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Abstract: Predicting lithium response (LiR) in bipolar disorder (BD) could expedite effective pharmacotherapy, but
phenotypic heterogeneity of bipolar disorder has complicated the search for genomic markers. We thus sought to
determine whether patients with “exemplary phenotypes”—those whose clinical features are reliably predictive of
LiR and non-response (LiNR)—are more genetically separable than those with less exemplary phenotypes. We
applied machine learning methods to clinical data collected from people with BD (n=1266 across 7 international
centres; 34.7% responders) to compute an “exemplar score,” which identified a subset of subjects whose clinical
phenotypes were most robustly predictive of LiR/LiNR. For subjects whose genotypes were available (n=321), we
evaluated whether responders/non-responders with exemplary phenotypes could be more accurately classified based
on genetic data than those with non-exemplary phenotypes. We showed that the best LiR exemplars had later illness
onset, completely episodic clinical course, absence of rapid cycling and psychosis, and few psychiatric
comorbidities. The best exemplars of LiR and LiNR were genetically separable with an area under the receiver
operating characteristic curve of 0.88 (IQR [0.83, 0.98]), compared to 0.66 [0.61, 0.80] (p=0.0032) among the poor
exemplars. Variants in the Alzheimer’s amyloid secretase pathway, along with G-protein coupled receptor,
muscarinic acetylcholine, and histamine H1R signaling pathways were particularly informative predictors. In sum,
the most reliably predictive clinical features of LiR and LiNR patients correspond to previously well-characterized
phenotypic spectra whose genomic profiles are relatively distinct. Future work must enlarge the sample for genomic
classification and include prediction of response to other mood stabilizers.

Keywords: Bipolar disorder, lithium response, machine learning, genomics, representational Rényi heterogeneity

1. Introduction

Bipolar disorder (BD) is a severe lifelong illness
characterized by recurrent manias, depressions, and
a relatively high suicide risk [1,2]. Mood stabilizer
initiation occurs approximately a decade after symptom
onset, on average [3], and the trial-and-error process of

pharmacological optimization for BD may lengthen this
time. However, by predicting individuals’ mood-stabilizer
response, this burden of untreated illness may be reduced.

Clinical data are currently the best lithium response
predictors. Responders often have a completely episodic
course with full inter-episode remissions, absence of
rapid cycling, and family history of fully remitting BD
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(particularly the lithium responsive type) in a first degree
relative [4,5]. This has motivated the search for strong
genomic predictors of lithium response, but they remain
elusive [6].

In large multi-site studies, lithium responder and
non-responder groups may be too heterogeneous to
classify robustly. However, it is possible that within
this pooled group of heterogeneous subjects there exist
more distinct “exemplars” of each phenotype, whose
clinical profiles are consistent across sites, and who may
be genomically more distinct. Our paper is thus motivated
by two questions. First, can clinical presentation
identify exemplars of lithium response and non-response?
Second, are clinical exemplars of lithium response and
non-response more genetically separable than their less
exemplary counterparts?

Using the largest clinical database on lithium
treatment in BD, we developed a method for rating the
degree to which a subject is an exemplar of lithium
response or non-response, respectively (an exemplar
score). We hypothesized that the clinical differences
between the best exemplars of lithium response and
non-response would be reflective of factors previously
associated with the “classical” bipolar phenotype. Finally,
on a subset of subjects who were genotyped, we
hypothesized that clinically exemplary responders and
non-responders would be more accurately separable by
application of a machine learning (ML) classifier to their
genomic data (compared to their counterparts with low
exemplar scores).

2. Methods

Clinical and genetic data were collected in the
context of protocols approved by the Ethics Committee
of the former Health Agency of Cagliari (now University
Hospital Health Agency of Cagliari) for the Cagliari
(University) and Centro Bini samples, and the research
ethics boards of the Nova Scotia Health Authority, the
McGill University Health Centre, the Royal Ottawa
Hospital, and the University of Poznan.

Our analysis is split into two parts. In Part 1,
we use a multi-centre database of clinical variables
in order to derive a score that identifies subjects
whose clinical phenotypes reliably predict lithium
response/non-response. Part 2 uses a separate set of
genomic data collected from a subset of subjects included

in the clinical data from Part 1. In Part 2, we compare the
ability to classify lithium response using those genetic
data when they are stratified according to subjects’
clinical exemplar scores.

2.1. Part 1: Scoring and Characterization of Clinical
Exemplars

2.1.1. Data Collection

Clinical data collection procedures were described
in Nunes et al. [7]. Data consisted of 180 variables
recorded prior to instituting lithium maintenance therapy
in 1266 people with BD across 7 sites internationally
(Table 1). Response was evaluated after a minimum
treatment duration of 1 year. Lithium response was
defined as a score of ≥ 7 on the previously validated
Alda scale [8].

2.1.2. Exemplar Scoring Based on Clinical Predictors

Subjects who are most exemplary of their clinical
phenotype should be classified accurately by models
trained on data from any given site. Our overall
exemplar scoring protocol thus involves (1) obtaining
out-of-sample predictions of every subject’s class based
on models trained on each individual site’s data, then (2)
summarizing accuracy and level of agreement with which
each subject was classified into a single value known as
the exemplar score (Figure 1).

2.1.3. The Clinical Exemplar Score

Let (xij , yij) ∈ X denote phenotypic data from
subject i ∈ {1, 2, . . . , nj}, where xij is a vector of
clinical features, yij ∈ {0, 1} denotes whether the patient
is a lithium responder, and nj is the number of patients in
the sample from site j ∈ {1, 2, . . . , S}. A pair (x, y) can
thus be viewed as a set of coordinates on the (observable)
phenotypic space X . Data are sampled from S sites, each
of which can be considered to sample a subdomain of the
phenotypic spaceX (j) ⊆ X . These site-wise subdomains
are not necessarily disjoint. Indeed, if they were disjoint,
the sites’ data would share nothing in common.

Now letMj denote a classifier learned on training
data from site j. Given a new set of clinical features,
x′, the classifier predicts the probability that the
corresponding patient is a lithium responder: that is,
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Part 1: Analysis using only clinical variables

Figure 1. Hypothetical illustration of the clinical exemplar scoring analysis. Note that this part of the analysis is
performed using the clinical feature dataset alone. Panel A: Demonstration of heterogeneity in the relationship
between lithium responsiveness (depicted as “Li(+)” for responders and “Li(-)” for non-responders) and clinical
features across four hypothetical sites. A classifier trained on data from each individual site may yield different
discriminative functions. Panel B: Points demonstrate the aggregated dataset (“+” and “-” are responders and
non-responders, respectively). Contours demonstrate regions of clinical feature space in which site-level classifiers
(from Panel A) agree with high accuracy on the predicted class. An exemplar score can be computed for each subject
in the clinical dataset by (1) holding his data out of the training set, (2) predicting his lithium responsiveness using
site-level classifiers trained on the remaining subjects, then (3) using the site-wise prediction results to compute the
exemplar score. Panel C: Stratification of the clinical dataset according to lithium responsiveness and exemplar score
quartile. The “LRBest” and “NRBest” exemplars are those responders and non-responders with exemplar scores above
the 75th percentile, respectively. The “LRPoor” and “NRPoor” exemplars are those responders and non-responders
with exemplar scores below the 25th percentile, respectively. This stratification can be used to evaluate the clinical
features that differentiate good from poor exemplars of lithium response and non-response, respectively.
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Table 1. Description of constituent datasets. Abbreviations: number of patients (N), lithium responders (LR+), Cagliari
(Centro Bini; CB), Cagliari (University; CU), International Group for the Study of Lithium (IGSLi), Maritimes (MAR),
Ontario (ON), Poznan (POZ).

Sample N (LR+) Description
CB 324 (21%) Patients followed at the Mood Disorder Lucio Bini Center in Cagliari, Italy. Clinical data

collection and response assessment was done by two psychiatrists.
CU 206 (29%) Patients in the long term treatment program at the Lithium Clinic of the Unit of the

Clinical Pharmacology Center, University Hospital of Cagliari, Italy. Clinical data
collection and response assessment was done by three psychiatrists and three clinical
psychopharmacologists.

IGSLi 70 (100%) Patients recruited for a genetic study of lithium responsive bipolar disorder. [9] By design
of that study, all patients were lithium responders. Clinical data collection and response
assessment was done by three psychiatrists.

MAR 343 (20%) Patients followed by the Mood Disorders program at the Nova Scotia Health Authority and
the Maritime Bipolar Registry. Clinical data collection and response assessment was done
by two psychiatrists and two research nurses working in pairs.

MTL 95 (16%) Patients followed by the Mood Disorders Program at the McGill University Health Centre.
Clinical data collection and response assessment was done by one psychiatrist.

ON 117 (84%) Patients from our earlier studies of lithium responsive bipolar disorder, [9,10] which, like
the IGSLi sample, explains the greater proportion of responders. Clinical data collection
and response assessment was done by three psychiatrists (including MA, who is now in the
Maritimes).

POZ 111 (53%) Patients followed longitudinally by the Psychiatry Department at the University of Poznan,
Poland. Clinical data collection and response assessment was done by two psychiatrists.

p̂′j = Mj (x′). We denote the accuracy score of this
prediction as

f̃j (x′, y′) = 1− |y′ −Mj (x′)| . (1)

The representational Rényi heterogeneity
measurement approach [11] consists of measuring
heterogeneity on a latent or transformed space onto
which observable data are mapped. To apply this in the
present case, where we have defined our observable space,
X , we must now devise an appropriate transformed
space upon which the Rényi heterogeneity will be both
meaningful and tractable. The heterogeneity deemed
relevant in the present case arises in terms of differences
in classification models across sites. Most starkly, we
noted that the informative features for lithium response
prediction varied between the best performing sites. In
other words, depending on which site’s data are used for
training, one might learn quite different (and perhaps even
contradictory) relationships between clinical features and
lithium responsiveness. In the limit where data from each
site encodes completely different relationships between
clinical features and lithium response, then each classifier
Mj will behave distinctly (they will tend to disagree).
In terms of numbers equivalent, we would say that in

such a case there is an effective number of S distinct
classifiers. Conversely, if the phenotypic domains of all
sites overlap completely, then all classifiersMj will tend
to make similar predictions, which would correspond to
an effective number of one classifier.

Let the accuracy of classifier Mj in predicting
the relationship x → y be a measure of that model’s
informativeness at point (x, y). We can thus define T
as a categorical space representing an index on “the
most informative classifier." We illustrate the mapping
f : X → T in Figure 2. A probability distribution over
T can be computed using a normalization of Equation 1:

f (x, y) =

{
1− |y −Mj (x)|

∑S
k=1 (1− |y −Mk (x)|)

}S

j=1

. (2)

The quantity fj (x, y) can be taken to represent the
probability that a classifier trained on data from site j is
the most informative about the x → y mapping in that
particular region of X . With this, we can compute the
representational Rényi heterogeneity at (x, y) as follows:
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Figure 2. Representation of the mapping from
phenotypic space X onto the representation of
“most informative site-level model” (T ). The
transformation function is the normalized accuracy
score for a classification model trained on each site’s
data individually (Equation 2).

Πq (x, y) =




S∑

j=1

fqj (x, y)




1
1−q

. (3)

If the models Mj=1,2,...,S differ only in their
training data (i.e. they have the same architecture,
optimization routine, and hyperparameters) then the units
of Equation 3 are “the effective number of informative
sites.”

Recall that we defined a “clinical exemplar” as
a subject whose phenotype (x, y) is reliably predicted
accurately across all sites. In other words, regardless of
the differences between sites’ data, all sites would agree
in their predictions of the exemplars’ phenotypes. More
formally, clinical exemplars must have high values of
Πq (x, y) (all sites are similarly informative). However,
to identify more specifically the exemplars of lithium
response and non-response, we cannot solely rely on
Πq (x, y), since that value may be high, despite sites’
prediction accuracies being low.

Let t∗ = maxj f̃j (x, y) denote the maximal
accuracy score obtained in classification at (x, y). We
take this value to represent the degree to which a subject
with that phenotype can be clearly associated with one
class or another. An interesting case occurs where both
t∗ and Πq (x, y) are high, suggesting the point (x, y) is
an exemplar of the regions of X that are reliably well
classified across sites. Conversely, if t∗ ≈ 0.5 and
Πq (x, y) is high, then that point is exemplary of a region

of X of which all sites are uncertain. When t∗ is low and
Πq (x, y) is high, then (x, y) is exemplary of a region of
X that reliably misleads all sites’ classifiers.

In the present study, we are concerned with
identifying only those subjects with high values of both
t∗ and Πq (x, y), since they exemplify the most canonical
“phenotypes” of lithium response and non-response,
respectively. We accomplish this by combining t∗ and
Πq (x, y) into a single index we call the exemplar score.
The exemplar score at coordinate (x, y) of the phenotypic
space is defined as

φ =

√
Π̃2

q (x, y) + (t∗)2

2
, (4)

where Π̃q (x, y) is a standardization of the Rényi
heterogeneity to the [0,1] interval (the same scale as t∗):

Π̃q (x, y) =
Πq (x, y)− 1

S − 1
(5)

In the present study, we define the “best exemplars”
as subjects whose exemplar scores (within their lithium
response classes) were in the top 25%. Poor exemplars
were those subjects whose phenotypes were in the lower
quartile of exemplar scores within their response classes.

2.1.4. The Predict Every Subject Out (PESO) Protocol

The predict every subject out (PESO) protocol is a
method by which we can compute exemplar scores for
each subject in the dataset while (A) ensuring that subject
is not included in the training data and (B) having each
model train on only that site’s data. All classifiers in our
data were random forests, (RFC) [12] under the same
specifications as in Nunes et al. [7] (100 estimators;
SciKit Learn implementation; [13]). Similar to that
study, missing data were marginalized by sampling from
uninformative priors on respective variables’ domains [7].
A schematic of the protocol is shown in Figure 3.

For each site in the clinical predictors dataset, the
PESO analysis protocol begins with a Leave-One-Out
cross-validation run to obtain out-of-sample predictions
for each of that site’s constituent subjects. We then train
an RFC on that site’s data and predict lithium response in
all other sites’ subjects. Each subject is thus mapped onto
our categorical space T , upon which we can measure
their exemplar scores.
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Figure 3. Illustration of the algorithm for the predict every subject out protocol.

2.1.5. Comparison of Clinical Characteristics of the Best
and Worst Exemplars

Univariate clinical feature differences were
compared between the best exemplars of lithium
response and non-response (“LRBest” and “NRBest,”
respectively; the upper exemplar score quartile per
class), and the corresponding poor exemplars (“LRPoor”
and “NRPoor,” respectively; the lower exemplar score
quartile per class). Continuous variables were compared
using the two-sample permutation test of independence
and categorical variables were compared using the
randomization chi-square test (with 10,000 replications
owing to multiple comparison corrections). The
significance threshold was adjusted for 116 comparisons:
αC = 0.05/116 = 0.0004.

2.2. Part 2: Biological Validation hrough Genomic
Classification

Figure 4 illustrates Part 2 of the present study,
wherein we compare the genetic prediction of lithium
response between subjects whose clinical profiles are
exemplary and non-exemplary, respectively. After
comparing genomic classification performance between
the “Best” and “Poor” exemplar strata, respectively,
we submit the genomic classifiers’ coefficients to gene

enrichment analysis. This part of our study uses
genomic data from subjects in the Consortium on Lithium
Genetics GWAS cohort [6] who also had detailed clinical
information collected for Part 1 of the present study.

2.2.1. Data Collection

Genomic data, obtained as part of the ConLiGen
GWAS [6], were available for 321 of the subjects whose
clinical data were analyzed in Part 1 of our study. In
the Supplementary Materials, we show that there was no
population stratification in this subsample, particularly
in comparison to the broader ConLiGen sample. We
restricted the data to only the 47,465 SNPs for which
complete data were available across all ConLiGen sites.
Preprocessing and quality control were done according to
the Hou et al. [6] protocol.

2.2.2. Genomic Classification Analysis

For genotyped subjects, we compared the
performance of a classifier applied to (A) all 321
subject’s genomic data, (B) the worst exemplars’
genomic data, and (C) the best exemplars’ genomic
data. We employed L2-penalized logistic regression
(C=1 set a priori). Model criticism was performed under
stratified-10-fold cross-validation.
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Part 2: Analysis using genomic data stratified by clinical exemplar score

Stratify 
genotyped 
subjects by 

their clinical 
exemplar 

scores

Classifier Classifier Classifier

A1

A2

A B1

B2

B

Figure 4. Hypothetical illustration of Part 2 of this study’s analysis, which evaluates the degree to which stratification
of genomic data by corresponding subjects’ clinical exemplar scores can improve genomic classification performance.
Panel A: Subjects’ genotypes lie on a genotypic feature space (shown in Panel A1 as a simplified 2 dimensional
plane). Panel A2 shows a hypothetical ROC curve for these aggregated data. Panel B: Each genotyped subject has
an exemplar score computed from Part 1 of the present study. Recall that the exemplar score merely identifies the
degree to which a subject’s clinical profile (i.e. symptoms, family history, comorbidities, etc.) is reliably predictive of
lithium responsiveness. Panel B1 shows that the aggregated genotyped sample can then be stratified into the “Best”
clinical exemplars (subjects with top 25% of clinical exemplar scores within each of the responder and non-responder
groups, respectively), and the “Poor” clinical exemplars (those with the lowest 25% of clinical exemplar scores in
each responsiveness class). We then apply classifiers to the genomic data in each of these “Best Exemplar” and “Poor
Exemplar” strata, respectively, and compare classification performance (Panel B2). The hypothetical receiver operating
characteristic curve in Panel B2 reflects our hypothesis, that genetic classification of lithium response will be superior
among the subgroup of Best clinical exemplars.
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Our primary outcome was the average
cross-validated Matthews correlation coefficient
(MCC), which is conservative under class imbalance.
Classification performance differences were compared
between conditions using the Kruskal-Wallis test.
Where a statistically significant difference was
observed (at α = 0.05), pairwise comparisons were
done with the Mann-Whitney U tests (at threshold
αC = 0.05/3 = 0.017). We secondarily report accuracy,
area under the receiver operating characteristic curve
(ROC-AUC), Cohen’s kappa, sensitivity, specificity,
positive predictive value (PPV), and negative predictive
value (NPV).

In the model trained on the best exemplars, we
indexed variants whose logistic regression coefficients
agreed in sign across all cross-validation folds, then
applied a statistical enrichment test to the nearest
associated genes using the PANTHER classification
system v. 14.1 [14]. To evaluate the relationship between
exemplar strata and enriched pathways, we repeated
this analysis using logistic regression coefficients from
the poor exemplar group. The threshold for statistical
significance was set at αFDR = 0.05, where FDR
indicates correction for false discovery rate. Further gene
set analysis details are provided in Appendix B.

3. Results

3.1. Part 1: Scoring and Characterization of Clinical
Exemplars

3.1.1. Accuracy Distributions in the Predict Every
Subject Out Analysis

A classifier trained on data from the Maritimes site
achieved the highest mean overall accuracy (0.59, 95%
confidence interval, CI, [0.58, 0.6]; Figure 5), which
appeared largely driven by that site’s ability to accurately
classify its own subjects (0.69 [0.66, 0.71]), and those
from Montreal (0.71 [0.67, 0.75]). However, Figure
5 shows that site-level models’ accuracy distributions
were highly variable in shape and modality, suggesting
heterogeneous classification behaviour between sites.

3.1.2. Characteristics of the Best and Poor Exemplars

Within the clinical dataset of Part 1, there were
110 individuals in LRBest and LRPoor groups, and 207

individuals in the NRBest and NRPoor groups (Table
2). The LRBest group came predominantly from IGSLi
(53.6%) and Ontario (21.8%), and most NRBest subjects
were from Maritimes (72.5%) and Montreal (25.1%).

The LRBest group showed a later age of onset
(median 28y, interquartile range, IQR [21, 36]) compared
to NRBest (median 19, IQR [16, 24]; p<0.00001).

The LRBest subjects for whom clinical course
information was available all showed a completely
episodic course, whereas NRBest courses were
mainly chronic fluctuating (43.5%) and episodic with
residual symptoms (44.9%). These differences were
statistically significant at the omnibus level (p=0.0001).
Interestingly, differences in clinical course between
LRPoor and NRPoor were opposite in direction to
those observed among best exemplars. NRPoor
subjects had predominantly completely episodic clinical
courses (74.1%), whereas LRPoor subjects exhibited
predominantly chronic fluctuating (41%) and chronic
(25.3%) courses, with only 18.1% being completely
episodic (omnibus p=0.0001).

The complete absence of rapid cycling was
reported in 98.3% of LRBest, and in only 47.2% of
NRBest (p=0.0001). The remaining majority of the
NRBest subjects (49.2%) reported having experienced
spontaneous rapid cycling. The occurrence of rapid
cycling was no different between LRPoor and NRPoor
groups.

The occurrence of lifetime psychosis differed
between LRBest and NRBest, with a total of 42.8% of the
non-responders reporting episodic and mood congruent
psychosis (compared to only 16.7% of responders;
p=0.0001). Non-responders also reported incongruent
episodic psychosis in 18.6% of cases, with only 37.1%
of non-responders reporting an absence of psychosis
altogether. In contrast, 83.3% of the best exemplars of
lithium response reported a complete absence of lifetime
psychosis.

The LRBest group had a lower rate of panic disorder
(2.1% vs. 27.9%; p=0.0001), generalized anxiety disorder
(3.6% vs 41.2%; p=0.00025), and substance abuse (2% vs.
37.9%; p=0.0001) than NRBest. There was also a general
trend toward lower rates of psychiatric comorbidity
in LRBest compared to the NRBest group. Social
anxiety disorder was present in 0% of lithium responders
but 27.9% of non-responders (p=0.0007). Responders
also had relatively lower rates of obsessive-compulsive
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Figure 5. Accuracy distributions for models evaluated under the predict every subject out (PESO) regime. The violin
plot at the upper leftmost corner shows the accuracy distributions for each site model evaluated over all subjects in
the dataset, with the densities colored according to the proportion of lithium responders in the training site’s data.
The remaining subplots show accuracy histograms for training site models (specified in the titles) stratified across
out-of-sample sites. For the site-wise histograms, color indicates the responder/non-responder balance in the respective
validation site. Abbreviations: Lithium responder (LR+), Cagliari (Centro Bini; CB), Cagliari (University; CU),
International Group for the Study of Lithium (IGSLi), Maritimes (MAR), Ontario (ON), Poznan (POZ).

disorder (2.1%) compared to non-responders (14.1%;
p=0.0025). These findings were largely reversed when
looking at the poor exemplars. LRPoor subjects
had higher rates of social anxiety disorder (35.6% vs
4.5%; p=0.0001), panic disorder (48.9% vs 15.5%;
p=0.0001), generalized anxiety disorder (52% vs 7.3%;
p=0.0001), substance abuse (41.5% vs 21.0%; p=0.0005),
attention deficit hyperactivity disorder (60.8% vs.
10.6%; p=0.0001), learning disability (51.4% vs 10.6%;
p=0.0001), and personality disorder (31.9% vs 3.4%;
p=0.0001) compared to the NRPoor subjects.

3.2. Part 2: Biological Validation through Genomic
Classification

Recall that the genomic data for this element of the
analysis are derived from a single site in the ConLiGen

data. In Appendix C, we demonstrate relative lack of
genomic population stratification in this subset, with a
comparison to the broader ConLiGen sample.

3.2.1. Genomic Classification among the Best and Poor
Exemplars

Genotyped subjects overlapped with clinical data
from the Maritimes (n=129; 40%), Montreal (n=74; 23%),
Ontario (n=62; 19%), and IGSLi (n=56; 17%), although
in the ConLiGen GWAS [6], they were all classified as
from the Maritimes (Dalhousie University). Most clinical
differences reflect those reported in Section 3.1.2 and thus
are reported in Table D.1.
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Table 2. Clinical characteristics of exemplars, by lithium responsiveness. Characteristics of the best (upper 25% of
exemplar scores) and poor (lower 25% of exemplar scores) exemplars of lithium response (LiR) and non-response
(LiNR), respectively. Categorical data are presented as count (%), whereas normally distributed continuous variables
are presented as mean (standard deviation), and non-normal continuous variables are presented as median [interquartile
range]. Abbreviations: Calgiari (University; CU), Cagliari (Centro Bini; CB), International Group for the Study of
Lithium (IGSLi), Maritimes (MAR), Montreal (MTL), Ontario (ON), Poznan (POZ), bipolar disorder (BD), major
depressive disorder (MDD), antidepressants (AD), schizoaffective disorder (SZA), global assessment of functioning
(GAF), lithium (Li), suicide attempts (SA), first degree relatives (FDR), second degree relatives (SDR), schizophrenia
(SCZ), suicidal ideation (SI), history (Hx), generalized anxiety disorder (GAD), obsessive compulsive disorder (OCD),
attention deficit hyperactivity disorder (ADHD), hypertension (HTN), socioeconomic status (SES).

Best Exemplars Poor Exemplars
LiNR LiR p LiNR LiR p

n 207 110 207 110
Male (%) 76 (36.7) 46 (41.8) 0.398 79 (38.2) 34 (30.9) 0.215
Age (y) 42.4 [32.1, 51.8] 54.2 [42.4, 65.5] <1e-3 45.9 [36.4, 57.8] 59.7 [44.4, 66.1] <1e-3
Centre (%) - 1e-3

CU 4 (1.9) 21 (19.1) 74 (35.7) 1 (0.9)
CB 1 (0.5) 0 (0.0) 70 (33.8) 11 (10.0)
IGSLi 0 (0.0) 59 (53.6) 0 (0.0) 8 (7.3)
MAR 150 (72.5) 6 (5.5) 38 (18.4) 16 (14.5)
MTL 52 (25.1) 0 (0.0) 11 (5.3) 2 (1.8)
ON 0 (0.0) 24 (21.8) 6 (2.9) 21 (19.1)
POZ 0 (0.0) 0 (0.0) 8 (3.9) 51 (46.4)

Diagnosis (%) 0.124 0.047
BD I 139 (67.1) 71 (64.5) 136 (65.7) 66 (60.0)
BD II 62 (30.0) 33 (30.0) 51 (24.6) 36 (32.7)
MDD Recurrent 0 (0.0) 3 ( 2.7) 3 (1.4) 4 (3.6)
MDD Single 0 (0.0) 1 (0.9)
SZA 6 ( 2.9) 3 (2.7) 17 (8.2) 3 (2.7)

Age of onset (y) 19. [16., 24.] 28 [21., 36.] <1e-3 22.5 [18., 32.25] 27.5 [18.25, 35.] 0.166
Onset D (y) 20. [16., 25.] 30 [23., 37.] <1e-3 28 [20., 38.] 30 [20.50, 37.50] 0.775
Onset M (y) 25. [21., 32.] 30 [26., 40.] 1e-3 29.3 [22., 36.5] 32 [28., 39.7] 0.009
Onset m (y) 26.5 [21., 38.5] 38 [25.5, 45.5] 0.003 32.49 (14.59) 38.13 (12.16) 0.060
Polarity episode 1 (%) 0.0002 0.011

Biphasic (D-M) 4 (2.0) 5 (5.8) 3 (5.8) 1 (2.4)
Biphasic (M-D) 13 (6.6) 4 (4.7) 2 (3.8) 2 (4.8)
Hypomania 19 (9.7) 8 (9.3) 10 (19.2) 3 (7.1)
Major depression 142 (72.4) 42 (48.8) 20 ( 38.5) 30 (71.4)
Mania 13 (6.6) 16 (18.6) 16 (30.8) 4 (9.5)
Minor depression 5 (2.6) 11 (12.8) 1 (1.9) 2 (4.8)

Clinical course (%) 1e-3 1e-3
Chronic 14 (6.8) 0 (0.0) 8 (4.1) 21 ( 25.3)
Chronic deteriorating 2 (1.0) 0 (0.0) 3 (1.5) 2 (2.4)
Chronic fluctuating 90 (43.5) 0 (0.0) 11 (5.6) 34 (41.0)
Completely episodic 7 ( 3.4) 27 (100.0) 146 ( 74.1) 15 (18.1)
Continuous cycling 1 (0.5) 0 (0.0) 7 (3.6) 2 (2.4)
Episodic + residual 93 (44.9) 0 (0.0) 22 (11.2) 9 (10.8)

N LT manias 3. [1., 7.] 2. [0., 3.] 1e-3 3. [1., 6.] 2. [1., 3.] 0.021
N LT depressions 5. [3., 15.] 3. [2., 6.] <1e-3 4. [2., 8.] 4. [2., 6.] 0.030
N LT mixed 0. [0., 1.] 0. [0., 0.] <1e-3 0. [0., 0.] 0. [0., 0.] 0.403
N LT multiphasic 0. [0., 1.] 0. [0., 2.] 1e-3 0. [0., 0.] 0. [0., 0.] 0.184
Total N LT episodes 9. [5., 24.50] 6. [5., 10.] <1e-3 8. [5., 15.] 5. [4., 9.] 0.005
Rapid cycling (%) 1e-3 0.701

Never 92 (47.2) 59 (98.3) 56 ( 93.3) 80 (96.4)
Only on AD 7 (3.6) 0 (0.0) 2 (3.3) 1 (1.2)
Spontaneous 96 (49.2) 1 (1.7) 2 (3.3) 2 (2.4)

Rapid mood switch (%) 47 (63.5) 0 (0.0) 0.061 6 ( 21.4) 1 (1.8) 0.005
LT psychosis (%) 1e-3 0.002

Episodic congruent 83 (42.8) 5 ( 16.7) 51 (38.9) 15 (20.0)
Episodic incong. 36 (18.6) 0 (0.0) 8 (6.1) 1 (1.3)
Never 72 (37.1) 25 (83.3) 70 ( 53.4) 59 (78.7)
Outside of episodes 3 (1.5) 0 (0.0) 2 (1.5) 0 (0.0)

GAF last assessment 70. [55., 75.] 90 [90., 95.] <1e-3 75 [60., 86.25] 87.5 [80., 90.] 0.013
Continued on next page...
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Best Exemplars Poor Exemplars
LiNR LiR p LiNR LiR p

Li total score 2. [0., 4.] 8. [8., 10.] <1e-3 3. [1., 5.] 8. [7., 9.] <1e-3
N episodes on Li 4. [1.25, 10.] 0. [0., 1.75] 0.012 2. [1., 4.] 1. [0., 1.50] 1e-3
N episodes pre Li 4. [3., 12.] 5. [4., 15.75] 0.144 4. [3., 7.] 4. [3., 6.] 0.775
N SA 0. [0., 1.] 0. [0., 0.] 0.003 0. [0., 0.] 0. [0., 0.] 0.155
N significant SA 1. [0., 1.] 0. [0., 0.] 0.0003 0. [0., 0.] 0. [0., 1.] 0.005
Age at SA1 (%) 26. [17., 35.] 20 [18., 36.] 0.752 36.16 (13.87) 33.79 (12.08) 0.670
FDR mood d/o (%) 99 (55.3) 31 (35.2) 0.003 76 (73.8) 22 ( 40.0) 0.0002
FDR BD (%) 44 (21.7) 9 (10.1) 0.021 62 (51.2) 42 (39.3) 0.080
N FDR BD-I 0. [0., 0.] 0. [0., 0.] 0.003 0. [0., 1.] 0. [0., 1.] 0.055
N FDR BD-II 0. [0., 0.] 0. [0., 0.] 0.716 0. [0., 0.] 0. [0., 0.] 0.899
N FDR Unipolar D 1. [0., 1.] 0. [0., 1.] 0.005 0. [0., 1.] 0. [0., 1.] 0.550
N FDR SZA 0. [0., 0.] 0. [0., 0.] 0.721 0. [0., 0.] 0. [0., 0.] 0.767
N FDR SCZ 0. [0., 0.] 0. [0., 0.] 0.051 0. [0., 0.] 0. [0., 0.] 0.212
N FDR Anxiety 0. [0., 0.] 0. [0., 0.] 0.001 0. [0., 0.] 0. [0., 0.] 0.323
N FDR Unaffected 0. [0., 1.] 0. [0., 0.] 0.0004 3.50 [0., 7.] 0. [0., 0.] <1e-3
N FDR Suicide 0. [0., 0.] 0. [0., 0.] 0.681 0. [0., 0.] 0. [0., 0.] 0.865
N FDR SA 0. [0., 0.] 0. [0., 0.] 0.222 0. [0., 0.] 0. [0., 0.] 0.073
N SDR Suicide 0. [0., 0.] 0. [0., 0.] 0.366 0. [0., 0.] 0. [0., 0.] 0.668
N SDR SA 0. [0., 0.] 0. [0., 0.] 0.266 0. [0., 0.] 0. [0., 0.] 0.686
Mood at SA (%) 0.338 1

Major depression 74 (91.4) 3 ( 75.0) 0 (0.0) 0 (0.0)
Mania 3 ( 3.7) 1 ( 25.0) 3 (16.7) 0 (0.0)
Minor depression 1 (1.2) 0 (0.0) 0 (0.0) 0 (0.0)
Mixed 2 ( 2.5) 0 (0.0) 0 (0.0) 0 (0.0)
Rapid cycling 1 ( 1.2) 0 (0.0) 0 (0.0) 0 (0.0)

LT Hx SI (%) 114 (61.3) 18 ( 34.0) 0.001 61 ( 44.2) 11 ( 40.7) 0.826
SI episodic (%) 1 -

No 1 ( 0.9) 0 (0.0) 0 (0.0) 0 (0.0)
Sometimes 6 ( 5.7) 0 (0.0) 0 (0.0) 0 (0.0)
Yes 99 (93.4) 2 (100.0) 9 (100.0) 8 (100.0)

Social anxiety d/o (%) 54 (26.6) 0 ( 0.0) 0.001 8 ( 4.5) 26 ( 35.6) 1e-3
Panic d/o (%) 57 (27.9) 2 ( 2.1) 1e-3 28 ( 15.5) 43 ( 48.9) 1e-3
GAD (%) 84 (41.2) 1 (3.6) 1e-3 13 ( 7.3) 39 ( 52.0) 1e-3
OCD (%) 29 (14.1) 2 (2.1) 0.003 1 ( 0.6) 8 ( 9.2) 0.0004
Substance abuse (%) 78 (37.9) 2 (2.0) 1e-3 43 ( 21.0) 39 ( 41.5) 0.001
ADHD (%) 11 ( 5.5) 0 (0.0) 1 11 (10.6) 45 ( 60.8) 1e-3
Learning d/o (%) 9 ( 4.5) 0 (0.0) 1 11 (10.6) 38 ( 51.4) 1e-3
Primary Insomnia (%) 35 (17.5) 0 (0.0) 0.380 7 (6.7) 9 ( 11.8) 0.287
Personality d/o (%) 38 (19.1) 0 (0.0) 0.375 3 (3.4) 23 ( 31.9) 1e-3
Diabetes mellitus (%) 20 (10.3) 0 (0.0) 0.600 6 (8.3) 5 ( 7.5) 1
HTN (%) 22 (11.4) 2 (20.0) 0.610 17 ( 23.6) 35 ( 53.0) 0.001
Menstrual d/o (%) 39 (34.2) 3 ( 60.0) 0.348 8 ( 26.7) 2 (4.7) 0.014
Thyroid disease (%) 55 (29.3) 2 ( 33.3) 1 18 ( 32.1) 8 ( 11.9) 0.008
Head injury (%) 48 (27.0) 1 ( 20.0) 1 17 ( 34.0) 24 ( 39.3) 0.698
Migraine (%) 44 (23.5) 2 ( 33.3) 0.622 11 ( 19.3) 9 ( 13.8) 0.474
SES (%) 1e-3 1e-3

Disabled 65 (36.3) 1 (3.4) 6 ( 3.4) 3 ( 4.0)
Other 12 ( 6.7) 8 ( 27.6) 23 ( 13.2) 0 ( 0.0)
Retired 8 ( 4.5) 7 ( 24.1) 25 ( 14.4) 22 ( 29.3)
Social assistance 32 (17.9) 2 ( 6.9) 4 ( 2.3) 3 (4.0)
Unemployment ins. 18 (10.1) 0 ( 0.0) 7 ( 4.0) 3 (4.0)
Unknown 2 ( 1.1) 1 ( 3.4) 1 ( 0.6) 0 (0.0)
Work full-time 30 (16.8) 10 ( 34.5) 96 ( 55.2) 29 (38.7)
Work part-time 12 ( 6.7) 0 ( 0.0) 12 ( 6.9) 15 ( 20.0)

Marital status (%) 1e-3 0.049
Divorced 47 (23.3) 2 ( 6.7) 16 ( 8.1) 9 ( 11.0)
Married 84 (41.6) 19 ( 63.3) 118 ( 59.6) 51 ( 62.2)
Single 67 (33.2) 2 ( 6.7) 51 ( 25.8) 11 ( 13.4)
Widowed 4 ( 2.0) 7 ( 23.3) 13 ( 6.6) 11 ( 13.4)

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 22, 2020. ; https://doi.org/10.1101/2020.05.19.20098566doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.19.20098566
http://creativecommons.org/licenses/by-nd/4.0/


NUNES ET AL. 12 OF 34

Genomic classification results are presented in
Figure 6 and in tabular fashion in Table D.2. The median
MCC for classification of the Best exemplars was 0.58
(IQR [0.41, 0.77]), which was greater than classification
analyses with either the poor exemplars (0.29 [0.06,
0.5]; p=0.0043), or the entire dataset (0.32 [0.2, 0.44];
p=0.002). The ROC-AUC for classification of lithium
response in the Best exemplars was 0.88 [0.83, 0.98],
which was greater than that of the model trained only
on poor exemplars (0.66 [0.61, 0.80]; p=0.0032) or the
whole dataset (0.7 [0.62, 0.75]; p=0.001).

Figure 7 shows pathway analysis results for the
best exemplars. Enriched pathways involved (A)
muscarinic acetylcholine receptor types 1 and 3 signaling
(mAChR1/3; 27 genes, false discovery rate FDR=0.017),
(B) Alzheimer disease-amyloid secretase (30 genes,
FDR=0.034), (C) heterotrimeric G-protein coupled
receptor Gq/Go α signaling (GPCRq/o-α; 53 genes,
FDR=0.04), and (D) histamine H1R mediated signaling
(H1R; 27 genes, FDR=0.039). Complete gene set analysis
results are shown in Table D.3. Enrichment studies in
the gene ontology “cellular component” and “biological
function” categories are shown in Tables D.4 and D.5.

4. Discussion

Individuals who are most phenotypically
representative of lithium response and non-response may
be more genetically distinct than their less exemplary
counterparts, particularly in genes related to GPCRq/o-α,
mAChR1/3 or H1R signaling, and the Alzheimer’s
amyloid-secretase pathway. Exemplars also showed
distinct clinical profiles that are consistent with past
phenotypic research on lithium responders. Since clinical
exemplars are more genetically separable, our study
confers a measure of biological validity upon the practice
of detailed clinical evaluation, whose predictive utility
we have previously demonstrated [7].

One of our most important findings was
characterization of the LRBest group as individuals
with (A) a predominantly completely episodic clinical
course, (B) low levels of psychiatric comorbidity, (C)
later age of onset, (D) a general absence of rapid cycling,
and (E) either absence of psychosis or limitation to
mood congruent intra-episodic form. The first two
findings are likely the strongest since we observe the
opposite pattern among the LRPoor and NRPoor groups.

Notwithstanding, all of these elements support past
evidence on the clinical phenotype of lithium responsive
bipolar disorder. For instance, Passmore et al. [15] found
that lithium responders generally had a more episodic
course of illness, whereas lamotrigine responders were
more likely to have experienced rapid cycling, a higher
rate of psychiatric comorbidity, and an earlier age of
onset. A later age of onset in lithium responders has
been demonstrated in meta-analysis [16,17]. Absence
of rapid cycling has also been associated with good
lithium response by Backlund et al [18] and Tondo et
al. [19]. Finally, Kleindienst & Greil [20] found that
carbamazepine responders were more likely to have had
mood incongruent psychosis than lithium responders,
while the updated meta-analysis by Hui et al. found an
association between absence of psychotic symptoms and
lithium responsiveness [17]. Aside from not including
family history related variables (potentially an artifact of
related variable definitions), the clinical picture of the
exemplary lithium responder that emerges from our study
largely aligns with that noted by several authors, such as
Grof [4], Gershon & Malhi [21], and Alda [22].

Recently, Kendler [23] reminded us that the utility
of biological tests, such as the electrocardiograms and
troponin assays used to detect myocardial infarction, is
generally contingent upon the clinician’s identification
of candidate patients whose presentations are clinically
consistent with the illness being targeted. The present
study, which shows that refinement of a clinical
sample into those whose phenotypes are clinically most
exemplary of the target syndrome, provides strong
data-driven support for Kendler’s statement. Further
still, we have noted that the clinical picture of the
exemplary lithium responders (and non-responders) has
been hypothesized for some time, and our study now
provides biological support for the predictive validity of
these phenotypic hypotheses. Specifically, we were able
to genomically classify the best clinical exemplars of
lithium response and non-response with a ROC-AUC of
0.88 (IQR [0.83,0.98]), whereas poor exemplars of these
classes could only be discriminated with a ROC-AUC
of 0.66 (IQR [0.61,0.80]; p=0.0032). If there was
no biologically mediated information in the exemplary
phenotype of lithium response (and non-response), then
this difference would not have been observed.

Variants most informative in discrimination of
the best exemplars showed enrichment of genes
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Figure 6. Genomic classification results. Results of classifying lithium response based on the genomic data of all
subjects (“ALL”; n=321), the poor exemplars (<25th percentile of exemplar score; n=81), and the best exemplars
(>75th percentile of exemplar score; n=79). Boxes are defined by the interquartile range (IQR), with the median
shown as the black centered line. Whiskers are 1.5 times the IQR. Each panel shows the results for a different
classification performance metric. Abbreviations: Matthews’ correlation coefficient (MCC), area under the receiver
operating characteristic curve (AUC), Cohen’s kappa (Kappa), positive predictive value (PPV), negative predictive
value (NPV).

involved in the heterotrimeric GPCRq/o-α, mAChR1/3
or H1R signaling, and the Alzheimer’s amyloid-secretase
pathway. Lithium response and BD have long been
associated with GPCR signaling [24]. In particular,
lithium may affect signaling in both the Go-alpha pathway
(at least via adenylate cyclase) and the Gq-alpha pathway
(via effects on 1,4,5-triphosphate and protein kinase
C, PKC) [25–29]. Interestingly, our results imply
that differences in GPCR signaling may be segregated
according to medication responsiveness. Enrichment in
the Alzheimer’s amyloid-secretase pathway is interesting
given the growing interest in the effects of lithium on
Alzheimer’s pathology. Alterations in cholinergic and
histaminergic systems have figured less prominently in
the biological literature on BD and lithium response.
However, note that Figure 7 shows that many genes
enriched in the cholinergic and histaminergic systems
were also enriched in the GPCR and Alzheimer’s amyloid
pathways (which comparatively have more individual

genetic associations). It is possible that alterations
in the cholinergic and histaminergic systems may be
subcomponents of the broader differences in the GPCR
and Alzheimer’s amyloid systems. In future work, it
would be of interest to characterize a more fine-grained
“gradient” of genetic differences across the spectrum of
exemplar scores, and to further evaluate the significance
of cholinergic and histaminergic system enrichment in
our study.

One limitation of our study includes the relatively
low sample size for the genomic analysis. Future work
could endeavor to obtain further genotypic information
for individuals in our clinical database, or detailed clinical
information for individuals in our genomic database.
As features, our study also only used those SNPs that
overlapped across genotyping platforms in the ConLiGen
dataset. Unfortunately, however, the number of fully
imputed variants was on the order of millions, which
would be analytically intractable in the present context.
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Pathway Ngenes ± p FDR

 Muscarinic AChR1,3  signaling pathway 27 + 0.0001 0.017

 Alzheimer disease-amyloid secretase pathway 30 + 0.0005 0.034

 Heterotrimeric GPCRq/o α signaling pathway 53 + 0.0008 0.041

 Histamine H1 R  signaling pathway 27 + 0.001 0.039
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Figure 7. Gene enrichment in the best exemplars.
Results of the statistical enrichment test using the
logistic regression coefficients from the classifier
trained on the best exemplar. Individual genes are
shown in gray, with pathway nodes (and edges)
colored according to the pathway identity. Pathway
names are shown in bold along the perimeter of
the graph. Abbreviations: acetylcholine receptor
(AChR), G-protein coupled receptor (GPCR),
histamine H1 receptor (H1R), false discovery rate
(FDR).

Filtering-based feature selection approaches in our
present study would be (A) too computationally expensive
across these millions of variants and (B) require much
larger sample sizes since they must be repeated within
each training partition. We also had no dominant a priori
biological rationale for limiting the data to a restricted
subset, since, as our results later confirmed, these
biological systems may differ between exemplar strata.
Ultimately, we chose the set of completely genotyped
SNPs that overlapped across ConLiGen sites in order to
facilitate the potential conceptual generalizability of our
pathway analysis results, in particular. That is, since the
pathways detected were based on variants that are broadly
genotyped, these results could potentially be extended to

other ConLiGen sites, should the corresponding clinical
variables become available.

Our study is also limited by its focus on lithium
response, at the exclusion of other mood stabilizers. It is
therefore possible our lithium responders are simply those
with a more generally responsive form of BD. The only
way to prove specificity would be to obtain data showing
a single subject’s non-response to other mood stabilizers
and response to lithium. That being said, there is evidence
that excellent response to lithium may be exclusive to
that medication [29]. After further validity checks on
larger samples of genomic data in lithium responders and
non-responders, it will be of great interest to examine
exemplar-based genomic classification of mood stabilizer
response more broadly. Such work could potentially
advance the development of joint clinical-biological
prediction models for mood stabilizer response.
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Appendix B Gene Set Analysis

At each fold of cross-validation (under all settings of q), the logistic regression coefficients were saved. The
SNPs whose logistic regression coefficients were of the same sign (i.e. positive or negative) across all folds were
ranked in terms of their absolute median coefficient values and linked to gene identifiers using the NCBI gene
database. Each gene was assigned the maximal absolute value of the logistic regression coefficients for all SNPs
tagged by that gene; the remainder (duplicates) were deleted, such that each included gene had only one numerical
value associated with it. We then applied the statistical enrichment test in the PANTHER classification system v.
14.1 [14]. We repeated the statistical enrichment test for the following annotation sets: PANTHER pathways, GO
molecular function (complete), GO biological processes (complete), GO cellular components (complete). To further
evaluate the degree to which the enrichment analyses speak specifically to findings among the best exemplars, we
repeated the same procedures outlined here using the logistic regression coefficients for the poor exemplars.

Appendix C Population Stratification

To evaluate for the presence of population stratification in our genomic sample, we plot the first several principal
components of the subjects’ genotypes in Figure C.1. For comparison, Figure C.2 demonstrates the first several
principal components from 14 sites of the full Consortium on Lithium Genetics (ConLiGen) genomic sample.
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Figure C.1. Principal components analysis of the genomic dataset from Halifax (as coded in the ConLiGen studies
[6]). The left column is coloured by the site of origin, whereas the right column of plots is coloured by lithium
responsiveness. Abbreviations: International Group for the Study of Lithium (IGSLi), Maritimes (MAR), Montreal
(MTL), Ontario (ON; also known as Ottawa/Hamilton).
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Figure C.2. Principal components analysis of the genomic dataset from the Consortium on Lithium Genetics sample [6] (Figure used with permission from Stone et
al., submitted manuscript)
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Appendix D Supplementary Tables

Clinical demographic comparisons between the best exemplars, poor exemplars, and the aggregated sample of
genotyped patients is presented in Table D.1, with stratification by lithium response. The results of gene enrichment
analysis are presented in Table D.3, with specific genes enriched in the best exemplar group (related to glutamate
receptors and signalling processes) shown in Tables D.4 and D.5.
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ALL Poor Best
LR(-) LR(+) p LR(-) LR(+) p LR(-) LR(+) p

Work full-time 27 (19.3) 11 (23.4) 14 ( 42.4) 3 ( 23.1) 5 (12.8) 0 (0.0)
Work part-time 12 ( 8.6) 7 (14.9) 1 ( 3.0) 2 ( 15.4) 4 (10.3) 0 (0.0)
Unemployment ins 20 (14.3) 4 ( 8.5) 6 ( 18.2) 1 ( 7.7) 4 (10.3) 0 (0.0)
Social assist. 19 (13.6) 6 (12.8) 0 (0.0) 2 ( 15.4) 9 (23.1) 0 (0.0)
Disabled 34 (24.3) 7 (14.9) 5 ( 15.2) 2 ( 15.4) 9 (23.1) 0 (0.0)
Other 3 ( 2.1) 4 ( 8.5) 0 (0.0) 0 (0.0) 1 ( 2.6) 0 (0.0)
Retired 19 (13.6) 8 (17.0) 7 ( 21.2) 3 ( 23.1) 2 ( 5.1) 0 (0.0)
Student 6 ( 4.3) 0 ( 0.0) 0 (0.0) 0 (0.0) 5 (12.8) 0 (0.0)

Marital status (%) 0.547 0.444 -
Single 34 (23.3) 12 (23.1) 3 ( 9.4) 4 ( 25.0) 17 (42.5) 0 (0.0)
Married 76 (52.1) 32 (61.5) 19 ( 59.4) 9 ( 56.2) 13 (32.5) 0 (0.0)
Divorced 32 (21.9) 7 (13.5) 9 ( 28.1) 3 ( 18.8) 9 (22.5) 0 (0.0)
Widowed 4 ( 2.7) 1 ( 1.9) 1 ( 3.1) 0 (0.0) 1 ( 2.5) 0 (0.0)
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Table D.2. Results of classifying lithium response based on the genomic data of all subjects (ALL; n=321), the poor exemplars (<25th percentile of exemplar score;
n=81), and the best exemplars (>75th percentile of exemplar score; n=79). Each panel shows the results for a different classification performance metric. Classification
was done using logistic regression with an L2 penalty (regularization weight set to C=1 a priori) with stratification done over each value of the resolution parameter q=1
and q=2. Abbreviations: accuracy (Acc), area under the receiver operating characteristic curve (AUC), sensitivity (Sens), specificity (Spec), Cohen’s kappa (Kappa),
Matthews’ correlation coefficient (MCC), positive predictive value (PPV), negative predictive value (NPV). Results are presented as means and 95% confidence
intervals.

q Group Acc AUC Sens Spec PPV NPV Kappa MCC
1 Best 0.75 [0.66,0.87] 0.88 [0.83,0.98] 0.75 [0.50,0.94] 0.88 [0.75,1.] 0.90 [0.75,1.] 0.71 [0.67,0.95] 0.50 [0.31,0.74] 0.58 [0.41,0.77]

Poor 0.65 [0.53,0.75] 0.66 [0.61,0.80] 0.50 [0.31,0.75] 0.75 [0.75,0.79] 0.67 [0.53,0.75] 0.67 [0.53,0.73] 0.28 [0.06,0.50] 0.29 [0.06,0.50]
2 Best 0.75 [0.65,0.75] 0.81 [0.66,0.86] 0.75 [0.54,0.75] 0.75 [0.56,0.94] 0.75 [0.67,0.95] 0.75 [0.67,0.79] 0.50 [0.29,0.50] 0.50 [0.39,0.58]

Poor 0.50 [0.50,0.72] 0.53 [0.45,0.72] 0.50 [0.06,0.50] 0.75 [0.50,1.] 0.50 [0.12,0.90] 0.50 [0.50,0.67] 0. [0.00,0.44] 0. [0.00,0.50]
ALL 0.66 [0.60,0.70] 0.70 [0.62,0.75] 0.59 [0.48,0.62] 0.70 [0.59,0.83] 0.67 [0.59,0.78] 0.65 [0.61,0.67] 0.31 [0.20,0.39] 0.32 [0.20,0.44]
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Best Poor
N +/- P value FDR N +/- P value FDR

regulation of cell morphogenesis involved in differentiation (GO:0010769) 116 + 1.09E-05 2.57E-02
regulation of cell morphogenesis (GO:0022604) 189 + 2.31E-05 2.28E-02

synapse organization (GO:0050808) 114 + 1.70E-05 2.87E-02
axon guidance (GO:0007411) 121 + 1.75E-05 2.58E-02

cell development (GO:0048468) 595 + 2.96E-05 2.50E-02
cell differentiation (GO:0030154) 1174 + 8.13E-05 4.80E-02

developmental process (GO:0032502) 1819 + 6.38E-05 4.19E-02
anatomical structure development (GO:0048856) 1742 + 4.46E-05 3.51E-02

generation of neurons (GO:0048699) 551 + 5.13E-05 3.79E-02
neurogenesis (GO:0022008) 583 + 1.86E-05 2.19E-02

nervous system development (GO:0007399) 819 + 6.40E-06 3.78E-02
system development (GO:0048731) 1462 + 3.69E-06 4.35E-02
multicellular organism development (GO:0007275) 1631 + 6.43E-05 3.99E-02
neuron projection guidance (GO:0097485) 123 + 1.93E-05 2.07E-02
regulation of neuron projection development (GO:0010975) 190 + 1.79E-05 2.35E-02

regulation of neuron differentiation (GO:0045664) 243 + 9.89E-06 3.89E-02
regulation of plasma membrane bounded cell projection organization (GO:0120035) 249 + 1.02E-05 3.00E-02

regulation of cell projection organization (GO:0031344) 250 + 1.40E-05 2.76E-02
glutamate receptor signaling pathway (GO:0007215) 30 + 2.49E-05 2.26E-02

circulatory system development (GO:0072359) 314 + 5.58E-05 3.88E-02
modulation of chemical synaptic transmission (GO:0050804) 182 + 4.51E-06 5.32E-02
regulation of trans-synaptic signaling (GO:0099177) 182 + 4.51E-06 2.66E-02

cell-cell adhesion via plasma-membrane adhesion molecules (GO:0098742) 99 + 9.19E-06 3.62E-02
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Table D.4. Genes enriched in the best exemplars group related to glutamatergic synapses (gene ontology “cellular
component” category).

Gene Gene Symbol Protein Class
ABR Active breakpoint cluster

region-related protein
guanyl-nucleotide exchange factor (PC00113)

ACAN Aggrecan core protein extracellular matrix glycoprotein (PC00100)
ACTN1, ACTN2 Alpha-actinin-1 & 2
ADAM22,
ADAM23

Disintegrin and metalloproteinase
domain-containing protein 22 & 23

metalloprotease (PC00153)

ADCY1,
ADCY8

Adenylate cyclase type 1 & 8

ADGRL3 Adhesion G protein-coupled
receptor L3

G-protein coupled receptor (PC00021), antibacterial
response protein (PC00051), protease (PC00190)

ADORA2B Adenosine receptor A2b G-protein coupled receptor (PC00021)
ADRA1A Alpha-1A adrenergic receptor G-protein coupled receptor (PC00021)
APBA1 Amyloid-beta A4 precursor

protein-binding family A member
1

membrane trafficking regulatory protein (PC00151)

ARHGAP22,
ARHGAP39,
ARHGAP44

Rho GTPase-activating protein 22

ATP2B2,
ATP2B4

Plasma membrane
calcium-transporting ATPase
2 & 4

cation transporter (PC00068), hydrolase (PC00121),
ion channel (PC00133)

BAIAP2 Brain-specific angiogenesis
inhibitor 1-associated protein 2

receptor (PC00197)

BCR Breakpoint cluster region protein guanyl-nucleotide exchange factor (PC00113)
CACNA1A Voltage-dependent P/Q-type

calcium channel subunit alpha-1A
CACNG2,
CACNG3,
CACNG4

Voltage-dependent calcium
channel gamma-2 subunit

voltage-gated calcium channel (PC00240)

CADPS,
CADPS2

Calcium-dependent secretion
activator 1 & 2

calcium-binding protein (PC00060)

CAMK4 Calcium/calmodulin-dependent
protein kinase type IV

non-motor microtubule binding protein (PC00166),
non-receptor serine/threonine protein kinase
(PC00167)

CDH8, CDH10,
CDH11

Cadherin-8,10,11

CHMP2B Charged multivesicular body
protein 2b

CHRM2,
CHRM3

Muscarinic acetylcholine receptor
M2 & M3

G-protein coupled receptor (PC00021)

Continued on next page...
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Gene Gene Symbol Protein Class
CLSTN1,
CLSTN2

Calsyntenin-1 & 2 calcium-binding protein (PC00060), cell adhesion
molecule (PC00069)

CNR1 Cannabinoid receptor 1 G-protein coupled receptor (PC00021)
CPLX2 Complexin-2
CTBP2 C-terminal-binding protein 2 transcription cofactor (PC00217)
CTTNBP2 Cortactin-binding protein 2
DGKB Diacylglycerol kinase beta kinase (PC00137)
DGKI Diacylglycerol kinase iota kinase (PC00137)
DLG2 Disks large homolog 2 transmembrane receptor regulatory/adaptor protein

(PC00226)
DLGAP4 Disks large-associated protein 4 transmembrane receptor regulatory/adaptor protein

(PC00226)
DNM2, DNM3 Dynamin-2 & 3 hydrolase (PC00121), microtubule family

cytoskeletal protein (PC00157), small GTPase
(PC00208)

DRD2, DRD3 D(2) & D(3) dopamine receptors G-protein coupled receptor (PC00021)
EFNB2 Ephrin-B2 membrane-bound signaling molecule (PC00152)
EPHA4, EPHA7 Ephrin type-A receptors 4 & 7
EPHB1, EPHB2 Ephrin type-B receptors 1 & 2
ERBB4 Receptor tyrosine-protein kinase

erbB-4
ERC2 ERC protein 2 G-protein modulator (PC00022), membrane traffic

protein (PC00150)
FARP1 FERM, ARHGEF and pleckstrin

domain-containing protein 1
FYN Tyrosine-protein kinase Fyn
FZD3 Frizzled-9 G-protein coupled receptor (PC00021), protease

inhibitor (PC00191), signaling molecule (PC00207)
GABRR1 Gamma-aminobutyric acid

receptor subunit rho-1
GABA receptor (PC00023), acetylcholine receptor
(PC00037)

GPC6 Glypican-6
GPM6A Neuronal membrane glycoprotein

M6-a
myelin protein (PC00161)

GRIA1 Glutamate receptor 1
GRID1, GRID2 Glutamate receptor ionotropic,

delta-1 & 2
GRIK2, GRIK5 Glutamate receptor ionotropic,

kainate 2 & 5
GRIN2A,
GRIN3A

Glutamate receptor ionotropic,
NMDA 2A & 3A

GRIP1, GRIP2 Glutamate receptor-interacting
protein 1 & 2

Continued on next page...
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Gene Gene Symbol Protein Class
GRM1, GRM3 Metabotropic glutamate receptor 1

& 3
G-protein coupled receptor (PC00021)

GSG1L Germ cell-specific gene 1-like
protein

cytoskeletal protein (PC00085)

GSK3B Glycogen synthase kinase-3 beta non-receptor serine/threonine protein kinase
(PC00167)

HIP1 Huntingtin-interacting protein 1 non-motor actin binding protein (PC00165)
HOMER1,
HOMER2

Homer protein homolog 1 & 2

HTR2A 5-hydroxytryptamine receptor 2A G-protein coupled receptor (PC00021)
IL1RAP Interleukin-1 receptor accessory

protein
type I cytokine receptor (PC00231)

ITGB1, ITGB3 Integrin beta-1 & 3 cell adhesion molecule (PC00069), receptor
(PC00197)

ITSN1 Intersectin-1 G-protein modulator (PC00022); calcium-binding
protein (PC00060); membrane traffic protein
(PC00150)

KCND2 Potassium voltage-gated channel
subfamily D member 2

LGI1 Leucine-rich glioma-inactivated
protein 1

LRFN5 Leucine-rich repeat and fibronectin
type-III domain-containing protein
5

LRRC4C Leucine-rich repeat-containing
protein 4C

LRRK2 Leucine-rich repeat
serine/threonine-protein kinase 2

LRRN2 Leucine-rich repeat
transmembrane neuronal protein 2

LRRTM4 Leucine-rich repeat
transmembrane neuronal protein 4

extracellular matrix protein (PC00102), receptor
(PC00197)

LYN Tyrosine-protein kinase Lyn
MAPK10,
MAPK14

Mitogen-activated protein kinase
10 & 14

non-receptor serine/threonine protein kinase
(PC00167)

MTOR Serine/threonine-protein kinase
mTOR

non-receptor serine/threonine protein kinase
(PC00167); nucleic acid binding (PC00171);
nucleotide kinase (PC00172)

NAPB Beta-soluble NSF attachment
protein

membrane traffic protein (PC00150)

NDRG1 Protein NDRG1 serine protease (PC00203)
NETO1 Neuropilin and tolloid-like protein

1
Continued on next page...
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Gene Gene Symbol Protein Class
NLGN1 Neuroligin-1
NOS1AP Carboxyl-terminal PDZ ligand of

neuronal nitric oxide synthase
protein

signaling molecule (PC00207)

NRCAM Neuronal cell adhesion molecule
NRG1, NRG3 Pro-neuregulin-1 & 3,

membrane-bound isoform
growth factor (PC00112)

NRP1, NRP2 Neuropilin-1 & 2
NRXN1 Neurexin-1
NTNG1, NTNG2 Netrin-G1 & G2 extracellular matrix linker protein (PC00101),

protease inhibitor (PC00191), receptor (PC00197)
NTRK3 NT-3 growth factor receptor
OLFM2 Noelin-2 receptor (PC00197); structural protein (PC00211)
P2RY1 P2Y purinoceptor 1
PAK2 Serine/threonine-protein kinase

PAK 2
PLCB1, PLCB4 1-phosphatidylinositol

4,5-bisphosphate
phosphodiesterase beta-1 &
4

calcium-binding protein (PC00060),
guanyl-nucleotide exchange factor (PC00113),
phospholipase (PC00186), signaling molecule
(PC00207)

PLEKHA5 Pleckstrin homology
domain-containing family A
member 5

PLPPR4 Phospholipid phosphatase-related
protein type 4

phosphatase (PC00181); pyrophosphatase
(PC00196)

PPFIA2 Liprin-alpha-2 & 3
PPFIA3
PPM1H Protein phosphatase 1H kinase inhibitor (PC00139), protein phosphatase

(PC00195)
PPP1R9A Neurabin-1
PPP3CA Serine/threonine-protein

phosphatase 2B catalytic subunit
alpha isoform

PRKAR1A cAMP-dependent protein kinase
type I-alpha regulatory subunit

PSD2 PH and SEC7 domain-containing
protein 2

PTK2B Protein-tyrosine kinase 2-beta
PTPRD Receptor-type tyrosine-protein

phosphatase delta
protein phosphatase (PC00195); receptor (PC00197)

PTPRO, PTPRS,
PTPRT

Receptor-type tyrosine-protein
phosphatase O, S, & T

protein phosphatase (PC00195)
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Gene Gene Symbol Protein Class
RAC1 Ras-related C3 botulinum toxin

substrate 1
small GTPase (PC00208)

RAP1A Ras-related protein Rap-1A small GTPase (PC00208)
RGS7BP Regulator of G-protein signaling

7-binding protein
RNF216 E3 ubiquitin-protein ligase

RNF216
SCN2A Sodium channel protein types 2 &

10 10 subunit alpha
voltage-gated calcium channel (PC00240)

SCN10A voltage-gated sodium channel (PC00243)
SH3GL1,
SHGL2, SHGL3

Endophilin-A2,A1, & A3

SHANK2 SH3 and multiple ankyrin repeat
domains protein 2

SHISA6,
SHISA9

Protein shisa-6 & 9

SLC1A2,
SLC1A6

Excitatory amino acid transporter 2 cation transporter (PC00068)

SLC6A17 Sodium-dependent neutral amino
acid transporter SLC6A17

cation transporter (PC00068)

SNAP25 Synaptosomal-associated protein
25

SNARE protein (PC00034)

SORCS3 VPS10 domain-containing receptor
SorCS3

receptor (PC00197), transporter (PC00227)

SPARC,
SPARCL1

SPARC & SPARC-like protein 1 cell adhesion molecule (PC00069), extracellular
matrix glycoprotein (PC00100), growth factor
(PC00112)

SPTBN1 Spectrin beta chain,
non-erythrocytic 1

SRC Proto-oncogene tyrosine-protein
kinase Src

STX3 Syntaxin-3 SNARE protein (PC00034)
SV2A Synaptic vesicle glycoprotein 2A
SYN3 Synapsin-3 membrane trafficking regulatory protein (PC00151);

non-motor actin binding protein (PC00165)
SYNPO Synaptopodin non-motor actin binding protein (PC00165)
SYT1, SYT6 Synaptotagmin-1 & 6 membrane trafficking regulatory protein (PC00151)
TANC2 Protein TANC2
TIAM1 T-lymphoma invasion and

metastasis-inducing protein 1
TNIK TRAF2 and NCK-interacting

protein kinase
TNR Tenascin-R signaling molecule (PC00207)

Continued on next page...

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 22, 2020. ; https://doi.org/10.1101/2020.05.19.20098566doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.19.20098566
http://creativecommons.org/licenses/by-nd/4.0/


NUNES ET AL. 32 OF 34

Gene Gene Symbol Protein Class
UNC13A Protein unc-13 homolog A
WASF3 Wiskott-Aldrich syndrome protein

family member 3
non-motor actin binding protein (PC00165)

WNT7A Protein Wnt-7a signaling molecule (PC00207)
YWHAZ 14-3-3 protein zeta/delta chaperone (PC00072)
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Table D.5. Genes enriched among the best exemplars in the gene ontology “biological process” category of the
glutamate receptor signaling pathway.

Gene Gene Symbol Protein Class
APP Amyloid-beta A4 protein protease inhibitor (PC00191)
GNAQ Guanine nucleotide-binding

protein G(q) subunit alpha
heterotrimeric G-protein (PC00117)

GRIA1, GRIA4 Glutamate receptor 1 & 4
GRID1, GRID2 Glutamate receptor ionotropic,

delta-1, 2
GRIK1, GRIK2,
GRIK4, GRIK5

Glutamate receptor ionotropic,
kainate 1,2,4,5

GRIN2A,
GRIN2B,
GRIN2D,
GRIN3A

Glutamate receptor ionotropic,
NMDA 2A, 2B, 2D, 3A

GRM1, GRM3,
GRM4, GRM5,
GRM6, GRM7,
GRM8

Metabotropic glutamate receptor
1,3,4,5,6,7,8

G-protein coupled receptor (PC00021)

HOMER1,
HOMER2

Homer protein homolog 1 & 2

KCNB1 Potassium voltage-gated channel
subfamily B member 1

PLCB1 1-phosphatidylinositol
4,5-bisphosphate
phosphodiesterase beta-1

calcium-binding protein (PC00060),
guanyl-nucleotide exchange factor (PC00113),
phospholipase (PC00186), signaling molecule
(PC00207)

PTK2B Protein-tyrosine kinase 2-beta
SSR1 Somatostatin receptor type 1 G-protein coupled receptor (PC00021)
TIAM1 T-lymphoma invasion and

metastasis-inducing protein 1
TRPM1, TRPM3 Transient receptor potential cation

channel subfamily M member 1 &
3

ion channel (PC00133), receptor (PC00197)
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