Currently prescribed drugs in the UK that could up or downregulate ACE2 in COVID-19 disease: A systematic review ================================================================================================================ * Hajira Dambha-Miller * Ali Albasri * Sam Hodgson * Christopher R Wilcox * Shareen Khan * Nazrul Islam * Paul Little * Simon J Griffin ## Abstract **Objective** To review evidence on routinely prescribed drugs in the UK that could up or downregulate Angiotensin Converting Enzyme 2 (ACE2) and potentially affect COVID-19 disease **Design** Systematic review **Data source** MEDLINE, EMBASE, CINAHL, the Cochrane Library and Web of Science **Study selection** Any design with animal or human models examining a currently prescribed UK drug compared to a control, placebo or sham group, and reporting an effect on ACE2 level, activity or gene expression. **Data extraction and synthesis** MEDLINE, EMBASE, CINAHL, the Cochrane Library, Web of Science and OpenGrey from inception to 1st April 2020. Methodological quality was assessed using the SYRCLE’s risk of bias tool for animal studies and Cochrane risk of bias tool for human studies. **Results** We screened 3,360 titles and included 112 studies with 21 different drug classes identified as influencing ACE2 activity. Ten studies were in humans and 102 were in animal models None examined ACE2 in human lungs. The most frequently examined drugs were Angiotensin Receptor Blockers (ARBs) (n= 55) and Angiotensin-Converting Enzyme-Inhibitors (ACE-I) (n= 22). More studies reported upregulation than downregulation with ACE-I (n=22), ARBs (n=55), insulin (n=8), thiazolidinedione (n=7) aldosterone agonists (n=3), statins (n=5), oestrogens (n=5) calcium channel-blockers (n=3) GLP-1 agonists (n=2) and NSAIDs (n=2). **Conclusions** There is an abundance of academic literature and media reports on the potential of drugs that could attenuate or exacerbate COVID-19 disease. This is leading to trials of repurposed drugs and uncertainty amongst patients and clinicians concerning continuation or cessation of prescribed medications. Our review indicates that the impact of currently prescribed drugs on ACE2 has been poorly studied in-vivo, particularly in human lungs where the SARS-CoV-2 virus appears to enact its pathogenic effects. We found no convincing evidence to justify starting or stopping currently prescribed drugs to influence outcomes of COVID-19 disease. Strengths and limitations * This review addresses a high priority patient and clinician concern * Given the limited evidence on the subject, we included human and animal models both in vivo and in vitro for a comprehensive review * This is the first systematic review specifically focussed on UK prescribed drugs that could alter ACE2 in COVID-19 disease * The heterogeneity across study designs and models meant meta-analysis was not suitable * Given the rapidly changing evidence as the pandemic progresses, it is possible that new studies have since been published. ## INTRODUCTION The coronavirus SARS-CoV-2 which causes the COVID-19 disease is a global public health emergency. It has been reported in 190 countries with 4,310,786 confirmed cases and 290,455 deaths as of 12th May 2020. Walker and colleagues from the World Health Organization Collaborating Centre for Infectious Disease Modelling predicted that in the absence of mitigation strategies, the virus would infect seven billion people and account for 40 million deaths this year alone.1 Efforts to shield the elderly (60% reduction in social contacts) and interrupt transmission (40% reduction in social contacts for the wider population) have reduced this number but further deaths are still expected.1 There is an urgent need for solutions. In the absence of a vaccination or effective treatment, there is growing interest in repurposing existing drugs for mitigation. In particular, drugs affecting the Renin-Angiotensin System (RAS) have been highlighted as potential candidates for further investigation.2,3 This is because the SARS-CoV-2 virus utilises Angiotensin-Converting Enzyme 2 (ACE2) receptors within the RAS for entry into lung alveolar epithelial cells.4 ACE2 has previously been shown to correlate with susceptibility to the SARS-CoV-1 virus, and the spike (S) glycoprotein of this new virus binds to ACE2 with even higher affinity.5,6 Theoretically, altered ACE2 activity could therefore lead to a greater susceptibility to SARS-CoV-2. It could also cause greater severity of the infection.7 Previous studies suggest that dysregulation of ACE2 activity in the lungs could promote early neutrophil infiltration and subsequent uncontrolled activation of the RAS system.8 In mice models, acute lung injury was observed in response to SARS-CoV-1 spike protein, so it is plausible that similar responses will be observed with SARS-CoV-2.9This is particularly problematic in organs containing high ACE2 such as the lungs as it may contribute to cytokine release syndrome (cytokine storm) and the subsequent respiratory failure that has been observed in those who have died from the disease.7 Many prescribed drugs in common use are known to mediate effects through the RAS pathway. Over 45 million of these prescriptions were issued in the UK last year alone, and of these, 15 million were for Angiotensin Converting Enzyme Inhibitors (ACE-I) and Angiotensin Receptor Blockers (ARBs). Acting through the RAS pathway, these drugs may impact ACE2 regulation but their role in the COVID-19 pandemic is not clear. Given the number of people that are potentially on these drugs, it has caused substantial public concern and clinical uncertainty about continuation or cessation of prescribed medications during the pandemic. Accordingly, we reviewed all existing evidence on routinely prescribed UK drugs that might alter ACE2 regulation. Understanding the drug effects on ACE2 given its role in COVID-19 disease could help reassure clinicians and the public in these uncertain times, or direct research on drugs that might attenuate or exacerbate transmission. ## METHODS Our review was conducted in accordance with preferred reporting for systematic reviews and meta-analyses (PRISMA) guidelines and our protocol was submitted for open-access publication prior to commencing our study (in press). We have also made it available in pre-print through the medRxiv manuscript processing system. ### Search Strategy A systematic search in MEDLINE, EMBASE, CINAHL, the Cochrane Library, Web of Science was conducted from inception to the 1st April 2020. The search strategy is shown in Table 1 below. The reference lists of recent reviews and included studies were screened. We also spoke to topic experts and screened OpenGrey for additional texts. No language limits or study design filters were applied. View this table: [Table 1:](http://medrxiv.org/content/early/2020/05/26/2020.05.19.20106856/T1) Table 1: Summary of search terms ### Study selection, inclusion and exclusion criteria The COVID-19 disease is still relative new and there is limited research on drug therapies specific to the virus. In the interest of being comprehensive about potential drugs acting through ACE2, we were as inclusive as possible within our study selection. We included both animal and human models (in vivo and in-vitro). Studies had to meet the following eligibility criteria: i) measures ACE2 levels, activity or gene expression, ii) includes a drug that is currently available on a UK prescription according to the British National Formulary, and iii) measures the effect of that drug against a placebo, control or sham group in an experimental design. Review articles were excluded but their reference lists were screened. Conference abstracts were included if sufficient detail could be elicited. We did not include studies in children under 18 years, or those examining drug effects in utero. ### Data extraction Four members of the team reviewed titles and abstracts for eligibility (AA, HDM, CW, SH). Full-text review, data extraction and quality assessment were carried out in duplicate using a piloted sheet. Any disagreement between authors was resolved by discussion. Data on the following study characteristics were extracted: i) drug class, ii) drug name, iii) duration of treatment, iii) effect on ACE2 level (upregulation, downregulation, no effect), iv) model (human/rat etc), v) site of ACE2 reception (lung, renal, cardiac etc;), vi) study design, vii) study population, viii) sample size and ix) country. Given the urgency of our research question during the current pandemic, we extracted information from only what was available to us in the published text. ### Quality assessment Our review includes both animal and human models therefore quality assessment was carried out separately for these studies. Human studies were evaluated using the Cochrane risk of bias tool which includes the following domains: random sequence generation, allocation concealment, blinding of participants and personnel, blinding of outcome assessment, incomplete outcome data, selective reporting, and other sources of bias.10 Each domain was scored as low risk, unclear risk, or high risk of bias. We classified the overall risk of bias as low if all domains were at low risk of bias, as high if at least one domain was at high risk of bias, or as unclear if at least one domain was at unclear and no domain was at high risk of bias. Although this tool is specific to trials, all included studies were experimental designs and we therefore felt it appropriate to use. The methodological quality of animal studies was assessed using the SYRCLE’s risk of bias tool which is based on the Cochrane risk of bias tool.11 SYRCLE’s tool includes selection bias, performance bias, detection bias, attrition bias, reporting bias and other biases. ### Data analysis Owing to the mix of study designs and models, a meta-analysis was not appropriate. Narrative synthesis methods were used. We reviewed the meta-data by tabulating the studies according to our inclusion/exclusion criteria, human/animal model, drug classes and effects on ACE2. The consistency in the number of studies and direction of any effects were considered. Where inconsistencies were identified in the effect of a drug between studies, we looked at additional data such as methods, quality and outcome measurement for potential explanatory factors. ### Patient and public involvement It was not possible to involve patients or the public in the design or conduct of our work due to the rapid timelines, but we have invited PPI representatives to help us with drafting a lay summary and in the dissemination of our findings. ## Results We retrieved 6821 studies and screened 3,360 after removing duplicates. Following title and abstract screening, 233 studies were screened by full text. We included 112 studies in the final review. The flow of studies is shown in a PRISMA diagram in figure 1 including the reasons for study exclusion at each stage. ![Figure 1:](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2020/05/26/2020.05.19.20106856/F1.medium.gif) [Figure 1:](http://medrxiv.org/content/early/2020/05/26/2020.05.19.20106856/F1) Figure 1: PRISMA flow chart explaining the study inclusion process ### Study characteristics Table 2 shows the characteristics of the included studies. These originated from 17 different countries with the most common being China (n= 36), the USA (n= 22) and Japan (n=18). There were 10 studies in humans (7 in-vitro and 3 in-vivo) (Table 3) and 102 in animal models (13 in-vitro and 89 in-vivo). Animal models included rats (n=94), mice (n=7) and canines (n=1). The sample sizes for in-vivo animal models ranged from 6 to 117. For in-vivo human studies (Table 3), sample sizes ranged from 8 to 375 but were not always reported. Participants were predominantly male and white with hypertension or diabetes, although the condition was not always stated. Most models examined ACE2 receptors in the heart or kidneys, only 5 of the 112 included studies reporting ACE2 levels in the lungs; these were all in animal models as shown in Table 2. View this table: [Table 2:](http://medrxiv.org/content/early/2020/05/26/2020.05.19.20106856/T2) Table 2: Characteristics and key findings of included studies ‘Studies reporting on multiple sites or in multiple models have been listed separately and appear more than once in the table View this table: [Table 3:](http://medrxiv.org/content/early/2020/05/26/2020.05.19.20106856/T3) Table 3: Summary of study characteristics with human models ### Effects of drugs There were 21 different drug classes examined in the included studies as shown in Table 2. Table 3 tabulates only those that have been examined in human models. The mean drug exposure period ranged from 30 mins for in-vitro studies, to 15 weeks for in-vivo studies. The most common drug classes were ARBs (n= 55) and ACE-I (n= 22). Of the 55 studies that examined ARBs, 43 reported upregulation of ACE2 levels. Most of these studies were in rat models (n= 34) and examined cardiac ACE2 levels (n= 27). For ACE-I, 17 out of 22 studies reported upregulation of ACE2. These were also mainly in rat models (n= 16) and measured cardiac ACE2 levels (n= 14). Of the five studies that assessed statins, these were all within rat models; 3 reported upregulation of ACE2, 1 reported downregulation and 1 reported no effect. Similarly, oestrogens were examined in 5 studies; 3 reported upregulation, 1 reported downregulation and 1 reported no effects. For calcium channel blockers; 2 out of the 3 studies reported upregulation of ACE2 levels and these were both in-vivo rodent models. The third study was an in-vitro human model that showed downregulation of ACE2 with a calcium channel blocker. There were 3 studies on aldosterone antagonists; all reporting increases in renal ACE2 levels within rat models. Several diabetes drugs were evaluated and found to increase ACE2. For insulin, 6 out of 8 studies reported upregulation of ACE2 (in mice and rat models). For thiazolidinediones, 5 out of 7 studies reported upregulation (6 mice/rate models and 1 of cerebral human cells in-vitro). For GLP-1 agonists both included studies reported increases in ACE2. Similarly, for the one study examining DPP4 inhibitors, it also reported an increase in ACE2. The only study measuring the effect of SGLT2 inhibitors reported a decrease in ACE2. ### Quality assessment Figure 2 shows the risk of bias across the studies using the SYRCLE’s risk of bias tool. In general, studies lacked blind allocation and outcome assessor blinding. They also frequently omitted information needed to make a thorough judgement on the risk of bias. ![](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2020/05/26/2020.05.19.20106856/F2/graphic-9.medium.gif) [](http://medrxiv.org/content/early/2020/05/26/2020.05.19.20106856/F2/graphic-9) ![](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2020/05/26/2020.05.19.20106856/F2/graphic-10.medium.gif) [](http://medrxiv.org/content/early/2020/05/26/2020.05.19.20106856/F2/graphic-10) ![](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2020/05/26/2020.05.19.20106856/F2/graphic-11.medium.gif) [](http://medrxiv.org/content/early/2020/05/26/2020.05.19.20106856/F2/graphic-11) Figure 2: Risk of bias assessment ## Discussion To our knowledge, this is the most comprehensive review of drugs prescribed in the UK that could act on ACE2 receptors and thus potentially affect COVID-19 disease. The ACE2 receptor is reported to be an essential contributor to SARS-CoV-2 entry into the nasopharynx and lungs and the subsequent inflammation that leads to severe acute respiratory distress syndrome.12,13 Our review examined drugs across human and animal models, and we found a number of studies reporting upregulation of ACE2 levels in response to ACE-I (n=22), ARBs (n=55), insulin (n=8), thiazolidinedione (n=7) aldosterone agonists (n=3), statins (n=5), oestrogens (n=5) calcium channel-blockers (n=3) GLP-1 agonists (n=2) and NSAIDs (n=2). However, these drugs were poorly studied in vivo within the lungs or nasopharynx of humans, where they are likely to matter most in influencing severity of outcomes of COVID-19 disease. We observed that the most frequent drugs to upregulate ACE2 are also those prescribed in people with diabetes or cardiovascular disease. Mortality rates from COVID-19 have been high in this group.12,14-16 Notably, these are also conditions with a high prevalence amongst Black, Asian and Minority Ethnic (BAME) groups who have had disproportionally high mortality rates from COVID-19 disease.17 To date, much of this evidence has been limited to clinical commentaries or case reports. Larger cohorts are emerging but have not yet adequately considered a range of potential confounders including co-morbidities, age, sex, deprivation or household numbers which might be more important than prescribed medication in the spread, susceptibility and severity of the disease. For example, in a cohort of 191 people who were infected with the virus in Wuhan, 87% of those who died had coronary heart disease and 47% had diabetes.18 These conditions are associated with an increased risk of death but were not considered as covariates in the analysis. Irrespective of ACE2, people with diabetes are more susceptible to worse infection as the low-grade chronic inflammation and hyperglycaemia associated with the condition results in impaired immune responses with lower IL-1, IL-6, TNF-a, and delayed mobilisation of immune cells in response to pathogens.19 This comorbidity like many other confounders, are highly relevant when examining the risk of death with COVID-19 disease. This lack of adequate adjustment for existing conditions is highlighted by Sommerstein and colleagues in their editorial on ACE-I and ARBs in COVID-19.15 They also propose that existing co-morbidities such as heart failure may be independently linked to SARS-CoV-2 transmission and severity, and the subsequent poor pulmonary outcomes that are observed in these patients. Indeed, in mice models, arterial hypertension, atrial fibrillation and type 2 diabetes have been shown to upregulate ACE2 levels irrespective of medications.20,21 Moreover, ACE2 levels have been shown to be higher in men and with increasing age.22 Most of the published data on deaths in COVID-19 disease report that males of increasing age are particularly susceptible to poor outcomes.12,23 Our review has also highlighted the variable ACE2 levels in different parts of the body with most of the existing literature focussing on renal and cardiac levels. Responses to drugs may vary depending on cell type and location. Although the lung ACE2 is important to COVID-19, it is unclear if overall COVID-19 mortality might be attenuated by cardiovascular ACE-2 activity levels. We also observed variations in ACE2 levels with drug exposure duration which was relatively short amongst included studies in our review. It is uncertain how dysregulation might continue after starting or stopping these medications. It is also unclear how the observed effects amongst included studies would translate in-vivo in humans and what the net effect on receptor access to the COVID-19 virus is; access to the receptor by the virus may be competitively inhibited by the presence of drugs which also attach to the receptor, so whether upregulation is the key factor in practice is unclear. This is particularly challenging to understand as we found a paucity of data demonstrating the effect of prescribed drugs on ACE2 in the lungs or nasopharynx, where the SARS-CoV-2 virus appears to enact its pathogenic effects. Our results therefore, do not provide convincing evidence on the role of any currently prescribed UK drugs acting through ACE2 regulation that could affect COVID-19 disease. Finally, we found a disproportionate number of studies reporting upregulation or ‘positive effects’ of drugs on ACE2, compared to studies reporting no effect or downregulation. This may reflect a publication bias that is well-established in the literature, especially amongst animal models. 24,25 ### Strengths and limitations We carried out a comprehensive and systematic search of the literature. To our knowledge, this is the first review on the subject. We did not include language restrictions but non-English language studies in the international literature might not have been indexed in the databases we searched. Given the rate of new publications on COVID-19, it is also possible that our search and results may not be up to date. Owing to the limited research on this novel virus, it was necessary to be as inclusive as possible and we therefore considered both animal and human models to look for any drugs acting through ACE2 with potential to affect COVID-19 outcomes. While this inclusive approach may offer insights, the heterogeneity across models makes it hard to interpret findings or translate them directly to patients. Although we were robust in our methodological approach to this review, we were also aware of the urgency to report our findings in the current pandemic. We therefore did not contact authors for more information about their studies beyond what was published. We observed frequent omission of information that would have allowed us to carry out a more detailed quality assessment. Had we pursued this information; the quality assessment of included papers may well have been higher. ## Conclusion We reviewed the evidence on routinely prescribed drugs in the UK that could up or down-regulate ACE2 and thus potentially affect COVID-19 disease. Our review indicates that currently prescribed drugs have been poorly studied in-vivo within the lungs of humans. Until there is better evidence, we cannot recommend starting or stopping prescribed medications during the COVID-19 pandemic. ## Data Availability Available from authors with reasonable request ## Competing Interests All authors have completed the ICMJE uniform disclosure form and confirm no financial relationships with any organisations that might have an interest in the submitted work in the previous three years, no other relationships or activities that could appear to have influenced the submitted work. ## Funding The Southampton, Cambridge and Oxford Primary Care Departments are members of the NIHR School for Primary Care Research and supported by NIHR Research funds. The University of Cambridge has received salary support in respect of SJG from the NHS in the East of England through the Clinical Academic Reserve. SJG is supported by an MRC Epidemiology Unit programme: MC\_UU\_12015/4. HDM is an NIHR Clinical Lecturer and supported by an NIHR SPCR grant for this work: SPCR2014-10043. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health and Social Care ## Ethical Approval Ethical approval is not required for a systematic review ## Data sharing No other data available ## Author Contribution HDM contributed to the design of the study, wrote the analysis plan, conducted the analysis, drafted and revised the paper. AA contributed to the design of the study, led the analysis, drafted and revised the paper. CW and SH contributed to the screening of studies, data extraction and revised the paper. NI revised the paper. SG and PL contributed to the design of the study and revised the paper. HDM is guarantor. ## Declaration The lead author affirms that the manuscript is an honest, accurate, and transparent account of the study being reported; that no important aspects of the study have been omitted. The opinions, results, and conclusions reported in this article are those of the authors and are independent from the funding sources. ## Acknowledgements We would like to thank Prof Julia Hippisley-Cox for her early contributions to this project. * Received May 19, 2020. * Revision received May 19, 2020. * Accepted May 26, 2020. * © 2020, Posted by Cold Spring Harbor Laboratory This pre-print is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), CC BY-NC 4.0, as described at [http://creativecommons.org/licenses/by-nc/4.0/](http://creativecommons.org/licenses/by-nc/4.0/) ## References 1. 1.Gt Walker P, Whittaker C, Watson O, et al. The Global Impact of COVID-19 and Strategies for Mitigation and Suppression. 2. 2.Patel AB, Verma A. COVID-19 and Angiotensin-Converting Enzyme Inhibitors and Angiotensin Receptor Blockers. JAMA. March 2020. doi:10.1001/jama.2020.4812 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1001/jama.2020.4812&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=32208485&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F05%2F26%2F2020.05.19.20106856.atom) 3. 3.Fang L, Karakiulakis G, Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? 2020. doi:10.1016/S2213-2600(20)30116-8 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S2213-2600(20)30116-8&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=32171062&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F05%2F26%2F2020.05.19.20106856.atom) 4. 4.Jia H. Pulmonary Angiotensin-Converting Enzyme 2 (ACE2) and Inflammatory Lung Disease. SHOCK. 2016;46(3):239–248. doi:10.1097/SHK.0000000000000633 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1097/SHK.0000000000000633&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F05%2F26%2F2020.05.19.20106856.atom) 5. 5.Hofmann H, Geier M, Marzi A, et al. Susceptibility to SARS coronavirus S protein-driven infection correlates with expression of angiotensin converting enzyme 2 and infection can be blocked by soluble receptor. Biochemical and Biophysical Research Communications. 2004;319(4):1216–1221. doi:10.1016/j.bbrc.2004.05.114 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.bbrc.2004.05.114&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=15194496&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F05%2F26%2F2020.05.19.20106856.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000222318700021&link_type=ISI) 6. 6.Wrapp D, Wang N, Corbett KS, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367(6483):1260–1263. doi:10.1126/science.aax0902 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjEzOiIzNjcvNjQ4My8xMjYwIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjAvMDUvMjYvMjAyMC4wNS4xOS4yMDEwNjg1Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 7. 7.Shi Y, Wang Y, Shao C, et al. COVID-19 infection: the perspectives on immune responses. Cell death and differentiation. March 2020:1–4. doi:10.1038/s41418-020-0530-3 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/s41418-020-0530-3&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=32205856&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F05%2F26%2F2020.05.19.20106856.atom) 8. 8.Sodhi CP, Wohlford-Lenane C, Yamaguchi Y, et al. Attenuation of pulmonary ACE2 activity impairs inactivation of des-arg9 bradykinin/BKB1R axis and facilitates LPS-induced neutrophil infiltration. American Journal of Physiology - Lung Cellular and Molecular Physiology. 2018;314(1):L17-L31. doi:10.1152/ajplung.00498.2016 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1152/ajplung.00498.2016&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F05%2F26%2F2020.05.19.20106856.atom) 9. 9.Kuba K, Imai Y, Rao S, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nature Medicine. 2005;11(8):875–879. doi:10.1038/nm1267 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/nm1267&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=16007097&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F05%2F26%2F2020.05.19.20106856.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000230964700033&link_type=ISI) 10. 10.Higgins JPT, Altman DG, Gøtzsche PC, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ (Online). 2011;343(7829). doi:10.1136/bmj.d5928 [FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiRlVMTCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiYm1qIjtzOjU6InJlc2lkIjtzOjE3OiIzNDMvb2N0MThfMi9kNTkyOCI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDIwLzA1LzI2LzIwMjAuMDUuMTkuMjAxMDY4NTYuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 11. 11.Hoojmans CR, Rovers MM, De Vries RBM, Leenaars M, Ritskes-Hoitinga M, Langendam MW. SYRCLE’s risk of bias tool for animal studies. BMC Medical Research Methodology. 2014;14(1):43. doi:10.1186/1471-2288-14-43 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/1471-2288-14-43&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=24667063&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F05%2F26%2F2020.05.19.20106856.atom) 12. 12.Wu C, Chen X, Cai Y, et al. Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Internal Medicine. March 2020. doi:10.1001/jamainternmed.2020.0994 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1001/jamainternmed.2020.0994&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=32167524&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F05%2F26%2F2020.05.19.20106856.atom) 13. 13.Gorbalenya AE, Baker SC, Baric RS, et al. Severe acute respiratory syndrome-related coronavirus: The species and its viruses-a statement of the Coronavirus Study Group. doi:10.1101/2020.02.07.937862 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoiYmlvcnhpdiI7czo1OiJyZXNpZCI7czoxOToiMjAyMC4wMi4wNy45Mzc4NjJ2MSI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDIwLzA1LzI2LzIwMjAuMDUuMTkuMjAxMDY4NTYuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 14. 14.OpenSAFELY Collaborative T, Williamson E, Walker AJ, et al. OpenSAFELY: factors associated with COVID-19-related hospital death in the linked electronic health records of 17 million adult NHS patients. doi:10.1101/2020.05.06.20092999 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMC4wNS4wNi4yMDA5Mjk5OXYxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjAvMDUvMjYvMjAyMC4wNS4xOS4yMDEwNjg1Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 15. 15.Sommerstein R, Kochen MM, Messerli FH, Gräni C. Coronavirus Disease 2019 (COVID-19): Do Angiotensin-Converting Enzyme Inhibitors/Angiotensin Receptor Blockers Have a Biphasic Effect? Journal of the American Heart Association. 2020;9(7). doi:10.1161/jaha.120.016509 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1161/jaha.120.016509&link_type=DOI) 16. 16.Chen Y, Gong X, Wang L, Guo J. Effects of hypertension, diabetes and coronary heart disease on COVID-19 diseases severity: a systematic review and meta-analysis. medRxiv. March 2020:2020.03.25.20043133. doi:10.1101/2020.03.25.20043133 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoibWVkcnhpdiI7czo1OiJyZXNpZCI7czoyMToiMjAyMC4wMy4yNS4yMDA0MzEzM3YxIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjAvMDUvMjYvMjAyMC4wNS4xOS4yMDEwNjg1Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 17. 17.BAME COVID-19 DEATHS - What do we know? Rapid Data & Evidence Review - CEBM. [https://www.cebm.net/covid-19/bame-covid-19-deaths-what-do-we-know-rapid-data-evidence-review/](https://www.cebm.net/covid-19/bame-covid-19-deaths-what-do-we-know-rapid-data-evidence-review/). Accessed May 6, 2020. 18. 18.Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet. 2020;395(10229):1054–1062. doi:10.1016/S0140-6736(20)30566-3 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S0140-6736(20)30566-3&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=32171076&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F05%2F26%2F2020.05.19.20106856.atom) 19. 19.Iacobellis G. COVID-19 and diabetes: Can DPP4 inhibition play a role? 2020. doi:10.1016/j.diabres.2020.108125 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.diabres.2020.108125&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F05%2F26%2F2020.05.19.20106856.atom) 20. 20.Uri K, Fagyas M, Siket IM, et al. New perspectives in the renin-angiotensin-aldosterone system (RAAS) IV: Circulating ACE2 as a biomarker of systolic dysfunction in human hypertension and heart failure. PLoS ONE. 2014;9(4). doi:10.1371/journal.pone.0087845 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pone.0087845&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=24691269&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F05%2F26%2F2020.05.19.20106856.atom) 21. 21.Angiotensin-converting enzyme-2 overexpression improves atrial remodeling and function in a canine model of atrial fibrillation. J Am Heart Assoc. 4: 1–9. 22. 22.Fernández-Atucha A, Izagirre A, Fraile-Bermúdez AB, et al. Sex differences in the aging pattern of renin-angiotensin system serum peptidases. Biology of Sex Differences. 2017;8(1):5. doi:10.1186/s13293-017-0128-8 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s13293-017-0128-8&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F05%2F26%2F2020.05.19.20106856.atom) 23. 23.Deng S-Q, Peng H-J. Characteristics of and Public Health Responses to the Coronavirus Disease 2019 Outbreak in China. Journal of Clinical Medicine. 2020;9(2):575. doi:10.3390/jcm9020575 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3390/jcm9020575&link_type=DOI) 24. 24.Murad MH, Chu H, Lin L, Wang Z. The effect of publication bias magnitude and direction on the certainty in evidence. BMJ evidence-based medicine. 2018;23(3):84–86. doi:10.1136/bmjebm-2018-110891 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NToiZWJtZWQiO3M6NToicmVzaWQiO3M6NzoiMjMvMy84NCI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDIwLzA1LzI2LzIwMjAuMDUuMTkuMjAxMDY4NTYuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 25. 25.Conradi U, Joffe AR. Publication bias in animal research presented at the 2008 Society of Critical Care Medicine Conference. BMC Research Notes. 2017;10(1):262. doi:10.1186/s13104-017-2574-0 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s13104-017-2574-0&link_type=DOI) 26. 26.Zhen Y, Xin Y, Wenping J. GW24-e1144 Effects of enalapril on the expression of cardiac angiotensin-converting enzyme and angiotensin-converting enzyme 2 in spontaneously hypertensive rats. Heart. 2013;99(Suppl 3):A190.1-A190. doi:10.1136/heartjnl-2013-304613.529 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1136/heartjnl-2013-304613.529&link_type=DOI) 27. 27.Azis NA, Agarwal R, Ismail NM, et al. Blood pressure lowering effect of Ficus deltoidea var kunstleri in spontaneously hypertensive rats: possible involvement of renin-angiotensin-aldosterone system, endothelial function and anti-oxidant system. Molecular biology reports. 2019;46(3):2841–2849. doi:10.1007/s11033-019-04730-w [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s11033-019-04730-w&link_type=DOI) 28. 28.Awwad ZM, El-Ganainy SO, ElMallah AI, et al. Telmisartan and captopril ameliorate pregabalin-induced heart failure in rats. Toxicology. 2019;428:152310. doi:10.1016/j.tox.2019.152310 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.tox.2019.152310&link_type=DOI) 29. 29.Graus-Nunes F, Santos F de O, Marinho T de S, Miranda CS, Barbosa-da-Silva S, Souza-Mello V. Beneficial effects of losartan or telmisartan on the local hepatic renin-angiotensin system to counter obesity in an experimental model. World journal of hepatology. 2019; 11 (4):359–369. doi:10.4254/wjh.v11.i4.359 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.4254/wjh.v11.i4.359&link_type=DOI) 30. 30.Hao X-Q, Zhang S-Y, Cheng X-C, et al. Imidapril inhibits right ventricular remodeling induced by low ambient temperature in broiler chickens. Poultry Science. 2013;92(6):1492–1497. doi:[http://dx.doi.org/10.3382/ps.2012-02671](http://dx.doi.org/10.3382/ps.2012-02671) [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3382/ps.2012-02671&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=23687144&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F05%2F26%2F2020.05.19.20106856.atom) 31. 31.Jessup JA, Gallagher PE, Averill DB, et al. Effect of angiotensin II blockade on a new congenic model of hypertension derived from transgenic Ren-2 rats. American journal of physiology Heart and circulatory physiology. 2006;291(5):H2166–72. doi:10.1152/ajpheart.00061.2006 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1152/ajpheart.00061.2006&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=16766648&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F05%2F26%2F2020.05.19.20106856.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000241102700020&link_type=ISI) 32. 32.Huang M, Li X, Meng Y, et al. Upregulation of angiotensin-converting enzyme (ACE) 2 in hepatic fibrosis by ACE inhibitors. Clinical and Experimental Pharmacology and Physiology. 2010;37(1):e1-e6. doi:[http://dx.doi.org/10.1111/j.1440-1681.2009.05302.x](http://dx.doi.org/10.1111/j.1440-1681.2009.05302.x) [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/j.1440-1681.2009.05302.x&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=19793108&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F05%2F26%2F2020.05.19.20106856.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000272835800001&link_type=ISI) 33. 33.Wang G, Zhang Q, Yuan W, Wu J, Li C. Enalapril protects against myocardial ischemia/reperfusion injury in a swine model of cardiac arrest and resuscitation. International journal of molecular medicine. 2016;38(5):1463–1473. doi:10.3892/jmm.2016.2737 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3892/jmm.2016.2737&link_type=DOI) 34. 34.Wang Y, Li C, Ouyang Y, et al. Cardioprotective Effects of Qishenyiqi Mediated by Angiotensin II Type 1 Receptor Blockade and Enhancing Angiotensin-Converting Enzyme 2. Evidence-based Complementary and Alternative Medicine. 2012;2012:978127. doi:[http://dx.doi.org/10.1155/2012/978127](http://dx.doi.org/10.1155/2012/978127) 35. 35.Burchill L, Velkoska E, Dean RG, et al. Acute kidney injury in the rat causes cardiac remodelling and increases angiotensin-converting enzyme 2 expression. Experimental physiology. 2008;93(5):622–630. doi:10.1113/expphysiol.2007.040386 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1113/expphysiol.2007.040386&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=18223026&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F05%2F26%2F2020.05.19.20106856.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000255286000014&link_type=ISI) 36. 36.Zhang Y, Wang B, Wu J, et al. Role of ACE inhibitor and AT1 blockade on cardiac ACE and ACE2 expression in mice with unilateral ureteral ligation. International Journal of Cardiology. 2011;152(SUPPL. 1):S97. doi:10.1016/j.jcard.2011.08.788 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jcard.2011.08.788&link_type=DOI) 37. 37.Zhang Y, Li B, Ma L, Wu J. GW25-e0791 Role of AT1 blockade on cardiac ACE2 and mas expression in hypertensive rats. Journal of the American College of Cardiology. 2014;64(16):C179. doi:10.1016/j.jacc.2014.06.825 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jacc.2014.06.825&link_type=DOI) 38. 38.Ocaranza MP, Godoy I, Jalil JE, et al. Enalapril attenuates downregulation of angiotensin-converting enzyme 2 in the late phase of ventricular dysfunction in myocardial infarcted rat. Hypertension. 2006;48(4):572–578. doi:10.1161/01.HYP.0000237862.94083.45 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1161/01.HYP.0000237862.94083.45&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=16908757&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F05%2F26%2F2020.05.19.20106856.atom) 39. 39.Chen L, Yu MZC et al., M. Alterations of urinary angiotensin converting enzyme and ACE2 before and after perindopril medication in patients with diabetic kidney disease. Diabetes/Metabolism Research and Reviews. 2015;31(Supplement 1):51–83. doi:10.1002/dmrr.2728 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/dmrr.2728&link_type=DOI) 40. 40.Fagyas M, Uri K, Manyine Siket IEI and PZ. Tuesday, 30 August 2011. European Heart Journal. 2011;32(Supplement 1):633–933. doi:10.1093/eurheartj/ehr324 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/eurheartj/ehr324&link_type=DOI) 41. 41.Xiao H-L, Li C-S, Zhao L-X, et al. Captopril improves postresuscitation hemodynamics protective against pulmonary embolism by activating the ACE2/Ang-(1–7)/Mas axis. Naunyn-Schmiedeberg’s archives of pharmacology. 2016; 389(11):1159-1169. doi:10.1007/s00210-016-1278-7 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s00210-016-1278-7&link_type=DOI) 42. 42.Wu J, Chen T, Zhang Y. GW26-e0735 Cardiac ace2/mas expression and cardiac remodeling in hypertensive rats. Journal of the American College of Cardiology. 2015;66(16):C76. doi:10.1016/j.jacc.2015.06.304 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jacc.2015.06.304&link_type=DOI) 43. 43.P. F, Z. W, H. L, et al. Electroacupuncture Improved Chronic Cerebral Hypoperfusion-Induced Anxiety-Like Behavior and Memory Impairments in Spontaneously Hypertensive Rats by Downregulating the ACE/Ang II/AT1R Axis and Upregulating the ACE2/Ang-(1–7)/MasR Axis. Neural plasticity. 2020;2020:9076042. doi:[http://dx.doi.org/10.1155/2020/9076042](http://dx.doi.org/10.1155/2020/9076042) [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1155/2020/9076042&link_type=DOI) 44. 44.Abuohashish HM, Ahmed MM, Sabry D, Khattab MM, Al-Rejaie SS. ACE-2/Ang1–7/Mas cascade mediates ACE inhibitor, captopril, protective effects in estrogen-deficient osteoporotic rats. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2017;92:58-68. doi:10.1016/j.biopha.2017.05.062 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.biopha.2017.05.062&link_type=DOI) 45. 45.Flores-Monroy J, Martinez-Aguilar L, Ferrario C, Valencia-Hernandez I. PM097 Effects of a Novel Angiotensin-Converting Enzyme Inhibitor After Myocardial Infarction. Global Heart. 2016;11 (2):e87. doi:10.1016/j.gheart.2016.03.299 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.gheart.2016.03.299&link_type=DOI) 46. 46.Ibarra-Lara L, Del Valle-Mondragon L, Soria-Castro E, et al. Peroxisome proliferator-activated receptor-alpha stimulation by clofibrate favors an antioxidant and vasodilator environment in a stressed left ventricle. Pharmacological reports: PR. 2016;68(4):692–702. doi:10.1016/j.pharep.2016.03.002 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.pharep.2016.03.002&link_type=DOI) 47. 47.Badae NM, El Naggar AS, El Sayed SM, et al. Is the cardioprotective effect of the ACE2 activator diminazene aceturate more potent than the ACE inhibitor enalapril on acute myocardial infarction in rats? Canadian journal of physiology and pharmacology. 2019;97(7):1–9.doi:[http://dx.doi.org/10.1139/cjpp-2019-0078](http://dx.doi.org/10.1139/cjpp-2019-0078) 48. 48.Bernardi S, Toffoli B, Zennaro C, et al. Aldosterone effects on glomerular structure and function. Journal of the renin-angiotensin-aldosterone system: JRAAS. 2015;16(4):730–738. doi:10.1177/1470320315595568 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1177/1470320315595568&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=26283678&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F05%2F26%2F2020.05.19.20106856.atom) 49. 49.Dong D, Fan T-T, Ji Y-S, et al. Spironolactone alleviates diabetic nephropathy through promoting autophagy in podocytes. International urology and nephrology. 2019;51(4):755–764. doi:[http://dx.doi.org/10.1007/s11255-019-02074-9](http://dx.doi.org/10.1007/s11255-019-02074-9) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F05%2F26%2F2020.05.19.20106856.atom) 50. 50. Kong E liang, Zhang J min, An N, Tao Y, Yu W feng, Wu F xiang. Spironolactone rescues renal dysfunction in obstructive jaundice rats by upregulating ACE2 expression. Journal of Cell Communication and Signaling. 2019;13(1):17–26. doi:10.1007/s12079-018-0466-2 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s12079-018-0466-2&link_type=DOI) 51. 51.Abe M, Oikawa O, Okada K, et al. Urinary angiotensin-converting enzyme 2 increases in diabetic nephropathy by angiotensin II type 1 receptor blocker olmesartan. Journal of the renin-angiotensin-aldosterone system: JRAAS. 2015;16(1):159–164. doi:[http://dx.doi.org/10.1177/1470320314551443](http://dx.doi.org/10.1177/1470320314551443) 52. 52.de Araujo AA, Araujo L de S, Carvalho CA, et al. Protective effect of angiotensin II receptor blocker against oxidative stress and inflammation in an oral mucositis experimental model. Journal of Oral Pathology and Medicine. 2018;47(10):972–984. doi:10.1111/jop.12775 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/jop.12775&link_type=DOI) 53. 53.Tanno T, Tomita H, Narita I, et al. Olmesartan Inhibits Cardiac Hypertrophy in Mice Overexpressing Renin Independently of Blood Pressure: Its Beneficial Effects on ACE2/Ang(1–7)/Mas Axis and NADPH Oxidase Expression. Journal of cardiovascular pharmacology. 2016;67(6):503–509. doi:10.1097/FJC.0000000000000374 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1097/FJC.0000000000000374&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F05%2F26%2F2020.05.19.20106856.atom) 54. 54.Ishibashi Y, Matsui T, Yamagishi S. Olmesartan blocks advanced glycation end products-induced vcam-1 gene expression in mesangial cells by restoring angiotensin-converting enzyme 2 level. Hormone and Metabolic Research. 2014;46(6):379–383. doi:10.1055/s-0033-1361114 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1055/s-0033-1361114&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=24297485&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F05%2F26%2F2020.05.19.20106856.atom) 55. 55.Wang W, Song A, Zeng Y, et al. Telmisartan protects chronic intermittent hypoxic mice via modulating cardiac renin-angiotensin system activity. BMC Cardiovascular Disorders. 2018;18(1). doi: 10.1186/s12872-018-0875-4 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s12872-018-0875-4&link_type=DOI) 56. 56.Malek V, Sharma N, Sankrityayan H, Gaikwad AB. Concurrent neprilysin inhibition and renin-angiotensin system modulations prevented diabetic nephropathy. Life Sciences. 2019;221:159–167. doi:10.1016/j.lfs.2019.02.027 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.lfs.2019.02.027&link_type=DOI) 57. 57.Hiroi N, Yoshihara A SM et al. Effects of olmesartan to the ACE2/Ang-(1-7)/Mas receptor endocrine society axis on essential hypertension patients. Endocrine Reviews. 2014;35(SUPPL. 3). 58. 58. Li Y qin, Wu J juan, Gao D feng, Fan Y mei, Zhang Y, Qin X jin. The impact of telmisartan on angiotensin converting enzyme 2 mRNA expression in monocyte-derived macrophages of diabetic hypertensive patients]. Zhonghua nei ke za zhi. 2013;52(1):26–29. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F05%2F26%2F2020.05.19.20106856.atom) 59. 59.Wang X, Ye Y, Gong H, et al. The effects of different angiotensin II type 1 receptor blockers on the regulation of the ACE-AngII-AT1 and ACE2-Ang(1–7)-Mas axes in pressure overload-induced cardiac remodeling in male mice. Journal of molecular and cellular cardiology. 2016;97:180-190. doi:10.1016/j.yjmcc.2016.05.012 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.yjmcc.2016.05.012&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=27210827&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F05%2F26%2F2020.05.19.20106856.atom) 60. 60.Soler MJ, Ye M, Wysocki J, et al. Localization of ACE2 in the renal vasculature: Amplification by angiotensin II type 1 receptor blockade using telmisartan. American journal of physiology Renal physiology. 2009;296(2):F398-F405. doi:10.1152/ajprenal.90488.2008 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1152/ajprenal.90488.2008&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=19004932&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F05%2F26%2F2020.05.19.20106856.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000262782700021&link_type=ISI) 61. 61.Senador D, Key M, Brosnihan KB, et al. Cardiovascular interactions between losartan and fructose in mice. Journal of cardiovascular pharmacology and therapeutics. 2010;15(1):68–77. doi:[http://dx.doi.org/10.1177/1074248409351409](http://dx.doi.org/10.1177/1074248409351409) [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1177/1074248409351409&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=19995939&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F05%2F26%2F2020.05.19.20106856.atom) 62. 62.Abdelkader NF, Abd El-Latif AM, Khattab MM. Telmisartan/17beta-estradiol mitigated cognitive deficit in an ovariectomized rat model of Alzheimer’s disease: Modulation of ACE1/ACE2 and AT1/AT2 ratio. Life sciences. 2020;245:117388. doi:10.1016/j.lfs.2020.117388 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.lfs.2020.117388&link_type=DOI) 63. 63.Li Y, Cai S, Wang Q, et al. Valsartan attenuates intimal hyperplasia in balloon-injured rat aortic arteries through modulating the angiotensin-converting enzyme 2-angiotensin-(1–7)-Mas receptor axis. Archives of biochemistry and biophysics. 2016;598:11-17. doi:[http://dx.doi.org/10.1016/j.abb.2016.03.028](http://dx.doi.org/10.1016/j.abb.2016.03.028) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F05%2F26%2F2020.05.19.20106856.atom) 64. 64.Zhang Y, Li B, Wang B, Zhang J, Wu J, Morgan T. Alteration of cardiac ACE2/Mas expression and cardiac remodelling in rats with aortic constriction. The Chinesejournal of physiology. 2014;57(6):335–342. doi:10.4077/CJP.2014.BAD268 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.4077/CJP.2014.BAD268&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=25575522&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F05%2F26%2F2020.05.19.20106856.atom) 65. 65.Ji K, Minakawa M, Fukui K, Suzuki Y, Fukuda I. Olmesartan improves left ventricular function in pressure-overload hypertrophied rat heart by blocking angiotensin II receptor with synergic effects of upregulation of angiotensin converting enzyme 2. Therapeutic advances in cardiovascular disease. 2009;3(2):103–111. doi:10.1177/1753944708098691 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1177/1753944708098691&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=19171689&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F05%2F26%2F2020.05.19.20106856.atom) 66. 66.Sabry MM, Mahmoud MM, Shoukry HS, Rashed L, Kamar SS, Ahmed MM. Interactive effects of apelin, renin-angiotensin system and nitric oxide in treatment of obesity-induced type 2 diabetes mellitus in male albino rats. Archives of physiology and biochemistry. 2019;125(3):244–254. doi:10.1080/13813455.2018.1453521 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1080/13813455.2018.1453521&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F05%2F26%2F2020.05.19.20106856.atom) 67. 67.Li C-M, Zhang X-H, Zhang Y-Y, Yu H-Z. The effect of Irbesartan on myocardial interstitial fibrosis in diabetic rats. AFRICAN JOURNAL OF PHARMACY AND PHARMACOLOGY. 2011;5(11):1360–1364. doi:10.5897/AJPP11.177 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.5897/AJPP11.177&link_type=DOI) 68. 68.Abdel-Fattah MM, Messiha BAS, Mansour AM. Modulation of brain ACE and ACE2 may be a promising protective strategy against cerebral ischemia/reperfusion injury: an experimental trial in rats. Naunyn-Schmiedeberg’s Archives of Pharmacology. 2018;391(9):1003–1020. doi:10.1007/s00210-018-1523-3 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s00210-018-1523-3&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F05%2F26%2F2020.05.19.20106856.atom) 69. 69.Arumugam S, Thandavarayan RA, Palaniyandi SS, et al. Candesartan cilexetil protects from cardiac myosin induced cardiotoxicity via reduction of endoplasmic reticulum stress and apoptosis in rats: involvement of ACE2-Ang (1–7)-mas axis. Toxicology. 2012;291(1-3):139–145. doi:10.1016/j.tox.2011.11.008 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.tox.2011.11.008&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22120037&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F05%2F26%2F2020.05.19.20106856.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000300752800017&link_type=ISI) 70. 70.Kidoguchi S, Sugano N, Takane K, et al. Azilsartan causes natriuresis due to its sympatholytic action in kidney disease. Hypertension research: official journal of the Japanese Society of Hypertension. 2019;42(10):1507–1517. doi:10.1038/s41440-019-0271-1 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/s41440-019-0271-1&link_type=DOI) 71. 71.Liang B, Li Y, Han Z, et al. ACE2-Ang (1-7) axis is induced in pressure overloaded rat model. Internationaljournal of clinical and experimental pathology. 2015;8(2): 1443-1450. 72. 72.Sukumaran V, Veeraveedu PT, Gurusamy N, et al. Telmisartan acts through the modulation of ACE-2/ANG 1–7/mas receptor in rats with dilated cardiomyopathy induced by experimental autoimmune myocarditis. Life sciences. 2012;90(7-8):289-300. doi:10.1016/j.lfs.2011.11.018 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.lfs.2011.11.018&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22210452&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F05%2F26%2F2020.05.19.20106856.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000300078500007&link_type=ISI) 73. 73.Yang D, Lin Z, Ni Y, Hou L, Yang D. A1059 Telmisartan upregulates ACE2-Ang-(1–7)-Mas axis and affects retinal vessel endothelial cell apoptosis. Journal of Hypertension. 2018;36(Supplement 3):e11. doi:10.1097/01.hjh.0000548029.92325.e5 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1097/01.hjh.0000548029.92325.e5&link_type=DOI) 74. 74.Takai S, Jin D, Aritomi S, Niinuma K, Miyazaki M. Powerful vascular protection by combining cilnidipine with valsartan in stroke-prone, spontaneously hypertensive rats. Hypertension research: officialjournal of the Japanese Society of Hypertension. 2013;36(4):342–348. doi:10.1038/hr.2012.187 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/hr.2012.187&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=23190689&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F05%2F26%2F2020.05.19.20106856.atom) 75. 75.Zhong J-C, Ye J-Y, Jin H-Y, et al. Telmisartan attenuates aortic hypertrophy in hypertensive rats by the modulation of ACE2 and profilin-1 expression. Regulatory peptides. 2011; 166(1-3):90–97. doi:10.1016/j.regpep.2010.09.005 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.regpep.2010.09.005&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=20854846&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F05%2F26%2F2020.05.19.20106856.atom) 76. 76.Zhao Y, Ma R, Yu X, Li N, Zhao X, Yu J. AHU377+Valsartan (LCZ696) Modulates Renin-Angiotensin System (RAS) in the Cardiac of Female Spontaneously Hypertensive Rats Compared With Valsartan. Journal of cardiovascular pharmacology and therapeutics. 2019;24(5):450–459. doi:10.1177/1074248419838503 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1177/1074248419838503&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F05%2F26%2F2020.05.19.20106856.atom) 77. 77.Agata J, Ura N, Yoshida H, et al. Olmesartan is an angiotensin II receptor blocker with an inhibitory effect on angiotensin-converting enzyme. Hypertension research: official journal of the Japanese Society of Hypertension. 2006;29(11):865–874. doi:10.1291/hypres.29.865 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1291/hypres.29.865&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=17345786&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F05%2F26%2F2020.05.19.20106856.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000243442400006&link_type=ISI) 78. 78.Igase M, Kohara K, Nagai T, Miki T, Ferrario CM. Increased expression of angiotensin converting enzyme 2 in conjunction with reduction of neointima by angiotensin II type 1 receptor blockade. Hypertension research: officialjournal of the Japanese Society of Hypertension. 2008;31(3):553–559. doi:10.1291/hypres.31.553 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1291/hypres.31.553&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=18497476&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F05%2F26%2F2020.05.19.20106856.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000256047400021&link_type=ISI) 79. 79.Igase M, Strawn WB, Gallagher PE, Geary RL, Ferrario CM. Angiotensin II AT1 receptors regulate ACE2 and angiotensin-(1–7) expression in the aorta of spontaneously hypertensive rats. American journal of physiology Heart and circulatory physiology. 2005;289(3):H1013-9. doi:10.1152/ajpheart.00068.2005 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1152/ajpheart.00068.2005&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=15833808&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F05%2F26%2F2020.05.19.20106856.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000231208000008&link_type=ISI) 80. 80.Wosten-van Asperen RM, Lutter R, Specht PA, et al. Acute respiratory distress syndrome leads to reduced ratio of ACE/ACE2 activities and is prevented by angiotensin-(1–7) or an angiotensin II receptor antagonist. The Journal of pathology. 2011;225(4):618–627. doi:10.1002/path.2987 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/path.2987&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22009550&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F05%2F26%2F2020.05.19.20106856.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000297299500015&link_type=ISI) 81. 81.Ohshima K, Mogi M, Nakaoka H, et al. Possible role of angiotensin-converting enzyme 2 and activation of angiotensin II type 2 receptor by angiotensin-(1–7) in improvement of vascular remodeling by angiotensin II type 1 receptor blockade. Hypertension (Dallas, Tex: 1979). 2014;63(3):e53-9. doi:10.1161/HYPERTENSIONAHA.113.02426 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTU6Imh5cGVydGVuc2lvbmFoYSI7czo1OiJyZXNpZCI7czo4OiI2My8zL2U1MyI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDIwLzA1LzI2LzIwMjAuMDUuMTkuMjAxMDY4NTYuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 82. 82.Gallagher PE, Ferrario CM, Tallant EA. Regulation of ACE2 in cardiac myocytes and fibroblasts. American journal of physiology Heart and circulatory physiology. 2008;295(6):H2373–9. doi:10.1152/ajpheart.00426.2008 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1152/ajpheart.00426.2008&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=18849338&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F05%2F26%2F2020.05.19.20106856.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000261399900020&link_type=ISI) 83. 83.Feng P, Wu Z, Liu H, et al. Electroacupuncture Improved Chronic Cerebral Hypoperfusion-Induced Anxiety-Like Behavior and Memory Impairments in Spontaneously Hypertensive Rats by Downregulating the ACE/Ang II/AT1R Axis and Upregulating the ACE2/Ang-(1–7)/MasR Axis. Neural plasticity. 2020;2020:9076042. doi:10.1155/2020/9076042 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1155/2020/9076042&link_type=DOI) 84. 84.Song R, Preston G, Yosypiv IV. Ontogeny of angiotensin-converting enzyme 2. Pediatric research. 2012;71(1):13–19. doi:10.1038/pr.2011.7 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1038/pr.2011.7&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22289845&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F05%2F26%2F2020.05.19.20106856.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000303453600003&link_type=ISI) 85. 85.Lezama-Martinez D, Flores-Monroy J, Fonseca-Coronado S, Hernandez-Campos ME, Valencia-Hernandez I, Martinez-Aguilar L. Combined antihypertensive therapies that increase expression of cardioprotective biomarkers associated with the renin-angiotensin and kallikrein-kinin system. Journal of Cardiovascular Pharmacology. 2018;72(6):291–295. doi:10.1097/FJC.0000000000000629 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1097/FJC.0000000000000629&link_type=DOI) 86. 86.Shimada K, Kitazato KKT et al. International Stroke Conference and Nursing Symposium Poster Presentations. Stroke. 2011;42(3):e149. doi:10.1161/str.0b013e3182074d9b [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1161/str.0b013e3182074d9b&link_type=DOI) 87. 87.Ishiyama Y, Gallagher PE, Averill DB, Tallant EA, Brosnihan KB, Ferrario CM. Upregulation of angiotensin-converting enzyme 2 after myocardial infarction by blockade of angiotensin II receptors. Hypertension (Dallas, Tex: 1979). 2004;43(5):970–976. doi:10.1161/01.HYP.0000124667.34652.1a [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTU6Imh5cGVydGVuc2lvbmFoYSI7czo1OiJyZXNpZCI7czo4OiI0My81Lzk3MCI7czo0OiJhdG9tIjtzOjUwOiIvbWVkcnhpdi9lYXJseS8yMDIwLzA1LzI2LzIwMjAuMDUuMTkuMjAxMDY4NTYuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 88. 88.Guo J, Lu W, Wang X, et al. Protective effects of telmisartan in a rat model of pulmonary arterial hypertension. Experimental and Clinical Cardiology. 2014;20(1): 2429–2437. 89. 89.Yisireyili M, Uchida Y, Yamamoto K, et al. Angiotensin receptor blocker irbesartan reduces stress-induced intestinal inflammation via AT1a signaling and ACE2-dependent mechanism in mice. Brain, behavior, and immunity. 2018;69:167–179. doi:10.1016/j.bbi.2017.11.010 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.bbi.2017.11.010&link_type=DOI) 90. 90.Suh SH, Choi HS, Kim CS, et al. Olmesartan Attenuates Kidney Fibrosis in a Murine Model of Alport Syndrome by Suppressing Tubular Expression of TGFbeta. International journal of molecular sciences. 2019;20(15). doi:10.3390/jms20153843 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3390/jms20153843&link_type=DOI) 91. 91.Iwanami j, Mogi MTK et al. Role of angiotensin converting enzyme 2/angiotensin (1-7)/Mas axis in the hypotensive effect of azilsartan. Hypertension. 2013;62(3 MeetingAbstracts). 92. 92.Puneet A, Manikant S, Singh SJ. Sexual dysfunction in indian patients undergoing maintenance haemodialysis; a cross sectional study. Nephrology. 2014;19(SUPPL. 2): 182–183. doi:10.1111/nep.12237 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/nep.12237&link_type=DOI) 93. 93.Ichikawa H, Narita I, Narita M, et al. Blood pressure-independent effect of olmesartan on albuminuria in mice overexpressing renin: Its beneficial role in the ACE2/ang (1–7)/mas axis and NADPH oxidase expression. International Heart Journal. 2018;59(6):1445–1453. doi:10.1536/ihj.17-582 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1536/ihj.17-582&link_type=DOI) 94. 94.Nakaoka H, Mogi M, Kan-no H, et al. Effect of Olmesartan on Glucose Metabolism Involving Angiotensin Converting Enzyme 2. Immunology, Endocrine & Metabolic Agents in Medicinal Chemistry. 2017;17(2):105–114. doi:10.2174/1871522217666171019150511 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.2174/1871522217666171019150511&link_type=DOI) 95. 95.Varagic J, Ahmad S, Voncannon JL, et al. Predominance of AT1 blockade over mas-mediated angiotensin-(1–7) mechanisms in the regulation of blood pressure and renin-angiotensin system in mRen2.Lewis rats. American Journal of Hypertension. 2013;26(5):583–590. doi:10.1093/ajh/hps090 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/ajh/hps090&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=23459599&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F05%2F26%2F2020.05.19.20106856.atom) 96. 96.Zhang YH, Hao QQ, Wang XY, et al. ACE2 activity was increased in atherosclerotic plaque by losartan: Possible relation to anti-atherosclerosis. Journal of the renin-angiotensin-aldosterone system: JRAAS. 2015;16(2):292–300. doi:10.1177/1470320314542829 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1177/1470320314542829&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=25070352&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F05%2F26%2F2020.05.19.20106856.atom) 97. 97.Varagic J, Ahmad S, Voncannon JL, et al. Nebivolol reduces cardiac angiotensin II, associated oxidative stress and fibrosis but not arterial pressure in salt-loaded spontaneously hypertensive rats. Journal of hypertension. 2012;30(9):1766–1774. doi:10.1097/HJH.0b013e328356766f [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1097/HJH.0b013e328356766f&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=22895019&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F05%2F26%2F2020.05.19.20106856.atom) 98. 98.Iizuka K, Kusunoki A, Machida T, Hirafuji M. Angiotensin II reduces membranous angiotensin-converting enzyme 2 in pressurized human aortic endothelial cells. Journal of the renin-angiotensin-aldosterone system: JRAAS. 2009;10(4):210–215. doi:10.1177/1470320309343710 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1177/1470320309343710&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=19717501&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F05%2F26%2F2020.05.19.20106856.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000272839300005&link_type=ISI) 99. 99.Onat E. Effects of rosuvastatin and amlodipine on reninangiotensin system of kidney in NOS inhibition and salt diet induced hypertension. Journal of Cellular Neuroscience and Oxidative Stress. 2018;10(2):693–694. 100.100.Zhang L-H, Pang X-F, Bai F, et al. Preservation of Glucagon-Like Peptide-1 Level Attenuates Angiotensin II-Induced Tissue Fibrosis by Altering AT1/AT 2 Receptor Expression and Angiotensin-Converting Enzyme 2 Activity in Rat Heart. Cardiovascular drugs and therapy. 2015;29(3):243–255. doi:10.1007/s10557-015-6592-7 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s10557-015-6592-7&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=25994830&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F05%2F26%2F2020.05.19.20106856.atom) 101.101.Awwad ZM, El-Ganainy SO, ElMallah AI, Khedr SM, Khattab MM, El-Khatib AS. Assessment of Pregabalin-Induced Cardiotoxicity in Rats: Mechanistic Role of Angiotensin 1–7. Cardiovascular toxicology. November 2019. doi:10.1007/s12012-019-09553-6 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s12012-019-09553-6&link_type=DOI) 102.102.Romani-Perez M, Outeirino-Iglesias V, Moya CM, et al. Activation of the GLP-1 Receptor by Liraglutide Increases ACE2 Expression, Reversing Right Ventricle Hypertrophy, and Improving the Production of SP-A and SP-B in the Lungs of Type 1 Diabetes Rats. Endocrinology. 2015;156(10):3559–3569. doi:10.1210/en.2014-1685 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1210/en.2014-1685&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=26196539&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F05%2F26%2F2020.05.19.20106856.atom) 103.103.Riera M, Marquez E, Clotet S, et al. Effect of insulin on ACE2 activity and kidney function in the non-obese diabetic mouse. PloS one. 2014;9(1):e84683. doi:10.1371/journal.pone.0084683 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pone.0084683&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=24400109&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F05%2F26%2F2020.05.19.20106856.atom) 104.104.Marquez E, Riera M, Pascual J, Soler MJ. Albumin inhibits the insulin-mediated ACE2 increase in cultured podocytes. American journal of physiology Renal physiology. 2014;306(11):F1327–34. doi:10.1152/ajprenal.00594.2013 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1152/ajprenal.00594.2013&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=24671333&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F05%2F26%2F2020.05.19.20106856.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000337896100008&link_type=ISI) 105.105.Shin YH, Min JJ, Lee J-H, et al. The effect of fluvastatin on cardiac fibrosis and angiotensin-converting enzyme-2 expression in glucose-controlled diabetic rat hearts. Heart and vessels. 2017; 32(5): 618–627. doi:10.1007/s00380-016-0936-5 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s00380-016-0936-5&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F05%2F26%2F2020.05.19.20106856.atom) 106.106.Salem ES, Chodavarapu H, Morris M, Elased KM. Insulin normalizes angiotensin converting enzyme 2 (ACE2) and attenuates albuminuria in type 1 diabetic Akita mice. Hypertension. 2012;60(3 Meeting Abstracts). 107.107.Salem E and Somineni HK. Acute and Chronic Complications. Diabetes. 2013;62(Supplement_1):A588-A621. doi:10.2337/db13-2297-2440 [FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6MzoiUERGIjtzOjExOiJqb3VybmFsQ29kZSI7czo4OiJkaWFiZXRlcyI7czo1OiJyZXNpZCI7czoyMDoiNjIvU3VwcGxlbWVudF8xL0E1ODgiO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyMC8wNS8yNi8yMDIwLjA1LjE5LjIwMTA2ODU2LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 108.108.Salem ESB, Grobe N, Elased KM. Insulin treatment attenuates renal ADAM17 and ACE2 shedding in diabetic Akita mice. American journal of physiology Renal physiology. 2014;306(6):F629–39. doi:10.1152/ajprenal.00516.2013 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1152/ajprenal.00516.2013&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=24452639&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F05%2F26%2F2020.05.19.20106856.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000333334700008&link_type=ISI) 109.109.Blanco-Gozalo V, Blazquez-Medela A, Garcia-Sanchez O, et al. Diabetes - experimental models. Nephrology Dialysis Transplantation. 2013;28(suppl 1):i374-i384. doi:10.1093/ndt/gft137 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/ndt/gft137&link_type=DOI) 110.110.Min JJ, Shin B-S, Lee J-H, et al. Effects of pravastatin on type 1 diabetic rat heart with or without blood glycemic control. Journal of Diabetes Research. 2018;2018:1067853. doi:[http://dx.doi.org/10.1155/2018/1067853](http://dx.doi.org/10.1155/2018/1067853) 111.111.Gupta RC, Want GRS et al. Long-term therapy with ivabradine increases ace-2 activity in left ventricular myocardium of dogs with chronic heart failure. Circulation Research. 2012;111(4 MeetingAbstract). 112.112.Weili Q, Cheng W, Fan Z, et al. GW25-e4430 Ibuprofen Attenuates Cardiac Fibrosis via Restoring the Imbalance of ACE and ACE2 in Diabetic Rat. Journal of the American College of Cardiology. 2014;64(16):C62. doi:10.1016/jjacc.2014.06.297 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jacc.2014.06.295&link_type=DOI) 113.113.Qiao W, Wang C, Chen B, et al. Ibuprofen attenuates cardiac fibrosis in streptozotocin-induced diabetic rats. Cardiology. 2015;131(2):97–106. doi:10.1159/000375362 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1159/000375362&link_type=DOI) 114.114.Bukowska A, Spiller L, Wolke C, et al. Protective regulation of the ACE2/ACE gene expression by estrogen in human atrial tissue from elderly men. Experimental Biology and Medicine. 2017;242(14):1412–1423. doi:10.1177/1535370217718808 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1177/1535370217718808&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F05%2F26%2F2020.05.19.20106856.atom) 115.115.Hermenegildo C, Mompeon A, Perez-Cremades D, Vidal-Gomez X, Gironacci MM, Novella S. Estradiol increaseses endothelial angiotensin-(1–7) production through esterogen reception alpha. Journal of Hypertension. 2016;34(Supplement 2):e75. doi:10.1097/01.hjh.0000491530.65088.bb [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1097/01.hjh.0000491530.65088.bb&link_type=DOI) 116.116.Mompeon A, Lazaro-Franco M, Bueno-Beti C, et al. Estradiol, acting through ERalpha, induces endothelial non-classic renin-angiotensin system increasing angiotensin 1–7 production. Molecular and Cellular Endocrinology. 2016;422:1-8. doi:[http://dx.doi.org/10.1016/j.mce.2015.11.004](http://dx.doi.org/10.1016/j.mce.2015.11.004) [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.mce.2015.11.004&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=26562171&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F05%2F26%2F2020.05.19.20106856.atom) 117.117.Shenoy V, Grobe JL, Qi Y, et al. 17beta-Estradiol modulates local cardiac renin-angiotensin system to prevent cardiac remodeling in the DOCA-salt model of hypertension in rats. Peptides. 2009;30(12):2309–2315. doi:10.1016/j.peptides.2009.09.005 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.peptides.2009.09.005&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=19747516&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F05%2F26%2F2020.05.19.20106856.atom) 118.118.Wang H, Zhao Z JJ et al. Estrogen replacement downregulates cardiac angiotensin ii in an ace-independent manner in oophorectomized mRen2.Lewis rats. Circulation Research. 2013;113(4 MeetingAbstracts). 119.119.Wang G, Zhang Q, Yuan W, et al. Sildenafil protects against myocardial ischemia-reperfusion injury following cardiac arrest in a porcine model: Possible role of the renin-angiotensin system. International Journal of Molecular Sciences. 2015;16(11):27015–27031. doi:[http://dx.doi.org/10.3390/jms161126010](http://dx.doi.org/10.3390/jms161126010) 120.120.Thanekar U, Gill RK, Dhakal S, Hosawi A, Elased KM. Abstract P2044: Renoprotective Effects of Canagliflozin in Db/db Diabetic Mice. Hypertension. 2019;74(Suppl_1). doi:10.1161/hyp.74.suppl_1.p2044 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1161/hyp.74.suppl_1.p2044&link_type=DOI) 121.121.Li Y-H, Wang Q-X, Zhou J-W, et al. Effects of rosuvastatin on expression of angiotensin-converting enzyme 2 after vascular balloon injury in rats. Journal of geriatric cardiologyO: JGC. 2013;10(2):151–158. doi:10.3969/j.issn.1671-5411.2013.02.009 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3969/j.issn.1671-5411.2013.02.009&link_type=DOI) 122.122.Suski M, Gębska A, Olszanecki R, et al. Influence of atorvastatin on angiotensin i metabolism in resting and TNF-α-activated rat vascular smooth muscle cells. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System. 2014;15(4):378–383. doi:10.1177/1470320313475907 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1177/1470320313475907&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=23390189&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F05%2F26%2F2020.05.19.20106856.atom) 123.123.Aguilar C, Ventura F, Rodriguez-Delfin L. Atorvastatin induced increase in homologous angiotensin I converting enzyme (ACE2) mRNA Is associated to decreased fibrosis and decreased left ventricular hypertrophy in a rat model of diabetic cardiomyopathy. Revista Peruana de Medicina Experimentaly Salud Publica. 2011;28(2):264–272. doi:10.1590/S1726-46342011000200013 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1590/S1726-46342011000200013&link_type=DOI) 124.124.Jessup JA, Brosnihan KB, Gallagher PE, Chappell MC, Ferrario CM. Differential effect of low dose thiazides on the Renin Angiotensin system in genetically hypertensive and normotensive rats. Journal of the American Society of Hypertension: JASH. 2008;2(2):106–115. doi:10.1016/j.jash.2007.10.005 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jash.2007.10.005&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=19343087&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F05%2F26%2F2020.05.19.20106856.atom) 125.125.Sanchez-Aguilar M, Ibarra-Lara L, Del Valle-Mondragon L, et al. Rosiglitazone, a Ligand to PPAR gamma, Improves Blood Pressure and Vascular Function through Renin-Angiotensin System Regulation. PPAR Research. 2019;2019:1371758. doi:[http://dx.doi.org/10.1155/2019/1371758](http://dx.doi.org/10.1155/2019/1371758) 126.126.Scroggin MPK. The PPAR-[gamma] agonist Rosiglitazone increases Angiotensin-Converting Enzyme 2 (ACE2) promoter activity in neurons. FASEB Journal. 2012;26(Meeting Abstracts). 127.127.Zhang W, Li C, Liu B, et al. Pioglitazone upregulates hepatic angiotensin converting enzyme 2 expression in rats with steatohepatitis. Annals of hepatology. 2013;12(6):892–900. 128.128.Aguilar MS, Aguilar-Navarro A, Ibarra-Lara L, et al. PPAR Ganna stimulation by rosiglitazone decreases blood pressure and renal apoptosis in a rat hypertension model secondary to aortic coartaction. Journal of Hypertension. 2018;36(Supplement 1):e43. doi:10.1097/01.hjh.0000539075.61733.23 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1097/01.hjh.0000539075.61733.23&link_type=DOI) 129.129.Chodavarapu H, Grobe N, Somineni HK, et al. Rosiglitazone Treatment of Type 2 Diabetic db/db Mice Attenuates Urinary Albumin and Angiotensin Converting Enzyme 2 Excretion. PLoS ONE. 2013;8(4):e62833. doi:10.1371/journal.pone.0062833 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1371/journal.pone.0062833&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=23646149&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F05%2F26%2F2020.05.19.20106856.atom) 130.130.Ali RM, Al-Shorbagy MY, Helmy MW, et al. Role of Wnt4/beta-catenin, Ang II/TGFbeta, ACE2, NF-kappaB, and IL-18 in attenuating renal ischemia/reperfusion-induced injury in rats treated with Vit D and pioglitazone. European Journal of Pharmacology. 2018;831:68–76. doi:[http://dx.doi.org/10.1016/j.ejphar.2018.04.032](http://dx.doi.org/10.1016/j.ejphar.2018.04.032) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F05%2F26%2F2020.05.19.20106856.atom) 131.131.Andersen LB, Przybyl L, Haase N, et al. Vitamin D depletion aggravates hypertension and target-organ damage. Journal of the American Heart Association. 2015;4(2):e001417. doi:[http://dx.doi.org/10.1161/JAHA.114.001417](http://dx.doi.org/10.1161/JAHA.114.001417) [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NToiYWhhb2EiO3M6NToicmVzaWQiO3M6MTE6IjQvMi9lMDAxNDE3IjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjAvMDUvMjYvMjAyMC4wNS4xOS4yMDEwNjg1Ni5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 132.132.da Silva Machado C, Alexandre FH C de ML et al. Vitamin D3 regulates genes involved with the renin-angiotensin-aldosterone system in hypertensive and normotensive rats. Toxicology Letters. 2014;229(SUPPL. 1):S231. doi:10.1016/j.toxlet.2014.06.773 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.toxlet.2014.06.773&link_type=DOI) 133.133.Lin M, Gao P, Zhao T, et al. Calcitriol regulates angiotensin-converting enzyme and angiotensin converting-enzyme 2 in diabetic kidney disease. Molecular biology reports. 2016;43(5):397–406. doi:10.1007/s11033-016-3971-5 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s11033-016-3971-5&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F05%2F26%2F2020.05.19.20106856.atom) 134.134.Xu J, Yang J, Chen J, Luo Q, Zhang Q, Zhang H. Vitamin D alleviates lipopolysaccharideinduced acute lung injury via regulation of the reninangiotensin system. Molecular medicine reports. 2017;16(5):7432–7438. doi:10.3892/mmr.2017.7546 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3892/mmr.2017.7546&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2020%2F05%2F26%2F2020.05.19.20106856.atom) 135.135.Speth R, Carrera E J-Bm et al. Concentration-dependent effects of zinc on angiotensin-converting enzyme-2 activity. FASEB Journal. 2014;28(1 SUPPL. 1).