangfangensis,

steigerwaltii, and oharae, Providencia spp. (including alcalifaciens, burhodogranariea,
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heimbachae, rettgeri, rustigianii, and stuartii) and Proteus mirabilis deposited at GenBank

(https://www.ncbi.nlm.nih.gov/genbank/) and PATRIC (https://www.patricbrc.org/) up to

January 2020 were pooled and filtered to remove poor genome sequences. These were used

for the downstream phylogenetics, phylogeography and resistome analyses.

Phylogenetics and evolutionary epidemiology analyses

Briefly, plasmid sequences, phages, poor genomes i.c., genomes with sizes below the average
genome size of each species viz., 3-4Mb, and genomes of strains that could not share at least
1000 core protein genes with all the included genomes were removed. The remaining
genomes were aligned and run through RAXmL in batches of 200 genomes to draw
phylogenetic trees using the maximum-likelihood method. A minimum of 1000 genes were
used for the alignment and a bootstrap resampling of 1000x was used.The trees were
annotated using Figtree to show their sequence type (ST), host (species), country and year of
isolation. The various clades and sub-clades within each species or genera were visually

identified based on their clustering distance and accordingly labelled.

Phylogeography

The various clades and subclades per species were manually drawn unto maps to show their
phylogeographic distribution using Paint 3D. Different colour codes were used to distinguish

between the various species and clades.

Resistome analyses

The resistomes of the included genomes were individually obtained from the NCBI Pathogen

Detection database (https://www.ncbi.nlm.nih.gov/pathogens/isolates#/search/). The

resistomes were aligned per strain and colour-coded per clade or species to show their
association per species, clone, or clade. These were then associated with the phylogenomic

trees to ascertain the resistome dynamics per clone, clade, species, and geographical location.
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Figure 1. Evolutionary epidemiology and resistome of global Citrobacter freundii isolates.
C. freundii clustered into four main clades (A, B1, B2 and B3), highlighted with distinct
colours. Clade B3 had the most resistome abundance and diversity. Strains from humans
(blue labels), animals (red labels), plants (purple/mauve labels) and the environment (green

labels) were found in the same clade/cluster. Blacyy was conserved in these genomes.

Figure 2. Evolutionary epidemiology and resistome of global Citrobacter amalonaticus
isolates. C. amalonaticus strains clustered into clades A (red highlight), B1 (green highlight),
B2 (blue highlight) and C (mauve highlight); clade B2 had very rich resistome repertoire and
were all from France, but the other clades had very few resistance genes. Strains from
humans (blue labels), animals (red labels), plants (purple/mauve labels) and the environment
(green labels) were found in the same clade/cluster. Blasgp and 0gXAB were almost conserved

in these genomes.

Figure 3. Evolutionary epidemiology and resistome of global Citrobacter koseri isolates. C.
koseri strains clustered into clades A (grey highlight), B1 (light blue highlight), B2 (orange
highlight) and B3 (mauve highlight). Strains from humans (blue labels) and animals (red
labels) were found in the same clade/cluster. Blacko and blaya; were almost conserved in

these genomes.

Figure 4. Evolutionary epidemiology and resistome of global Enterobacter
steigerwaltii/oharae isolates. E. steigerwaltii/oharae isolates clustered into clades A, B and
C, which were all obtained from humans from countries distributed across the globe. Clades

B and C had very rich resistome repertoire; blascr was conserved in these genomes..
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Figure 5. Evolutionary epidemiology and resistome of global Enterobacter xiangfangensis
isolates. The E. xiangfangensis contained E. cloacae genomes and they clustered into clades
Al, A2 and B, with clades A2 and B having rich and diverse resistome repertoire; these
clades were distributed globally from humans (blue labels) and animals (red labels). blascr

was conserved in these genomes.

Figure 6. Evolutionary epidemiology and resistome of global Enterobacter hormaechei
isolates. The E. hormaechei isolates clustered into three main clades A, B and C (with distinct
highlights) that contained strains distributed globally from humans (blue labels), and animals
(red labels), plants (purple/mauve labels) and the environment (green labels). Clades B and C

contained diverse and rich resistome repertoire. blasct was conserved in these genomes.

Figure 7. Evolutionary epidemiology and resistome of global Klebsiella variicola isolates.
The K. variicola strains clustered into nine clades viz., A1, A2, A3, A4, A5, A6, B1, B2 and
C, which were highlighted with distinct colours and were isolated from countries around the
globe. The clades contained strains distributed globally from humans (blue labels), animals
(red labels), plants (purple/mauve labels) and the environment (green labels). Besides a few
strains in clade B2, the other strains contained very few resistance genes. bla; gy was

conserved in these genomes.

Figure 8. Evolutionary epidemiology and resistome of global Morganella morganii isolates.
The M. morganii strains clustered into three clades, A (red highlight), B (light blue highlight)
and C (yellow/gold highlight), containing isolates obtained globally from humans (blue

labels) and animals (red labels).

Figure 9. Evolutionary epidemiology and resistome of global Proteus mirabilis isolates. The
P. mirabilis isolates clustered into 10 clades, A-A3, B1-B3, and C1-C3 (shown with different

highlights), which contained diverse and abundant resistomes with conserved catA and tet
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genes. The clades contained strains distributed globally from humans (blue labels), animals

(red labels), plants (purple/mauve labels) and the environment (green labels).

Figure 10. Evolutionary epidemiology and resistome of global Providencia spp. isolates. The
Providencia spp. clustered into 12 branches, with P. stuartii, P. rustigianii, P. alcalifaciens,
P. heimbachei and P. rettgeri clustering into branch VIII to XII respectively. P. rettgeri
clustered into clades A and B, consisting of globally distributed isolates. P. stuartii and P.
rettgeri contained richer and more abundant resistomes than the other Providencia strains and
contained strains distributed globally from humans (blue labels), animals (red labels), plants

(purple/mauve labels) and the environment (green labels).

Figure 11. Global phylogeography of Citrobacter freundii, Citrobacter amalonaticus,
Citrobacter koseri, Enterobacter hormaechei subsp. hormaechei, xiangfangensis,
steigerwaltii and oharae, Klbesiella variicola, Morganella morganii, Proteus mirabilis, and
Providencia spp. Most of these genomes were obtained from USA, Europe, South-East Asia
and South America in a descending order of frequency. C. freundii, Enterobacter spp., K.
variicola, and P. mirabilis had more diverse distribution across the globe. Each species is

designated with a different colour code.

Supplemental dataset 1. Raw metadata of downloaded genomes from PATRIC containing

all the data associated with each genome.

Supplemental dataset 2. Species by species tabulation and analyses of the resistomes,
specimen sources, country of isolation, MLST, Biosample accession number, and strain name

of all the genomes according to their order on the phylogeny trees.

Supplemental dataset 3. Colour-coded species by species tabulation of the resistomes,
specimen sources, country of isolation, MLST, Biosample accession number, and strain name

of all the genomes according to their order on the phylogeny trees.
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Figure S1 (A and B). Evolutionary epidemiology and resistome of global Citrobacter
freundii isolates, A and B. C. freundii clustered into four main clades (A, B1, B2 and B3),
highlighted with distinct colours. Clade B3 had the most resistome abundance and diversity.
Strains from humans (blue labels), animals (red labels), plants (purple/mauve labels) and the
environment (green labels) were found in the same clade/cluster. Blacyy was conserved in

these genomes.

Figure S2 (A and B). Evolutionary epidemiology and resistome of global Enterobacter
hormaechei isolates, A and B. The E. hormaechei isolates clustered into three main clades A,
B and C (with distinct highlights) that contained strains distributed globally from humans
(blue labels), and animals (red labels), plants (purple/mauve labels) and the environment
(green labels). Clades B and C contained diverse and rich resistome repertoire. blascr was

conserved in these genomes.

Figure S3 (A and B). Evolutionary epidemiology and resistome of global Klebsiella
variicola isolates, A and B. The K. variicola strains clustered into nine clades viz., A1, A2,
A3, A4, AS, A6, B1, B2 and C, which were highlighted with distinct colours and were
isolated from countries around the globe. The clades contained strains distributed globally
from humans (blue labels), animals (red labels), plants (purple/mauve labels) and the
environment (green labels). Besides a few strains in clade B2, the other strains contained very

few resistance genes. bla; gy was conserved in these genomes.

Figure S4. Frequency distribution of antibiotic resistance genes in Citrobacter freundii (A),

and Citrobacter species (B and C).

Figure S5. Frequency distribution of antibiotic resistance genes in Citrobacter amalonaticus

(A), and Citrobacter koseri (B).

29


https://doi.org/10.1101/2020.05.21.20109504
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2020.05.21.20109504; this version posted May 26, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

763

764

765

766

767

768

769

770

771

772

It is made available under a CC-BY-NC-ND 4.0 International license .

Figure S6. Frequency distribution of antibiotic resistance genes in Enterobacter steigerwaltii

and oharae (A), and Enterobacter xiangfangensis (B).

Figure S7. Frequency distribution of antibiotic resistance genes in Enterobacter hormaechei

(A, Band C).

Figure S8. Frequency distribution of antibiotic resistance genes in Klebsiella variicola (A, B

and C).

Figure S9. Frequency distribution of antibiotic resistance genes in Morganella morganii (A),

Proteus mirabilis (B) and Providencia species (C).
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