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Abstract 

 

Background: Motivated by the findings that exposure to daily outdoor PM2.5 (P) may increase the 

risk of influenza infection, our study examines if immediate exposure to outdoor P will modify 

the rate of change in the daily number of COVID-19 infections (R), for (1) 31 Chinese provincial 

capital cities and (2) Wuhan, China, using regression modelling. Effective public health 

measures for reducing R are recommended. 

Method: A multiple linear regression model was constructed to model the statistical relationship 

between P and R in China and in Wuhan, from 1 January to 20 March 2020. We carefully 

accounted for potential key confounders and addressed collinearity. The causal relationship 

between P and R, and the interaction effect between key variables were investigated. 
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Finding: A causal relationship between P and R across 31 provincial capital cities in China was 

established via matching. A higher P resulted in a higher R in China. A 10 µg/m3 increase in P 

gave a 0.9% increase in R (p < 0.05). An interaction analysis between P and absolute humidity 

(AH) showed a statistically significant positive relationship between P × AH and R (p < 0.01). 

When AH was � 8.6 g/m3, higher P and AH gave a higher R (p < 0.01).  

Interpretation: Given that P can exacerbate R, we recommend the installation of air purifiers and 

improving air ventilation to reduce the effect of P on R. Given that an increasing AH that falls 

below 8.6 g/m3 exacerbated R, dehumidifiers can be used to reduce AH and R. Further, given the 

increasing discussions/observations that COVID-19 can be airborne, surgical masks should be 

used to protect one from contracting the virus via the viral-particulate transmission pathway. 

 

Keywords: COVID-19, rate of change in the daily number of confirmed infection cases, PM2.5, 

absolute humidity, net move-in mobility, lockdown policy, testing capacity, infection case 

definition, public health, China 

 

1. Introduction 

COVID-19 was first reported in Wuhan, China in December 2019. It is a global viral pandemic 

that has resulted in more than 23-million infections and 800,000 deaths across different parts of 

the world, including 89,549 reported cases in China. 

Recent COVID-19 studies investigated whether demography (D), co-morbidity (CM), 

meteorology, and lockdown generated any significant statistical effects on the viral infection.1–3  

Evidence has, therefore, been presented to suggest that weather effects producing low 

temperature and humidity is associated with COVID-19 transmission.2 This is consistent with 

earlier epidemiological studies that implicated air pollution (PM10 as the primary pollutant) and 

meteorological effects with changes in SARS/MERS infection.4,5 Furthermore, influenza studies 

have suggested that exposure to PM2.5 (P) with and without interacting with meteorology may 

increase the risks of flu infection.6 In the US and Europe, long-term exposures to P and NO2 

were reported as the predictors of COVID-19 mortality.7,8 An earlier study reported that air 

pollutants, such as particulates presented independent risks to Vitamin-D deficiency and could be 

an important factor driving the severity of infection.9 Recently, increasing evidence in China and 

Italy showed that air pollution contributes significantly to cases of COVID-19 infection.10,11 The 
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study conducted in China concluded that P, NO2 and O3 were associated with cases of COVID-

19,12 though it failed to fully account for the change in testing capacity and the inconsistency in 

COVID-19 confirmed case definition, and the confounding effect of D and CM. To investigate 

whether environmental P exposure will affect COVID-19 infection, more rigorous statistical 

modelling and control methodologies that reduce the confounding biases and remove the 

collinearities across different independent variables are needed. 

In the following, we examine the immediate effect of outdoor P on the rate of change in the daily 

number of COVID-19 confirmed infections (R), across 31 provincial capital cities in China, 

while seeking to address inadequacies in official case reporting, and taking into account as many 

confounders as possible, including D, CM, meteorology, net move-in mobility (NM), time-lag in 

case reporting due to testing capacity (TC) and inconsistency in case definition (CD), trends over 

time (T), and day-of-the-week (DOW) to reflect the recurrent weekly effect. 

Outdoor P is chosen as the focus of our study given the assumption that R may be increased due 

to the potential deposition of viral droplets on P.13 A recent rigorous study on COVID-19 

aerodynamics ascertained that viral aerosol droplets 0.25-1 µm in size can remain suspended in 

air.14 When such viral droplets are combined with suspending particles, P, they can travel greater 

distances, remain viable in the air for hours, and be inhaled deeply into the lungs, thus increasing 

the potential of airborne viral infection.15 

Our study sheds new light on the effect of P in an outdoor environment, the interaction effect 

between P and meteorological effects such as absolute humidity (AH), and the effect of NM 

(lockdown), on R (the dependent variable). Our work adds weights to the recent 

discussions/observations that COVID-19 droplets are airborne14,16, can suspend in the air and 

combine with the particulates, promoting infection via the airborne transmission pathway.17 

 

2. Method 

Data Collection and Procedure 

We collected data covering the daily P and the daily number of confirmed infections of 31 

provincial capital cities in China, covering the period from 1 January to 20 March 2020. This 

was the period when COVID-19 infection was first officially announced in China, the lockdown 

measures were strictly exercised in Wuhan and other parts of China, and the number of 

confirmed cases peaked and dropped. Other data at the provincial city-level were also collected 
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on a daily basis (including meteorology and NM) or on a yearly basis (including D and CM) 

from internet sources and official statistical documents. Table 1 highlights our research 

objectives and procedures. 

 

Table 1. Research objectives and procedures 

Primary Objective • Explore the statistical relationship, and determine the causal effects, if any, 

between daily outdoor P and R across 31 provincial capital cities in China, 

including Wuhan, the origin of COVID-19 outbreak. 

• To achieve this objective, we built two statistical models that can best 

address the following challenges in statistical modelling: 

o Redefinitions and potential inadequacies in infection case reporting 

o Non-linearity 

o Collinearity 

o Confounders and confounding biases 

o Interaction between statistically significant factors 

Secondary 

Objective 

• Highlight the conditions under which R can be reduced, and effective 

public health measures that can be employed to facilitate this. 

• Add weight to the current observations that COVID-19 can be airborne and 

that particulates can be carriers of the viral droplets. 

 

Statistical Analysis 

A final multiple linear regression model including only the statistically significant variables was 

constructed to model the relationship between daily outdoor P and daily R across 31 provincial 

capital cities in China (see Eq (1)), and in Wuhan, China (see Eq (2)), while taking into account 

potential confounders, in order to determine if any causal relationship exists between the two 

variables (see Table 2). In addition, the interaction between the key statistically significant 

variables and their effect on R was also investigated via a new regression model (see Table 3). 
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where α is the intercept, the subscript c denotes a city, subscript t denotes a day, subscript L 

denotes the time lag for P and AH, and ε serves as the error term. L ranges from one to fourteen 

days. R denotes the rate of change in the daily number of confirmed COVID-19 infections. P 

denotes the PM2.5 concentration. AH denotes the absolute humidity. Age (0-14 years old) 

represents the percentage of population with age below 15 years old at the provincial city-level. 

T denotes the time trend fixed effect (such as variation of lockdown effects over time). CD is a 

dummy binary variables to reflect the change in the confirmed case definition18 during the period 

of study. 

Earlier COVID-19 studies had expressed reservations concerning the number of infection cases 

reported, given inadequate TC, the change in confirmed CD, and undiscovered and 

undocumented asymptomatic cases.3,18,19 Apart from adding two dummy variables, TC and CD, 

to address the delay in testing capacity and the change in case definition and their effects on 

reported cases, we used R, rate of change, as the dependent variable, in order to capture the 

relative change in COVID-19 infection during the study period. By using R, even if the number 

of reported infections might deviate, the relative change in infection could still be accounted for, 

provided that the reporting trends remain consistent. Further, to account for the skewed 

distribution of R, a log transformation was applied to the linear regression. A one day time-lag 

variable representing the R of the previous day was also included in the model as an 

autoregressive term to account for the temporal auto-correlation among R time-series. 

To estimate the causal effect of P on R, our model for China and Wuhan had to cover the 

potential confounders. Independent variables, including meteorology (AH, temperature (TEMP), 

ultraviolet (UV) index, air pressure (AP), and wind speed (WS)) and NM, were included in the 

model for China and Wuhan as the confounders. Moreover, D (population density, age, sex, 

income, and education) and CM (high blood pressure, diabetes, chronic obstructive pulmonary 

disease (COPD), stroke, and obesity) were included in the model for China to control for city-

level fixed effects. T and day of week were included in the model for China and Wuhan to 

control for the time-varying fixed effects and the recurrent fixed effects. Furthermore, matching 

was adopted to further reduce the confounding biases, by matching a high P day with a low P 

day, based on the similarities of corresponding confounders, thereby helping one more accurately 

estimate the causal relationship between P and R in China. 
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To account for the collinearity in our model for China and Wuhan, a Spearman correlation was 

conducted to remove meteorological and CM variables that present collinearity. We tested the 

collinearity between TEMP, UV index, AP, WS, and AH, and removed all of them, except WS, 

due to their high collinearity with AH, which was able to account for the transmission of a flu 

virus, and hence may also be used to account for R20 (Spearman coefficient > 0.5). WS remained 

in our model due to its low collinearity with AH. Similarly, we tested the collinearity between 

CM variables, diabetes, stroke, obesity, COPD, and high blood pressure. We found that all CM 

variables, except for COPD, correlated highly with high blood pressure, a more common CM 

identified from recent COVID infection cases, and might account for R.21 These (except for 

COPD) were removed, due to their high collinearity with high blood pressure (Spearman 

coefficient > 0.5). COPD was retained in our model as it had low collinearity with high blood 

pressure. 

To account for the non-linear relationship between the meteorological variables and R in our 

model for China and Wuhan, a non-linear transformation was applied to the meteorological 

variables, including AH and WS. Two transformation functions, a second order polynomial 

function and a natural spline function with two degrees of freedom, were attempted to address 

non-linearity, based on the goodness of fit. From this it was determined that the second order 

polynomial function provided the best fit and was adopted to address the non-linear relationship 

between AH/WS with R. 

Due to the lengthy asymptomatic incubation period and the delay in case reporting before the 

onset and confirmation of COVID-19 symptoms, the corresponding time-lag in P, meteorology, 

and NM was accounted for by our statistical model for both China and Wuhan, namely, the 

single-day lag and the multi-day average lag models, based on previous air-pollution related 

epidemiological studies.6 We determined the best fit lag-time from day 1 to day 14, with the 

assumption that the mean incubation period and the mean delay in official case reporting could 

cover a maximum of 14 days.18 

Finally, to investigate whether there was any interaction between P and AH on R across 31 

provincial capital cities in China during the infection cycle, a new regression model was 

developed for China (Eq (3)), based on the statistically significant factors that associate with R 

(see Table 2). 
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Role of the funding source 

The funder had no role in study design, data collection, data analysis, data interpretation, or 

writing of the report. The corresponding authors had full access to all data in the study and held 

the final responsibility for the decision to submit for publication. 

 

3. Results 

Based on two best-fit regression models (below), the results of the statistically significant factors 

that associate with R across the 31 provincial capital cities in China and in Wuhan are shown in 

Table 2(a) and 2(b), respectively. No collinearity was identified in the best-fit regression models 

via variance inflation factor (VIF) analysis. In order to better illustrate the relationship between 

P/AH and R, the conditional plots of P and AH are shown in Figure 1. For conditional plots, 

when examining the relationship between the P/AH and the predicted R, the median values of the 

remaining independent variables were used. 

 

Table 2. Statistically significant factors that associate with R (a) across all 31 provincial capital 

cities in China and (b) in Wuhan (from 1 January to 20 March 2020). 

(a) 31 Provincial Capital Cities in China (b) Wuhan Only 

Dependent Variable: Log(Rt) Dependent Variable: Log(Rt) 

Independent 

Variables 

Coefficient p-value Independent 

Variables 

Coefficient p-value 

Intercept 1.2568 0.0000 **** Intercept -0.6724 0.185 

Log(Rt-1) -0.3025 0.0000 **** Log(Rt-1) -0.2776 0.020 ** 

Pt-L 0.0009 0.036 ** Pt-L 0.0261 0.0041 *** 
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AH��� 1.1046 0.024 ** AH��� -1.4330 0.063  

AH���
�  -1.1195 0.0081 *** !"� 0.7174 0.0089 *** 

Age (0-14 

years old) 

-1.2416 0.019 **    

�� -0.0069 0.0000 ****    

Notes 

1. For (a) 31 provincial capital cities in China, P and AH were lagged by L=9 days. For (b) 

Wuhan, P and AH were lagged and averaged by L=14 days. 

2. For (b) Wuhan, D and CM were not included in the regression model since they were 

constant within the city. 

3. **p-value < 0.05, ***p-value < 0.01, **** p-value < 0.001 
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Figure 1. The statistical relationship between P/AH vs. R in Wuhan, China (Figure 1(a) and 1(b)) 
and across the 31 provincial capital cities in China (Figure 1(c) and 1(d)) 
 

As shown in Table 2 (a), there was a positive, statistically significant, relationship between P and 

AH with R across 31 provincial capital cities in China (p < 0.05). A higher P was associated with 

a higher R in China (see Figure 1 (c)). A 10 µg/m3 increase in P was associated with a 0.9% 

increase in R. Moreover, AH with its second order term was a significant factor for accounting R 

in China (p < 0.05). As shown in Figure 1 (d), an inverted U-shape is observed; a higher AH 

increased R when the value of AH � 8.6 g/m3, while a higher AH decreased R when the value of 

AH > 8.6 g/m3. As compared to the average P over multiple days, P of a single day had a 

stronger explanatory power for R. The best-fit day-lag for P was nine. Based on the regression 

model for the 31 provincial capital cities in China, T had a significant statistical correlation with 

R (p < 0.001). A decrease in R was observed along with the increase in T. Cities having a higher 

proportion of younger population (0-14 years old) tended to give a lower R (p < 0.01). 

When Wuhan, the city with the greatest number of confirmed cases during the period of study, 

was included in our analysis, similar results were observed. As shown in Table 2, and Figure 1, 

the effects of P on R in Wuhan and in all cities were similar.  However, there was a stronger 

correlation between P and R (Coefficient = 0.0261, p < 0.01) in Wuhan as compared to all cities 

in China (Coefficient = 0.0009, p < 0.05); while the lag time was fourteen days instead of nine; 

unlike China, both AH and AH in the second form, was not statistically associated with R in a 
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log-linear relationship (p > 0.05), while CD was a significant factor that associated with R in 

Wuhan (p < 0.01). Compared to all cities in China, the effect of P on R in Wuhan was higher. A 

10 µg/m3 increase in P was associated with a 2.6% increase in R in Wuhan (p < 0.01). Moreover, 

the change in confirmed case definition increased R in Wuhan (p < 0.01), suggesting that our 

model has properly addressed any inadequacy due to changes in case definition in Wuhan. 

Apart from this, the causal effect of P on R was established via matching, by addressing the 

confounding biases. The result was consistent with our main findings. On average, across 31 

provincial capital cities, days with higher P (≥ 40 µg/m3) resulted in a 15.1% increase in R 

compared to days with lower P (< 40 µg/m3). Furthermore, the interaction between P and AH 

was significant across 31 provincial capital cities in China. When a higher P interacts with a 

higher AH, a higher R was generally observed (Coefficient = 0.0005, p < 0.01, see Table 3). 

Taking a closer look, when AH � 8.6g/m3, higher P and AH gave a higher R. When AH > 8.6 

g/m3, higher P and AH no longer resulted in a higher R. The effect of a higher P on R (in 

increasing trend) was counteracted by the effect of a higher AH on R (in decreasing trend), 

though the interaction effect of higher P and AH was not statistically significant (p > 0.05, see 

Figures 2 (e) – 2 (f)). When only Wuhan was included in our interaction analysis, the interaction 

effect of P and AH was not statistically significant (p > 0.05). 

 

Table 3. Statistically significant factors covering P × AH that associate with R across all 31 

provincial capital cities in China (from 1 January to 20 March 2020) 

31 Provincial Capital Cities in China 

Dependent Variable: Log(Rt) 

Independent Variables Coefficient p-value 

Intercept 1.3068 0.0000 **** 

Log(Rt-1) -0.3015 0.0000 **** 
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Pt-L 0.0016 0.0012 *** 

AH��� 0.0255 0.0017 *** 

Age (0-14 years old) -1.1028 0.035 ** 

�� -0.0066 0.0000 **** 

Pt-L × AH��� 0.0005 0.0024 *** 

Notes 

1. P and AH were lagged by L=9 days. 

2. **p-value < 0.05, ***p-value < 0.01, **** p-value < 0.001 
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Figure 2. Statistical relationship between P/AH/P x AH vs. R across 31 provincial capital cities 
in China 
 

4. Discussion 

Recent COVID-19 studies investigated whether D, CM, meteorology, and lockdown were 

associated with significant statistical effects on viral infection. Some studies ascertained that 

meteorological effects demonstrate an association with COVID-19 transmission.2 Earlier 

influenza studies suggested that exposure to P with and without interactions with meteorological 
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effects might increase the risks of flu infection. Earlier epidemiological studies also found that 

the air pollution index (measuring PM10 as the primary pollutant) and meteorological effects 

associated with SARS/MERS. In the US and Europe, long-term exposures to P and to NO2 were 

reported to be predictors of COVID-19 mortality. Recently, increasing evidence in China and 

Italy argued that air pollution was a significant attributing factor to the rate of COVID-19 

infection. A previous study conducted in China concluded that P was associated with COVID-19 

infection, though it had not comprehensively accounted for the change in TC and the inadequacy 

in COVID-19 confirmed case definition, and the confounding effect of D and CM. Recent 

scientific studies also pointed towards the significant potential for COVID-19 to be transmitted 

via airborne routes.22 

To identify whether P affects R across 31 provincial cities in China, including Wuhan, our 

regression model took into account all possible confounders, including meteorological variables, 

NM, D at the provincial city-level, and CM at the provincial level, including five major diseases 

that can potentially decrease immunities and increase the risk of COVID-19 infection.21,23 

Further, to reflect potential changes in TC and CD, two dummy variables were added to the 

regression model.  In addition, the single day time-lag effect on P, meteorology, and NM, were 

also addressed. 

Our model outperforms other existing air-pollution related COVID-19 epidemiological studies in 

four ways. First, instead of observing the absolute number of infections, which can be inadequate 

due to possible human or systemic deficiencies, in relation to testing methods and changes in 

case definition, our study examines R. Hence, even if the number of reported infections may be 

inadequate, R can sufficiently reflect the relative change in infection numbers, provided that the 

reporting trends are consistent. Therefore, our approach is able to provide greater insight than 

previous studies on air pollution12 and other COVID-19 epidemiological or modelling 

studies,18,24 which focussed on the absolute number of infections instead of R. 

Secondly, our study has addressed a wide spectrum of possible confounders that may affect 

observations concerning the effect of P on R, including meteorological, NM, D, and key CM 

variables. This stands in contrast to existing work that has explored the effect of air pollution on 

COVID-19 infection/mortality by controlling for only the meteorological variables,12,25 or 

controlling for the meteorological variables and simple D variables without considering the 

lockdown and the CM confounders.26 Further, our work has in parallel sought to address issues 
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of non-linearity, collinearity, time-lag, and other possible inadequacies resulting from changes in 

case definition and testing capacity via two dummy variables (see Section 2). This is particularly 

critical for precision modelling when some statistical relationships that cover meteorology, such 

as AH, and R, have been shown to be non-linear (see Figure 1 (d)).  By accounting for the non-

linearity between some of our confounders and R, our model provides a more reliable and 

rigorous scientific prediction concerning how and when P will affect R across the 31 Chinese 

provincial capital cities in China, as well as in Wuhan, in contrast to prior air pollution-related 

COVID-19 infection/mortality models which have yet taken non-linearity or other statistical 

characteristics into account.7,26 

Third, to the best of our understanding, this is the first international study that claimed a causal 

relationship between P and R across 31 Chinese provincial capital cities, via matching. Each high 

P exposure day was matched with a low P exposure day sharing similar background covariates 

such as meteorology and NM to estimate the causal effect. This causal relationship between 

immediate P exposure and R (i.e. a higher P can increase R, see Table 2),  when combined with 

the recent reports that particulates less than 10 µm in size could facilitate the deposition of 

COVID-19 viral droplets and be suspended in the air,13 further substantiates the recent 

observations regarding the risks of airborne infection.14,16 

Finally, this is the first study that pursues the individual effects of P and AH on R, as well as the 

interaction effect of P and AH on R, covering (1) 31 provincial capital cities in China, and (2) 

data focussing on Wuhan only. Our study based on (1) ascertained that a 10 µg/m3 increase in P 

was associated with a 0.9% increase in R. In addition, an inverted U-shape was identified 

between AH and R. A higher AH increased R when its value exceeded 8.6 g/m3, while a higher 

AH decreased R when its value < 8.6 g/m3. Further, when P interacted with AH, their interaction 

effect on R was significantly positive in (1) overall (Coefficient = 3.900 * 10-4, p < 0.05). When 

breaking down into two groups, if AH � 8.6 g/m3, higher P (Coefficient = 0.0008, p < 0.05) and 

AH (Coefficient = 0.0259, p < 0.01) led to a higher R (see Figures 2 (c) – (d)). However, if AH > 

8.6 g/m3, the interaction effect was statistically insignificant (see Figures 2 (e) – (f)). For (2), 

only P is significantly associated with R, and had a significantly positive and much stronger 

effect on R than in (1). However, unlike (1), AH was not significant (p > 0.05). Further, unlike (1) 

that a statistically significant interaction effect between P and AH was observed, the interaction 
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effect between the two variables was not statistically significant in (2) (Coefficient = -0.006, p > 

0.05). 

Further, for (1), NM was not a significant predictor of R. However, unlike the data for (2), T was 

significantly associated with a negative R in (1), suggesting that unobserved time-varying effects 

such as change in mobility within a city due to lockdown could reduce R. Further, the D variable 

age (0-14 years old), had a significant effect on R, implying that cities with a higher proportion 

of young people tended to have a lower R (see Table 2(a)). 

A limitation of this study is that the statistical relationship between P and R in (1) (Coefficient = 

0.0009, p < 0.05) was less strong as compared to (2) (Coefficient = 0.0261, p < 0.01). This might 

be due to the lack of datapoints at higher P and AH in (1) (see Figures 1 (c) – (d)), though the 

statistical relationship between P/AH and R was significant (p < 0.05, see Table 1(a)). 

Our findings call for immediate medical and public health attention concerning the significance 

of P in exacerbating R. Controlling and reducing outdoor P, and reducing the possibility for 

outdoor P to be used as a carrier for COVID-19 viruses, have never been as urgent as they are 

now. Public health measures such as installing air purifiers, both indoors and outdoors, can help 

reduce P and alleviate the situation.27 Alternatively, improving air ventilation, both indoors and 

outdoors, presents another possibility.28  Despite previous claims that TEMP, UV, and WS will 

temper the COVID-19 infection,29,30 our result showed no statistical significance for these factors. 

Nevertheless, our study supports recent findings on AH.2 Given the result in China that AH < 8.6 

g/m3 exacerbated the rate of change, dehumidifiers may help to reduce infection rates. Moreover, 

the possibility for airborne infection of COVID-19 is too high a cost to be ignored and proper 

public health measures, such as requiring citizens to wear face masks, should be established to 

reduce the possibility of COVID-19 infection through air, especially for countries with high 

population densities and mobilities, and high particulate pollution. Given that the best fit model 

was obtained with a nine-day delay between infection and case reporting in China, this implies 

on average, it would take seven days for a COVID-19 patient to become symptomatic, assuming 

case reporting takes two days. This will have important public health implications on the 

quarantine period of those who are infected. 
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