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ABSTRACT 

Coronavirus disease-19 (COVID-19), caused by a novel member of the coronavirus family, is a respiratory disease that rapidly 
reached pandemic proportions with high morbidity and mortality.  It has had a dramatic impact on society and world economies 
in only a few months. COVID-19 presents numerous challenges to all aspects of healthcare, including reliable methods for 
diagnosis, treatment, and prevention.  Initial efforts to contain the spread of the virus were hampered by the time required to 
develop reliable diagnostic methods. Artificial intelligence (AI) is a rapidly growing field of computer science with many 
applications to healthcare.  Machine learning is a subset of AI that employs deep learning with neural network algorithms. It 
can recognize patterns and achieve complex computational tasks often far quicker and with increased precision than humans.  
In this manuscript, we explore the potential for a simple and widely available test as a chest x-ray (CXR) to be utilized with AI 
to diagnose COVID-19 reliably. Microsoft CustomVision is an automated image classification and object detection system that 
is a part of Microsoft Azure Cognitive Services.  We utilized publicly available CXR images for patients with COVID-19 
pneumonia, pneumonia from other etiologies, and normal CXRs as a dataset to train Microsoft CustomVision.  Our trained 
model overall demonstrated 92.9% sensitivity (recall) and positive predictive value (precision), with results for each label 
showing sensitivity and positive predictive value at 94.8% and 98.9% for COVID-19 pneumonia, 89% and 91.8% for non-
COVID-19 pneumonia, 95% and 88.8% for normal lung.  We then validated the program using CXRs of patients from our 
institution with confirmed COVID-19 diagnoses along with non-COVID-19 pneumonia and normal CXRs.  Our model 
performed with 100% sensitivity, 95% specificity, 97% accuracy, 91% positive predictive value, and 100% negative predictive 
value.  Finally, we developed and described a publicly available website to demonstrate how this technology can be made 
readily available in the future.  
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1. INTRODUCTION 

The novel coronavirus Severe Acute Respiratory Syndrome 
coronavirus 2 (SARS-COV-2), which causes the respiratory 
disease Coronavirus disease-19 (COVID-19), was first 
identified as a cluster of cases of pneumonia in Wuhan, Hubei 

Province of China on December 31, 2019.1  Within a month, 
the disease had spread significantly, leading the World Health 
Organization (WHO) to designate COVID-19, a Public Health 
Emergency of International Concern (PHEIC).  On March 11, 
2020, the WHO declared COVID-19 a global pandemic.2 As 
of May 7, 2020, the virus has infected more than 3.6 million 
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people, with over 250,000 deaths worldwide.3  The dramatic 
impact the spread of COVID-19 has had on social, economic, 
and healthcare issues throughout the world has been 
reviewed.4 

Prior to the 21st century, members of the coronavirus family 
had minimal impact on human health.5  However, in the past 
20 years, outbreaks have highlighted an emerging importance 
of coronaviruses in morbidity and mortality on a global scale.  
Although less prevalent than COVID-19, severe acute 
respiratory syndrome (SARS) in 2002-2003 and Middle 
Eastern respiratory syndrome (MERS) in 2012 likely had 
higher mortality rates than the current pandemic.5  Based on 
this recent history, it is reasonable to assume that we will 
continue to see novel diseases with similar significant health 
and societal implications.  The challenges presented to health 
care providers by such novel viral pathogens are numerous, 
including methods for rapid diagnosis, prevention, and 
treatment.  In the current study, we focus on diagnosis issues, 
which were evident with COVID19 with the time required to 
develop rapid and effective diagnostic modalities. 

We have previously reported the utility of using artificial 
intelligence (AI) in the histopathologic diagnosis of cancer.6–8  
AI was first described in 1956 and involves the field of 
computer science in which machines are trained to learn from 
experience.9  Machine learning (ML) is a subset of AI and is 
achieved by using mathematical models to compute sample 
data sets.10  Current ML utilization employs deep learning 
with neural networks algorithms, which can recognize 
patterns and achieve complex computational tasks often far 
quicker and with increased precision than can humans.11–13  In 
addition to applications in pathology, ML algorithms have 
both prognostic and diagnostic applications in multiple 
medical specialties such as radiology, dermatology, 
ophthalmology, and cardiology.6  It is predicted that AI will 
impact almost every aspect of health care in the future.14 

In this manuscript, we examine the potential for AI to 
diagnose patients with COVID-19 pneumonia using chest 
radiographs (CXR) alone.  This is done using Microsoft 
CustomVision, a readily available, automated ML platform.15  
Employing AI to both screen and diagnose emerging health 
emergencies such as COVID-19 has the potential to 
dramatically change how we approach medical care in the 
future. In addition, we describe the creation of a publicly 
available website that could augment COVID-19 pneumonia 
CXR diagnosis. 

2. MATERIALS AND METHODS 

2.1 Training Dataset 

One hundred three CXR images of COVID-19 were 
downloaded from GitHub covid-chest-xray dataset.16  Five 
hundred images of non-COVID-19 pneumonia and 500 

images of the normal lung were downloaded from the Kaggle 
RSNA Pneumonia Detection Challenge dataset.17 To balance 
the dataset, we expanded the COVID-19 dataset to 500 images 
by slight rotation (probability=1, max rotation=5) and 
zooming (probability=0.5, percentage_area=0.9) of the 
original images using the Augmentor python package.18 

2.2 Validation Dataset 

Thirty random CXR images from the Veteran's 
Administration (VA) PAC system were obtained for the 
validation dataset. This dataset included ten CXR images from 
hospitalized COVID-19 patients, ten CXR pneumonia images 
from non-COVID-19 patients, and ten normal CXRs.  
COVID-19 diagnoses were confirmed with a positive test 
result from the Xpert® Xpress SARS-CoV-2 PCR platform.19 

2.3 Microsoft CustomVision 

Microsoft CustomVision is an automated image classification 
and object detection system that is a part of Microsoft Azure 
Cognitive Services.15 It has a pay as you go model with fees 
depending on your computing needs and usage.  It offers a free 
trial to users for two initial projects. The service is web-based 
with an easy to follow graphical user interface. No coding 
skills are necessary.  

2.4 Model Training 

In Microsoft CustomVision, we created a new project with the 
following setup: project type – classification, classification 
type – multiclass (single tag per image), domains – compact 
general for small size and easy export to TensorFlow.js model 
format. With the project created, we proceeded to upload our 
image dataset. Each class was uploaded separately and tagged 
with the appropriate label (covid_pneumonia, non-covid 
pneumonia, and normal lung).  The system rejected 16 
COVID-19 images as duplicates. The final CustomVision 
training dataset consisted of 484 images of COVID-19 
pneumonia, 500 images of non-COVID-19 pneumonia, and 
500 images of normal lung. Once uploaded, Microsoft 
CustomVision self-trains using the dataset upon initiating the 
program. (Figure 1) 

2.5 Website Creation 

Microsoft Azure Custom Vision was used to train the model. 
Custom Vision can be used continuously to execute the model, 
or the model can be compacted and decoupled from Azure. In 
this case, the model was compacted and decoupled for use in 
a web app. An Angular web app was created with 
TensorFlow.js. TensorFlow.js is a JavaScript library that 
enables dynamic download and execution of ML models. 
Within a user's web browser, the model is executed when an 
image of a CXR is submitted. Confidence values for each 
classification are returned. In this design, after the initial web 
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page and model is downloaded, the web page no longer needs 
to access any server components and performs all operations 
in the browser. Although the solution works well on mobile 
phone browsers and in low bandwidth situations, the quality 
of predictions may depend on the browser and device one 
uses. At no time does an image get submitted to the cloud. 

 

Figure 1. Screenshot of image datasets uploaded to MS 
CustomVision. 

3. RESULTS 

Overall, our trained model showed 92.9% precision and recall. 
Precision and recall results for each individual label were 
98.9% and 94.8% for COVID-19 pneumonia, 91.8% and 89% 
for non-COVID-19 pneumonia, and 88.8% and 95% for 
normal lung. (Figure 2) Next, we proceeded to validate the 
training model on the VA data by making individual 
predictions on 30 images from the VA dataset. Our model 
performed very well with 100% sensitivity (recall), 95% 
specificity, 97% accuracy, 91% positive predictive value 
(precision), and 100% negative predictive value. 

 

 Figure 2. Screenshot of the trained ML model performance. 

 

4. DISCUSSION 

We have successfully demonstrated the potential of using AI 
algorithms in assessing CXRs for COVID-19.  We first trained 
the Microsoft CustomVision automated image classification 
and object detection system to differentiate cases of COVID-
19 from pneumonia from other etiologies as well as normal 
lung CXRs.  We then tested our model against known patients 
from our medical center.  The program achieved 100% 
sensitivity (recall), 95% specificity, 97% accuracy, 91% 
positive predictive value (precision), and 100% negative 
predictive value in differentiating the three scenarios. Using 
the trained ML model, we proceeded to create a website that 
could augment COVID-19 CXR diagnosis.20 The website 
works on mobile as well as desktop platforms. One can take a 
CXR photo with a mobile phone or upload it from the file. The 
ML algorithm would provide the probability of COVID-19 
pneumonia, non-COVID-19 pneumonia, or normal lung X-ray 
diagnosis. (Figure 3) 

 

Figure 3. Screenshot of the website. 

Emerging diseases such as COVID-19 present numerous 
challenges to healthcare providers, governments, and 
businesses, as well as to individual members of society.  As 
evidenced with COVID-19, the time from first recognition of 
an emerging pathogen to the development of methods for 
reliable diagnosis and treatment can be months, even with a 
concerted international effort.  The gold standard for diagnosis 
of COVID-19 is by reverse transcriptase polymerase chain 
reaction (RT-PCR) technologies, but early RT-PCR testing 
produced less than optimal results.21–23  Even after the 
development of reliable tests for detection, making test kits 
readily available to health care providers on an adequate scale 
presents an additional challenge as evident with COVID-19.  

The lack of availability of diagnostic RT-PCR with COVID-
19 initially placed increased reliability on presumptive 
diagnoses via imaging in some situations.24  Most of the 
literature evaluating radiographs of COVID-19 patients 
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focuses on chest computed tomography (CT) findings, with 
initial results suggesting CT was more accurate than early RT-
PCR methodologies.22,23,25  The Radiological Society of North 
America Expert consensus statement on chest CT for COVID-
19 states that CT findings can even precede positivity on RT-
PCR in some cases.23  However, currently they do not 
recommend the use of CT scanning as a screening tool.  
Furthermore, the actual sensitivity and specificity of CT 
interpretation by radiologists for COVID-19 are unknown.23 

Characteristic CT findings include ground-glass opacities 
(GGOs) and consolidation most commonly in the lung 
periphery, though a diffuse distribution was found in a 
minority of patients.22,24,26–28  Lomoro and colleagues recently 
summarized the CT findings from several reports which 
described abnormalities as most often bilateral and peripheral, 
subpleural and affecting the lower lobes.27  Not surprisingly, 
CT appears more sensitive at detecting changes with COVID-
19 than CXR, with reports that a minority of patients had CT 
changes before changes visible on CXR.24,27   

We focused our study on the potential of AI in the examination 
of CXRs in patients with COVID-19, as there are several 
limitations to the routine use of CT scans with conditions such 
as COVID-19. Aside from the more considerable time 
required to obtain CTs, there are issues with contamination of 
CT suites, sometimes requiring a dedicated COVID-19 CT 
scanner.24,29  The time constraints of decontamination or 
limited utilization of CT suites can delay or disrupt services 
for both COVID-19 and non-COVID-19 patients.  Because of 
these factors, CXR may be a better resource to minimize the 
risk of infection to other patients.  Besides, accurate 
assessment of abnormalities on CXR for COVID-19 may 
identify patients in whom the CXR was performed for other 
purposes.24  CXR is more readily available than CT, especially 
in more remote or underdeveloped areas.29  Finally, as with 
CT, CXR abnormalities are reported to have appeared before 
RT-PCR tests became positive in a minority of patients.24 

CXR findings described in COVID-19 patients are similar to 
those of CT and include GGOs, consolidation, and hazy 
increased opacities.24,26,27,29,30   Like CT, the majority of 
patients demonstrated greater involvement in the lower zones 
and peripherally24,26,27,29,30  Most patients showed bilateral 
involvement.  However, while these findings are common in 
COVID-19 patients, they are not specific and can be seen in 
other conditions such as other viral pneumonia, bacterial 
pneumonia, injury from drug toxicity, inhalation injury, 
connective tissue disease, and idiopathic conditions. 

Applications of AI in interpreting radiographs of various types 
are numerous, and extensive literature has been written on the 
topic.31  Using deep learning algorithms, AI has multiple 
possible roles to augment traditional radiograph interpretation.  
These include the potential for screening, triaging, and 
increasing the speed to render diagnoses.  It also can provide 
a rapid “second opinion” to the radiologist to support the final 

interpretation. In areas with critical shortages of radiologists, 
it potentially can be used to render the definitive diagnosis.  
With COVID-19, imaging studies have been shown to 
correlate with disease severity and mortality, and AI could 
assist in monitoring the course of the disease as it progresses 
and potentially identifies patients at greatest risk.28  There is 
excellent potential should a rapid diagnostic test as simple as 
a CXR be able to reliably impact containment and prevention 
of the spread of contagions such as COVID-19 early in its 
course.   

Few studies have assessed using AI in the radiologic diagnosis 
of COVID-19, most of which utilize CT scanning.  Bai and 
colleagues demonstrated increased accuracy, sensitivity, and 
specificity in distinguishing chest CTs of COVID-19 patients 
from other types of pneumonia.22,32  A separate study 
demonstrated the utility of using AI to differentiate COVID-
19 from community-acquired pneumonia with CT.33  
However, the effective utility of AI for CXR interpretation has 
been demonstrated as well.14,34  Implementation of 
convolutional neural network layers has allowed for reliable 
differentiation of viral and bacterial pneumonia with CXR 
imaging.35 Evidence suggests that there is great potential in 
the application of AI in the interpretation of radiographs of all 
types. 

Finally, as mentioned, we have developed a publicly available 
website based on our studies.20  It should be stressed that this 
website is for research use only.  To utilize the website, images 
must have protected health information (PHI) removed before 
uploading. The information on the website, including texts, 
graphics, images, or other material, is for research purposes 
and may not be appropriate for all circumstances. The website 
does not provide medical, professional, or licensed advice and 
is not a substitute for consultation with a health care 
professional.  Medical advice should be sought from a 
qualified health care professional for any questions, and the 
website should not be used for medical diagnosis or treatment. 

5. CONCLUSIONS 

We have utilized a readily available, commercial platform to 
demonstrate the potential of AI to assist in the successful 
diagnosis of COVID-19 pneumonia on CXR images.  While 
this technology has numerous applications in radiology, we 
have focused on the potential impact on future world health 
crises such as COVID-19.  The findings have implications for 
screening and triage, initial diagnosis, monitoring disease 
progression, and identifying patients at increased risk of 
morbidity and mortality.  Based on the data, a website was 
created to demonstrate how such technologies could be shared 
and distributed to others to combat entities such as COVID-19 
moving forward.  Our study offers a small window into the 
potential for how AI will likely dramatically change the 
practice of medicine in the future. 
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