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One Sentence Summary: We trained and validated machine learning random forest (RF) 30 
models to predict COVID-19 severity based on 26 comorbidity/symptom features and 26 31 
biochemistry features from a cohort of 214 non-severe and 148 severe type COVID-19 patients, 32 
identified top features from both feature modalities to differentiate clinical types, and achieved 33 
predictive accuracy of >90%, >95%, and >99% when comorbidity/symptom, biochemistry, and 34 
combined top features were used as input, respectively. 35 
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 37 
Abstract: Effectively and efficiently diagnosing COVID-19 patients with accurate clinical type 38 
is essential to achieve optimal outcomes for the patients as well as reducing the risk of 39 
overloading the healthcare system. Currently, severe and non-severe COVID-19 types are 40 
differentiated by only a few clinical features, which do not comprehensively characterize 41 
complicated pathological, physiological, and immunological responses to SARS-CoV-2 invasion 42 
in different types. In this study, we recruited 214 confirmed COVID-19 patients in non-severe 43 
and 148 in severe type, from Wuhan, China. The patients’ comorbidity and symptoms (26 44 
features), and blood biochemistry (26 features) upon admission were acquired as two input 45 
modalities. Exploratory analyses demonstrated that these features differed substantially between 46 
two clinical types. Machine learning random forest (RF) models using features in each modality 47 
were developed and validated to classify COVID-19 clinical types. Using comorbidity/symptom 48 
and biochemistry as input independently, RF models achieved >90% and >95% predictive 49 
accuracy, respectively. Input features’ importance based on Gini impurity were further evaluated 50 
and top five features from each modality were identified (age, hypertension, cardiovascular 51 
disease, gender, diabetes; D-Dimer, hsTNI, neutrophil, IL-6, and LDH). Combining top 10 52 
multimodal features, RF model achieved >99% predictive accuracy. These findings shed light on 53 
how the human body reacts to SARS-CoV-2 invasion as a unity and provide insights on 54 
effectively evaluating COVID-19 patient’s severity and developing treatment plans accordingly. 55 
We suggest that symptoms and comorbidities can be used as an initial screening tool for triaging, 56 
while biochemistry and features combined are applied when accuracy is the priority.  57 
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Introduction 59 
COVID-19 is a pandemic caused by the novel SARS-CoV-2 virus. As of May 17 2020, it 60 

has spread through at least 220 countries and regions, causing more than 4 million cases with 61 
300 thousand casualties (1). It is considered as the single most severe outbreak in the entire 62 
world during the 21st century, dwarfing other coronavirus-caused 2003 SARS and 2012 MERS 63 
epidemics. COVID-19 is especially challenging to the health professionals and general 64 
population. Unlike the precedent SARS and MERS epidemics, COVID-19 patients can be either 65 
asymptomatic or symptomatic, both of which are demonstrated to be transmissible of the virus 66 
with varying degrees (2-5). In addition, the distinct clinical types, non-severe and severe, require 67 
different treatment and care plans (6). Current studies are able to differentiate COVID-19 68 
patients from non-patients, but further detecting non-severe or severe types of COVID-19 is not 69 
comprehensively explored. Non-severe type patients can be accommodated in the mobile cabin 70 
hospital which requires relatively less intensive clinical monitoring and intervention, including 71 
treating pre-existing comorbidities, preventing healthcare associated infections and other 72 
comorbidities (8). In contrast, severe type patients need close monitoring, usually in ICU with 73 
more clinicians (6). Therefore, effectively and efficiently classifying COVID-19 clinical types is 74 
essential for triage, resource optimization, and care planning for front-line clinicians, healthcare 75 
systems, as well as for the patients (6,7).  76 

Currently, non-severe and severe type are classified based on only a few clinical features 77 
(shortness of breath, O2 saturation, and PaO2), which do not comprehensively characterize the 78 
complicated pathological, physiological, and immunological profile between non-severe and 79 
severe types in COVID-19 patients (9-11). In addition, some severe patients may not present 80 
shortness of breath initially. But without proper medical intervention, their clinical course will 81 
worsen abruptly, often resulting in respiratory failure with high mortality (6). It is therefore 82 
critical to provide accurate and efficient diagnosis of COVID-19 patients with correct clinical 83 
type information. We suggest that clinical features, including patient's comorbidities (e.g., 84 
hypertension and diabetes), clinical symptoms (e.g., fever and chest pain), and blood 85 
biochemistry, are able to provide a more comprehensive characterization of COVID-19 and 86 
differentiate its clinical types (12,13). The human body is a unified and integrated entity. When 87 
pathogens such as SARS-CoV-2 invade, its effects can be shown not only from CT scans in the 88 
thoracic region, but also from other aspects such as clinical symptoms and biochemistry. ACE-2 89 
receptors, which facilitate SARS-CoV-2 infiltration, are distributed across multiple organs and 90 
systems in human body (35). More recent discoveries have found that in addition to respiratory 91 
system, SARS-CoV-2 can also invade digestive, reproductive, and even neural systems as well 92 
(14-17). In other words, comorbidities, clinical symptoms, and blood biochemistry information 93 
of COVID-19 patients could all be consequences and/or risk factors of SARS-CoV-2 infection. 94 
In clinical practice against COVID-19, clinicians not from respiratory or intensive care units may 95 
rely only on the referenced symptoms and signs (9) while neglecting diverse and important 96 
clinical features of COVID-19 patients, and may miss the critical signs of clinical course, leading 97 
to undesirable clinical consequences. 98 

The potential power of symptoms, blood biochemistry, as well as their combinations to 99 
determine COVID-19 clinical type is currently not well understood nor evaluated (18-20). In 100 
order to utilize such diverse multimodality clinical information to make accurate and 101 
interpretable classifications, we propose a data mining and machine learning (ML) framework 102 
alternative to commonly used hypothesis-driven parametric models such as logistic regression. 103 
The results can provide reliable diagnostic decision support for clinicians even without 104 
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comprehensive experience on the emerging COVID-19. We aim to explore and contrast the 105 
distributions of comorbidities and symptoms, as well as blood biochemistry between non-severe 106 
and severe COVID-19 types. We will identify key features that differed substantially between 107 
the two clinical types and provide clear evidence-based interpretations for clinicians and other 108 
health professionals. Next, we will investigate whether single modality or specific combination 109 
of features across modalities are able to provide accurate classification models based on ML 110 
techniques. This study delivers an accurate diagnostic decision support tool to differentiate non-111 
severe from severe type patients based on commonly available clinical data with clear clinical 112 
interpretations. Insights gained from this study, as well as developed end-to-end multimodal data 113 
analysis and ML framework, will enable us to better understand the comprehensive pathology of 114 
COVID-19, further distinguish COVID-19 from other infectious respiratory diseases, and apply 115 
in other diseases with multimodal clinical data in the future. 116 

Results  117 
Data Mining of COVID-19 Clinical Features between Non-severe and Severe Types 118 
Prevalence of symptom features in non-severe and severe COVID-19 types were 119 

calculated and compared (Fig. 1). Patients in the two clinical types showed distinct prevalence of 120 
many features. Severe COVID-19 patients were statistically much more likely to be elderly  (at 121 
least age of 50, symbol OLD, OR=13.77, 95% CI= 7.33-25.86, p<0.001) and male (SEX, 122 
OR=1.89, 95% CI= 1.24-2.90, p<0.01), to have renal diseases (KID, OR=8.51, 95% CI= 1.86-123 
38.99, p<0.001), cardiovascular diseases (CAR, OR=5.61, 95% CI=2.81-11.20, p<0.001), 124 
hypertension (HYP, OR=5.37, 95% CI=3.36-8.56, p<0.001), diabetes (DIA, OR=4.61, 95% 125 
CI=2.53-8.38, p<0.001), loss of appetite and taste (NAP, OR=3.20, 95% CI=1.70-6.01, 126 
p<0.001), feeling chilly (CHL, OR=2.21, 95% CI=1.16-4.22, p<0.05), and chest congestion 127 
(SHB, OR=1.88, 95% CI=1.22-2.89, p<0.01) than their non-severe counterparts. The only 128 
exception was sore throat, where severe patients had significantly much less likelihood to 129 
develop (SOR, OR=0.30, 95% CI=0.14-0.61, p<0.001). Since some of these clinical conditions 130 
were self-reported symptoms, observation biases were to be expected. These discoveries were 131 
further demonstrated in the forest plot of odds ratio (OR) and CI in Fig. 2, showing the 132 
differences between the two clinical types. Therefore, these relatively easily measured and 133 
acquired clinical features could be utilized to clinically evaluate COVID-19 patients’ severity. 134 
Our findings also echoed the U.S. CDC’s recently updated list of symptoms of COVID-19 (21) 135 
and more recent reports on characterizations of COVID-19 patients in the U.S. (36). Our findings 136 
showed that elderly male COVID-19 patients with cardiovascular, respiratory, renal diseases and 137 
diabetes were at much higher risk of developing serious complications of COVID-19 such as 138 
acute respiratory distress syndrome (ARDS) and even death (19,20). In addition, we discovered 139 
that Chinese patients with renal diseases were significantly more likely to develop severe 140 
COVID-19, which was not widely reported before. Clinical evidence showed that ACE-2 141 
expression was associated with kidney diseases, thus making kidney disease a potential 142 
complication of SARS-CoV-2 invasion (22,23). This finding would inform clinicians to monitor 143 
kidney dysfunction, e.g., acute kidney injury, as a clinical sign and/or consequence of severe 144 
COVID-19 complication as well. 145 
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 146 
Fig. 1. Symptom Features Comparison between Non-severe and Severe Types  147 
Note: symptom features were binary, so Y-axis was the prevalence of positives.  148 
 149 
 150 

 151 
Fig. 2. Forest Plot of Symptom Features between Non-severe and Severe Types 152 
Note: *** p<0.001; ** p<0.01; * p<0.05 from the 2x2 contingency table for each feature. COPD 153 
was removed from the list because only severe type COVID-19 patients showed comorbidity of 154 
COPD. The threshold for a feature to be “positively” or “negatively” associated with severe 155 
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COVID-19 was 1 (dashed line), not 0. Forest plot is based on parametric statistical analysis and 156 
is irrelevant to random forest, a type of machine learning model used later in this study.  157 
 158 

For biochemistry modality features, we compared the actual distributions of these 159 
continuous features between non-severe and severe types. The results were demonstrated in Fig. 160 
4. Based on the two-sided Kolmogorov-Smirnov test results, severe and non-severe COVID-19 161 
types differed significantly in most biochemistry features, except platelet (PLT), hemoglobin 162 
(HGB), CD3, and CD4. Among all biochemistry features, IL-6, hsTNI, and D-dimer had the 163 
most significant differences between non-severe and severe COVID-19 types.  164 

 165 

 166 
Fig. 3. Biochemistry Features Comparison between Non-severe and Severe Types 167 
Note: values shown on y-axis were after feature scaling and were between 0 and 1. Error bars 168 
represented standard error (SE) of each biochemistry feature. 169 

 170 
In addition, supplementary Fig. 1 showed symptom and biochemistry PCA results 171 

between non-severe and severe types. PCA plots reinforced the conclusion that associations 172 
among the features were substantially different between the two clinical types. The two types not 173 
only had vastly different distributions of features, interrelationships among features were also 174 
distinct between the two types. 175 

In conclusion, after extensive clinical feature extraction and data mining, there were 176 
strong qualitative and quantitative evidences that non-severe and severe COVID-19 types 177 
differed substantially with regard to comorbidities, symptoms, and blood biochemistry. These 178 
findings paved the way toward an effective machine learning (ML) classifier to accurately 179 
differentiate these two types in clinical practice. 180 

Clinical Type Classification via Machine Learning (ML): Comorbidity and 181 
Symptom Modality 182 
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 We first explored whether the relatively simple binary symptom features could provide 183 
accurate insights on COVID-19 severity. Model performance was summarized in Table 1 upper 184 
section. Based on 100 independent runs, the RF model reached an average of >99% and 92% 185 
accuracy for training and testing sets, respectively (Table 1). AUC was 90.2% (82.9%-97.6%) 186 
based on the receiver operating characteristic (ROC) curve (Fig. 4 left panel). The model 187 
performed better in detecting true positives (i.e., severe type) than true negatives (i.e., non-severe 188 
type). In other words, symptom features alone in RF models almost never falsely predicted 189 
severe case as non-severe case, but with a higher chance to predict non-severe case to severe 190 
case. In clinical practice, this would be a lesser concern, as false positive (failed to detect mild 191 
type) would be more tolerable than false negative (failed to detect severe type). 192 
 Our RF model also provided the major influential features to differentiate COVID-19 193 
types based on contribution to Gini impurity. Top influential features were age, gender, 194 
hypertension, diabetes, and cardiovascular diseases, in accordance with existing literature (24). 195 
Other important symptom features included fatigue, chest congestion, sore throat, phlegm, and 196 
fever. Most of these findings aligned well with our parametric data mining with odds ratio (OR) 197 
comparison (Fig. 2, supplementary Table S1) but with much higher accuracy (90% accuracy on 198 
prediction set of RF model compared to 68% accuracy from non-ML logistic regression). The 199 
only exception was renal disease. While its prevalence was significantly different between the 200 
two types, the RF model did not consider it as a major differentiating factor based on Gini 201 
impurity (Supplementary Table S1). Clinically, elderly male patients with pre-existing 202 
comorbidities, especially hypertension, diabetes, cardiovascular diseases were much more 203 
vulnerable to COVID-19 and had a much higher risk to develop to severe type (18,20). 204 
Therefore, we suggested using COVID-19 patients’ comorbidity and symptom features as the 205 
first round of evaluation of severity with reasonably high accuracy. 206 
 207 

Table 1. Random Forest Model Prediction Performance with Multimodal Features 208 

Feature: Symptom Median Minimum Maximum 

Accuracy% 90.28 83.33 98.61 

Sensitivity% 97.5 87.80 >99 

Specificity% 81.48 60.00 >99 

F1 Score% 93.31 84.62 98.97 

AUC% 90.20 82.90 97.60 

Feature: 
Biochemistry 

Median Minimum Maximum 

Accuracy% 97.22 94.44 >99 

Sensitivity% 97.92 91.11 >99 

Specificity% 96.97 87.5 >99 

F1 Score% 97.89 95.35 >99 
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AUC% 97.10 92.90 >99 

Features: 
Multimodal 

Median Minimum Maximum 

Accuracy% >99 97.22 >99 

Sensitivity% >99 97.22 >99 

Specificity% >99 92.00 >99 

F1 Score% >99 97.22 >99 

AUC% 98.90 96.90 >99 

 209 
Note: result based on 100 runs. Each run randomly selected 80% data as training set and 20% as 210 
prediction set. Table shows model performance only on prediction set. 211 
 212 
 213 

 214 
Fig. 4. ROC Curve from Random Forest Model Based on Symptom, Biochemistry, and 215 
Multimodal Features 216 
Note: panel (A) left showed symptom feature as input alone, panel (B) middle showed 217 
biochemistry as input alone, and panel (C) right showed both features combined as input. 218 
 219 

Clinical Type Classification via ML: Biochemistry Modality 220 
 Similar to symptom modality, RF model achieved an excellent performance in 221 
differentiating non-severe and severe types using 26 features from biochemistry modality. On 222 
average, the RF model achieved >99% and >95% accuracy for training and testing sets, 223 
respectively. Sensitivity, specificity, and F1 scores were all above 95%, using only 8 trees in the 224 
RF model (Table 1, middle section). AUC was 98% based on ROC curve (Fig. 4 middle panel). 225 
Though this study focused on ML methods, we evaluated model performance of non-ML logistic 226 
regression in supplementary Table S3 as a reference point to show the improvement that state-of-227 
the-art ML models could achieve. 228 
 Top differentiating features in biochemistry modality were D-dimer (DD), high 229 
sensitivity troponin I (hsTNI), neutrophil (NE), interleukin-6 (IL-6), lactate dehydrogenase 230 
(LDH), and high sensitivity c-reative protein (hsCRP). The clinical interpretation of their 231 
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important role was that severe COVID-19 patients had more intensive immune response and 232 
hyperinflammation, such as cytokine storm syndrome with substantially increased IL-6 (25). 233 
Research also showed that SARS-CoV-2 was able to infect many organs other than lungs and 234 
induce dysfunction of these organs, including heart (26,27). Increasing hsTNI was a sign of heart 235 
tissue damage from SARS-CoV-2 infection (28). In addition, severe COVID-19 patients might 236 
have formed microthrombosis which induced higher D-dimer (18, 20,29-31). Abnormal level of 237 
neutrophils could be responsible for cytokine storm and ARDS in severe COVID-19 patients 238 
(13,32). hsCRP, a biomarker of acute inflammation, cardiovascular disease, and ischemic events, 239 
was also confirmed as the major contributing factor of COVID-19 mortality (18). LDH was a 240 
biomarker of tissue damage and was used to predict the clinical course of COVID-19 patients 241 
(42). These findings added further clinical insights in how multiple organs and systems, not just 242 
lungs, responded to SARS-CoV-2 infection in different clinical types (33-35).  243 

Therefore, RF models developed in this study provided both high accuracy and valuable 244 
insights to identify clinical differences between COVID-19 types as well.  245 
 Clinical Type Classification via ML: Multimodal Features 246 
 Based on the success of single modality RF models, we further developed a multimodal 247 
RF model that incorporated features and insights from both modalities. Instead of putting every 248 
feature in each modality, we only selected top 5 features from symptoms and top 5 features from 249 
biochemistry modalities. The results were encouraging and promising: these top 10 features out 250 
of a total of 52 features from both modalities achieved >99% in every model performance metric, 251 
including accuracy, sensitivity, specificity, and F1 score (Table 1, 3rd section). AUC was >99% 252 
as well (Fig. 4 right panel). Therefore, we suggested a two-step evaluation process of COVID-19 253 
patient’s severity in clinical practice. Biochemistry and multimodal features such as a 254 
combination of symptom and biochemistry would serve as a more robust second-round 255 
confirmation after the first round of initial screening based on binary comorbidity and symptom 256 
features. 257 

These findings reinforced our argument that SARS-CoV-2 attacked multiple organs and 258 
systems, and the human body reacted in a unity against its invasion. Different clinical features 259 
(e.g., comorbidity, symptom, and biochemistry) complemented each other to provide a more 260 
comprehensive characterization of human body as a united entity, not just respiratory system, 261 
reacted to SARS-CoV-2 invasion (35). In addition, the decent model performance promised the 262 
feasibility of multimodal clinical data mining in detecting and differentiating non-severe from 263 
severe COVID-19 patients. Our work would help effectively optimize healthcare operation 264 
during the pandemic and avoid overloading the healthcare system (7). 265 

Discussion  266 
This study provides a breakthrough in combining the power of multiple clinical features 267 

from different modalities to differentiate COVID-19 clinical types via machine learning 268 
techniques. Practically, it enables delivering a more effective and efficient COVID-19 clinical 269 
type diagnostic decision support system. It helps develop optimal treatment plans for the 270 
individual patient, for example, sending to a mobile cabin hospital or admitting to a hospital with 271 
ICU (8). In addition, it will enable triaging and more effectively optimize the healthcare system 272 
resources and staffing. Doing so will substantially reduce the risk of overloading the healthcare 273 
system by admitting all COVID-19 patients into the hospital, decrease potential healthcare-274 
associated infections, and improve clinical outcome for the patients, especially during this 275 
COVID-19 pandemic (7).  276 
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In addition to accurately detecting vulnerable COVID-19 patients who are likely to be in 277 
severe type, this study also provides clinical insights on why these patients may have been in 278 
severe type. Machine learning (ML) models work directly with data and therefore are generally 279 
not good at providing clear interpretations. In this study, we combine the power of both 280 
hypothesis-driven and data-driven ML models. The most contributing comorbidity, symptom, 281 
and biochemical features help predict and explain potential COVID-19 clinical courses and 282 
prognosis. Our research echoes recent studies that characterize and predict clinical course, 283 
critical illness and mortality of COVID-19 patients (13,18,20). In particular, another decision 284 
tree-based algorithm (XGBoost) showed promising performance in predicting mortality of 285 
CoVID-19 patients (18). RF was technically similar to XGBoost and our results were consistent 286 
to identify the key differentiating biochemistry features: LDH, hsCRP, and lymphocyte. 287 

A continuous-valued risk score calculator for predicting risk of transitioning to critical 288 
type (an even more severe type which requires ICU, invasive ventilator, or ECMO, and has a 289 
mortality rate as high as 50%) has been developed for COVID-19 patients (20). As a 290 
comparison, although our RF model predicts a 0-1 binary outcome for non-severe and severe 291 
type patients, the internal RF modeling process through decision tree approach actually 292 
calculates an intermediate score between 0 and 1. By using a cut-off threshold, the RF model 293 
reports a final dichotomized 0-1 outcome. Therefore, our analytical framework can be readily 294 
adjusted to provide a continuous risk score for clinical evaluation and triaging of COVID-19 295 
patients as well, if needed. 296 

Many severe COVID-19 patients present symptoms in lungs, especially ground glass 297 
opaque (GGO), which can be detected by biomedical imaging techniques such as CT. However, 298 
a major clinical challenge of COVID-19 lies in the asymptomatic patient problem, thus making it 299 
far worse than other coronavirus epidemics including SARS and MERS. These patients showed 300 
little if not none of classic symptoms related to viral pneumonia, presented no GGO, yet they are 301 
almost as capable of transmitting the virus as symptomatic patients (4-6). We suggest that the 302 
term “asymptomatic” may be due to lack of a comprehensive evaluation and understanding of 303 
this novel pathogen and hosts’ pathophysiology, and not truly “asymptomatic”. By more 304 
extensive data mining we show that non-severe COVID-19 patients have many symptoms 305 
differently distributed than severe patients. Our study provides an alternative route to detect non-306 
severe COVID-19 patients and complement current biomedical imaging procedures.  307 

The next step of this study is to further include biomedical imaging modality. A technical 308 
barrier is that CT scan is a high-dimensional feature set while symptom and biochemistry have 309 
relatively low dimensionality. Therefore, CT scan, at its original form of imaging, cannot be 310 
effectively combined with other modalities. We will evaluate the feasibility of using convolution 311 
neural network (CNN, another time of ML technique) first to reduce feature space in CT scan 312 
and extracting a fully connected layer in CNN as a representation of CT scan feature. A fully 313 
connected layer is a 1-dimensional vector and has the same dimensionality with the other two 314 
modalities. Therefore, in theory we would be able to further combine CT scans with other 315 
clinical features and investigate the association between these features with regard to COVID-19. 316 

COVID-19 is a complex disease where the pathogen not only attacks the respiratory 317 
system but other organs and systems that have ACE-2 receptors as well (35,36). Our findings 318 
reveal the complicated pathological, physiological, and immunological responses to SARS-CoV-319 
2 invasion and shed light in understanding the complex interactions between the virus and human 320 
body. Though the multimodal data mining and ML framework is developed with severe/non-321 
severe COVID-19 data, we suggest that the end-to-end framework is applicable to many disease 322 
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systems where multimodal inputs are common, including demographic information, comorbidity, 323 
biochemistry, imaging, and -omics data. Having a more holistic viewpoint and approach will 324 
enable us to understand and respond to these emerging diseases, especially the unprecedented 325 
COVID-19, more readily in the field. We will further explore this analytical framework, and 326 
transfer insights for future clinical studies such as differentiating healthy, non-COVID viral 327 
pneumonia, non-severe, and severe COVID-19 patients. 328 

In this study, we recruited participants from a single hospital in Wuhan, the first epicenter 329 
of COVID-19. There will inevitably be selection bias, as currently the ethnicity group is limited 330 
to Chinese participants. Therefore, we want to inform our colleagues across the world and see 331 
whether different demographic backgrounds influence feature distributions between non-severe 332 
and severe types in the patients. Our findings have already been independently identified in 333 
COVID-19 patients across ethnicity groups (21, 28). Another pitfall we should be aware of is 334 
that comorbidities may be the consequence of SARS-CoV-2 invasion, or risk factors that 335 
increase the risk of infection. Although the participants’ comorbidity, symptom, and 336 
biochemistry were evaluated upon admission to hospital, they could have been exposed to the 337 
pathogen long before hospitalization, given the long “asymptomatic” type of COVID-19. For 338 
example, it is unclear whether kidney damage in a patient is a risk factor to induce severe type 339 
COVID-19, or SARS-CoV-2 attacks the kidney and causes kidney damage (35). The causal 340 
relationship needs to be more systematically evaluated with carefully designed prospective 341 
cohort studies. Nevertheless, in clinical practice, observing renal diseases in COVID-19 patients 342 
would trigger an alarm of clinical course to severe type, and inform clinicians to take actions to 343 
prevent acute kidney failure and even death. 344 

Additionally, different subtypes of the virus, their specific pathogenicity and virulence, 345 
and host-pathogen interactions, should also be taken into consideration when conducting and 346 
comparing studies across different regions of the world. The other factors that this study did not 347 
include are behavioral and societal aspects, for instance, whether and how utilizing mobile cabin 348 
hospitals to treat non-severe type patients reduce the rate of transition to severe type. COVID-19, 349 
like all other infectious diseases, has individual clinical, epidemiological, behavioral as well as 350 
societal factors during its epidemic. Therefore, we will also explore cross-scale individual 351 
clinical course and population-level epidemics in future studies. 352 

Materials and Methods 353 
Data Source and Clinical Feature Extraction 354 
In this study, we recruited 362 COVID-19 patients, including 214 non-severe and 148 355 

severe patients, from Wuhan Union Hospital affiliated to Tongji Medical School, Huazhong 356 
University of Science and Technology, China. Definitions of non-severe and severe cases were 357 
mainly adopted from the official COVID-19 Diagnosis and Treatment Plan from the National 358 
Health Commission of China and consulted guidelines from American Thoracic Society as well 359 
(9-11). Patients in severe type should present any one of the following features: 1) respiratory 360 
rate > 30 breaths per minute; 2) oxygen saturation < 93% at rest; or 3) arterial oxygen partial 361 
pressure (PaO2)/fraction of inspired oxygen (FiO2) < 300mmHg (40kPa). Each COVID-19 362 
patient was confirmed by two independent qRT-PCR tests before admitted to this study. All 363 
patients signed informed consent forms before participation. Symptoms were evaluated and 364 
blood samples were drawn upon admission. No pediatric patients younger than 18 years old were 365 
admitted in this study. This study was evaluated and approved by the IRB committee of Union 366 
Hospital, Wuhan, China (approval number: 2020-IEC-J-345). 367 
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Patients' de-identified clinical information include two major modalities of features. The 368 
first modality was a total of 26 pre-existing comorbidities and clinical symptoms, colloquially 369 
referred to as symptom features hereinafter. These features included gender, age (dichotomized 370 
as elder and young using 50yr as a cut-off point), hypertension, coughing, different types of 371 
fever, etc. A detailed description of these 26 features was provided in supplementary table S1. 372 
All symptom features were coded as 0-1 binary variables. 373 

In addition, we also collected patients' blood samples and performed blood chemistry 374 
testing. After initial screening, we excluded some features with too many missing data such as 375 
calcitonin. Oxygen saturation and PaO2, the severe and non-severe type defining features, 376 
according to the Diagnosis and Treatment Plan (9), were also excluded. There were 26 377 
biochemistry features in this study, including IL-6, hemoglobin, and various lymphocytes. A 378 
detailed description and units of these biochemistry features were provided in supplementary 379 
table 2. All these biochemistry features were continuous features, different from the binary 380 
features in the symptom modality. 381 

Data Mining on Multimodal Clinical Features 382 
First, we conducted data mining on the multimodal COVID-19 data. The original dataset 383 

had approximately 5% missing data and we used predictive mean matching (PMM) to impute the 384 
original data. PMM was a commonly used computational method to handle missing data. To 385 
evaluate the effectiveness of PMM, we used a subset of the original dataset with no data missing, 386 
randomly dropped 5% data to simulate potential data loss, re-extrapolated the data with PMM, 387 
and evaluated the mean square root error (RMSE) between the original and imputed datasets. 388 
The RMSE was less than 0.05, indicating the extrapolation was feasible and reliable. The 389 
imputed data were then passed on to successive data mining and machine learning steps. 390 

For the 0-1 binary features in symptom modality, we calculated the prevalence of each 391 
feature, i.e., number of positives over the number of patients in each type, non-severe and severe. 392 
Z-test was then applied to investigate whether there was a statistically significant difference of 393 
prevalence of any binary feature between the two types. In addition, a forest plot of odds ratio 394 
(OR) and its 95% confidence interval (CI) of symptom features between severe and non-severe 395 
COVID-19 types was developed.  396 

For the continuous features in biochemistry modality, we characterized and contrasted the 397 
distribution of each feature in both types. Because most features were not normally distributed, 398 
we applied a two-sided Kolmogorovs-Smirnov test instead of Student's t-test for each feature and 399 
investigated whether these features distributed differently between the two types. Additionally, 400 
principal component analysis (PCA) was applied to help visualize the distinction in feature 401 
distributions and associations between the two clinical types. 402 

COVID-19 Clinical Type Classification via Machine Learning 403 
Traditional hypothesis-driven parametric models, such as logistic regression, relied 404 

heavily on human decisions of how features interact with each other (i.e., interaction terms in 405 
logistic regression model), which might not reflect the underlying medical reality. In addition, 406 
these models had strict prerequisites to perform correctly, for instance, normality of residuals, 407 
homoscedasticity, and independence of input features. Initial exploratory analyses showed that 408 
input features in both symptom and biochemistry modalities were non-normality and high 409 
collinearity among the features. Another technical challenge to logistic regression in this study 410 
was a mixture of binary symptom and continuous biochemistry variables from two modalities.  411 

Bearing these problems, logistic regression would not be a preferable modeling approach 412 
to accurately classify and predict COVID-19 clinical types. Our exploratory analysis showed that 413 
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logistic regression could only achieve 68% and 77% predictive accuracy on an 80-20 training-414 
prediction split, using symptom and biochemistry features, respectively (supplementary Table 415 
S3). Thus, hypothesis-driven models such as logistic regression were less feasible in clinical 416 
settings requiring high accuracy, sensitivity, and specificity to differentiate COVID-19 types. 417 

On the other hand, state-of-the-art machine learning (ML) classification models worked 418 
directly with the data to avoid human bias. In addition, ML models did not have restrictions on 419 
how input data should be distributed or related. Therefore, ML classification would be a more 420 
appropriate modeling approach to predict COVID-19 clinical type with complicated data 421 
structure in this study. Therefore, we developed an end-to-end ML framework to accurately 422 
predict COVID-19 patient’s clinical type based on symptom and/or biochemistry modality 423 
features. We built random forest (RF) classification models, as RF was able to provide excellent 424 
interpretability of input variable's relative importance to support clinical decision-making. RF 425 
was a widely used ML model based on decision theory and decision tree approach. The internal 426 
validation process through bagging made RF especially accurate and reliable. RF was also robust 427 
against data loss and data unbalancing, e.g., more non-severe type patients than severe patients in 428 
our study (37-41). There were other types of ML classification methods though, for example, k-429 
nearest neighbor, artificial neural network, and naive Beyes. However, the major goal of this 430 
study was not to compare performances of different ML models, we focused on RF to deliver the 431 
most accurate classification possible.  432 

We assigned severe cases as "positive" and non-severe as "negative" in the classification. 433 
The goal of ML classification through RF was to accurately predict the patient's COVID-19 type, 434 
either "positive" (severe) or "negative" (non-severe), based on features from different clinical 435 
modalities. In this part of study, we first use a single modality of features as input. The detailed 436 
RF modeling and validation process were provided in supplementary material and method. We 437 
trained the model 100 independent times, each time with a randomly selected set of 80% data for 438 
training and the remaining 20% for prediction. Hyperparameter number of trees (ntree) in the RF 439 
model was set at a very low value (ntree=8) to avoid potential overfitting issues (38). Important 440 
ML performance metrics, including accuracy, sensitivity, specificity, F1 score, and area under 441 
curve (AUC) value based on receiver operating characteristic (ROC) curve were computed for 442 
the prediction set. In addition, RF was able to evaluate input variables' importance to 443 
differentiating the two types based on their contributions to Gini impurity (40). We further 444 
quantified input features’ relative importance, identified top contributing features, and explored 445 
their clinical relevance and interpretability to COVID-19. The most important features to 446 
differentiate COVID-19 clinical types were also cross-checked with our results from exploratory 447 
data mining, including prevalence of symptom features and distribution of biochemistry features. 448 

COVID-19 Clinical Type Classification with Multimodal ML 449 
In addition, we explored whether and how combining features across modalities 450 

improved classification performance. In non-ML methods, it would be difficult to combine 0-1 451 
binary inputs with continuous inputs. However, this challenge was non-existent in ML models 452 
because ML models worked directly with data without a priori assumptions of the data structure.  453 

We developed another RF model that incorporated features from both modalities. The 454 
modeling process was exactly the same as using single modality. Nevertheless, instead of putting 455 
every feature into the model, we selected top 5 features from each of the two modalities as new 456 
inputs. These top features were identified from the Gini impurity of single modality RF models 457 
(supplementary Table S1 and S2). We explored whether a few important features from different 458 
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modalities could perform sufficiently well to address the clinical challenge of differentiating 459 
non-severe and severe COVID-19 patients.  460 

All statistical analyses and ML models were built in R 3.5.0. and Python 3.7 with 461 
additional supporting packages. The codes and fully de-identified data would be freely available 462 
on GitHub (https://github.com/forrestbao/corona/tree/master/blood). 463 

 464 
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 597 

Figure and Table Legends:  598 
Fig. 1. Symptom Features Comparison between Non-severe and Severe Stage COVID-19 599 
Patients 600 
Note: symptom features were binary so Y-axis was the prevalence of positives.  601 
Fig. 2. Forest Plot of Top Symptom Features that Differ Significantly between Stages 602 
Note: *** p<0.001; ** p<0.01; * p<0.05 from the 2x2 contingency table. Forest plot is based on 603 
parametric statistical analysis and is irrelevant to random forest, a type of machine learning 604 
model used later in this study. The threshold for a feature to be “positively” or “negatively” 605 
associated with severe COVID-19 was 1 (dashed line), not 0.  606 
Fig. 3. Biochemistry Features Comparison between Non-severe and Severe Stage COVID-607 
19 Patients 608 
Note: values shown on y-axis were after feature scaling and were between 0 and 1. Error bars 609 
represented standard error (SE) of each biochemistry feature. 610 
Fig. 4. ROC Curve from Random Forest Model Based on Symptom, Biochemistry, and 611 
Multimodal Features 612 
Note: panel (A) left showed symptom feature as input alone, panel (B) middle showed 613 
biochemistry as input alone, and panel (C) right showed both features combined as input. 614 
Table 1. Random Forest Model Prediction Performance with Multimodal Features 615 

616 
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 617 
Supplementary Method: Random Forest Machine Learning Model Formulation 618 
In each run, we randomly selected 80% of all data as the training set to train the RF model. 619 
These 80% data included both severe and non-severe cases, i.e., both positives and negatives. 620 
We also ensured that the distributions of positives and negatives in the training set was similar to 621 
those in the complete data. Once the model was developed, the remaining 20% data would be fed 622 
into the developed model to evaluate its performance on unseen prediction data. This prediction 623 
process was crucial to ensure that the ML model was not over-fitting, i.e., the model worked 624 
extremely well on existing training data but poorly on unseen real-world data. We then 625 
constructed the 2x2 confusion matrix to evaluate the model performance on prediction data. The 626 
2x2 confusion matrix had four elements, true positive (TP, model correctly identified severe 627 
type), true negative (TN, model correctly identified non-severe type), false positive (FP, model 628 
incorrectly identified non-severe type as severe type), and false negative (FN, model incorrectly 629 
identified severe type as non-severe). Then, important ML model performance metrics were 630 
computed, including model accuracy, sensitivity, specificity, and F1 score, etc. Among these 631 
performance metrics, accuracy and F1 score evaluated overall performance of the model, 632 
sensitivity (also known as true negative rate, TNR) emphasized FN, and specificity (also known 633 
as true positive rate, TPR) emphasized FP. Our RF model aimed to increase TP and TN while 634 
simultaneously reducing FP and FN. In the other words, an ideal ML model should have both 635 
high sensitivity and high specificity. The highest possible value for these metrics was 1 (100%), 636 
indicating the model could correctly distinguish all positive (severe) types from negative (non-637 
severe) types. In this study, we run this modeling and predicting process 100 times to evaluate 638 
how system stochasticity influenced the RF model and whether the RF model performance was 639 
robust. In each of the 100 runs, a different set of randomly selected 80% data were used to train 640 
the model and the remaining 20% to predict and evaluate the model performance. We reported 641 
maximum, minimum, and median values of performance metrics (accuracy, F1 score, AUC, 642 
etc.).  643 
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 644 
Supplementary Fig. 1. PCA Plot for Features in Symptom and Biochemistry Modalities 645 
between Clinical Types 646 
Note: upper section: symptom modality; lower section: biochemistry modality; left section: non-647 
severe (mild) COVID-19 type; right section: severe COVID-19 type. 648 

649 
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 650 
Table S1. Comorbidity and Symptom Features 651 
Abbrev. Health 

Condition/Symptom 
Random 
Forest Gini 
Impurity 
(%) 

Logistic 
Regression 
Coefficient 

Note 

OLD Elderly 24.94 1.85 Age>50 as elderly (OLD=1) 
HYP Hypertension 14.43 0.63 Diastolic>90 or 

systolic>140 
CAR Cardiovascular diseases 8.57 0.75  
SEX Biological gender 7.79 0.63 Male=0, female=1 
DIA Diabetes 6.73 0.39 Type 2 diabetes only 
FTG Fatigue 6.33 0.32 Subjective, self-reported 
SHB Chest congestion 6.29 0.28  
SOR Sore throat 5.92 -0.9  
MUC Phlegm 5.63 -0.58  
FEV Fever (any) 5.45 -0.91 >37C (>98.6F) 
COU Coughing 5.41 -0.05  
MSA Muscle ache 5.39 -0.58  
NAP Loss of appetite 5.22 0.77  
CON Contacting COVID-19 

patients 
4.33 -0.28  

MDF Medium fever 4.31 1.44 38.1-39C (100.5-102.2F) 
LOF Low fever 4.29 1.3 37.1-38C (98.7-100.4F) 
CHL Chilling and shaking 4.22 0.91  
DIR Diarrhea 3.86 -0.45  
HIF High fever 3.85 1.57 >39C (>102.2F) 
VOM Vomiting 2.79 -1.7  
KID Renal diseases 1.84 1.73  
HED Headache 1.8 0.07 Any type of headache 
CNC Cancer 1.78 0.16 Any type of cancer 
FAM Family members with 

COVID-19 
1.54 1.11  

SMK Smoking history 1.15 -0.75  
CPD Chronic obstructive 

pulmonary disease 
(COPD) 

1.08 16.28  

 652 
Note: bold are top ten symptom features critical to differentiate COVID-19 non-severe and 653 
severe types from machine learning random forest model. Logistic regression coefficient signs 654 
(positive or negative) reveal if the feature increases or decreases risk of developing severe type 655 
COVID-19.  656 
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Table S2. Blood Biochemistry Features  657 
Abbrev. Blood Biochemistry Importance 

by Gini 
Impurity (%) 

Logistic 
Regression 
Coefficient 

Unit and Note 

DD D-dimer 25.41 0.5 mg/L 
hsTNI High sensitivity 

Troponin I 
16.06 0.0031 ng/mL 

LDH Lactate dehydrogenase 10.19 0.0012 U/L 
NE Neutrophil 10.02 0.0044 109/L 
IL6 Interleukin 6 9.41 0.026 ng/mL 
hsCRP High sensitivity C-

reactive protein 
9.11 0.019 ug/L 

ESR Erythrocyte 
sedimentation rate 

7.96 0.029 mm/h 

TBIL Total bilirubin 7.43 0.018 umol/L 
CD8 Cluster of differentiation 

8 
7.09 -0.097 /uL 

CK Creatine kinase 6.7 <0.001 U/L 
CRP C-reactive protein 6.69 -0.02 ug/L 
FER Ferritin 5.86 <0.001 ug/L 
ALT Alanine transaminase 5.52 -0.0037 U/L 
CREA Creatinine 4.45 0.01 umol/L 
LY% Percent of Lymphocyte 4.4 0.91 % 
CD3 Cluster of differentiation 

3 
4.06 0.051 /uL 

ALB Albumin 4.02 0.015 g/L 
NE% Percent of Neutrophil 3.94 0.51 % 
PLT Platelet 3.91 <0.001 109/L 
AST Aspartate 

aminotransferase 
3.85 0.017 U/L 

PCT Procalcitonin 3.57 -0.28 ng/mL 
CD4 Cluster of differentiation 

4 
3.51 -0.056 /uL 

LY Lymphocyte 3.26 -0.055 109/L 
WBC White blood cell  3.13 -0.4 109/L 
BNP Brain natriuretic peptide 3.07 0.0033 pg/mL 
HGB Hemoglobin 2.98 -0.024 g/L 
 658 
Note: bold are top ten biochemistry features critical to differentiate COVID-19 non-severe and 659 
severe types from machine learning random forest (RF) model. 660 
 661 
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Table S3. Logistic Regression Prediction Performance  662 

Feature Symptom Biochemistry 

Accuracy% 69.44 78.62 

Sensitivity% 65.22 78.65 

Specificity% 76.92 78.57 

F1 Score% 71.07 78.61 

 663 
Note: multimodal logistic regression is not performed because two feature modalities are not 664 
compatible to combine, i.e., 0-1 binary symptom and continuous biochemistry input data. 665 

 666 

 667 
 668 
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