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Abstract 

The gold standard for COVID-19 diagnosis is detection of viral RNA in a reverse transcription PCR test. Due to 

global limitations in testing capacity, effective prioritization of individuals for testing is essential. Here, we 

devised a model that estimates the probability of an individual to test positive for COVID-19 based on answers 

to 9 simple questions regarding age, gender, presence of prior medical conditions, general feeling, and the 

symptoms fever, cough, shortness of breath, sore throat and loss of taste or smell, all of which have been 

associated with COVID-19 infection. Our model was devised from a subsample of a national symptom survey 

that was answered over 2 million times in Israel over the past 2 months and a targeted survey distributed to all 

residents of several cities in Israel. Overall, 43,752 adults were included, from which 498 self-reported as being 

COVID-19 positive. The model provides statistically significant predictions on held-out individuals and achieves 

a positive predictive value (PPV) of 46.3% at a 10% sensitivity. As our tool can be used online and without the 

need of exposure to suspected patients, it may have worldwide utility in combating COVID-19 by better directing 

the limited testing resources through prioritization of individuals for testing, thereby increasing the rate at which 

positive individuals can be identified and isolated.  
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Introduction 

The rapid and global spread of COVID-19 led the World Health Organization (WHO) to declare it a pandemic 

on March 11, 2020. One major factor that contributes to the spread of the virus is the apparently large number 

of undiagnosed infected individuals. This knowledge gap facilitates the silent propagation of the virus, delays 

the response of public health officials and results in an explosion in the number of cases 1,2. 

 

One reason for this knowledge gap is insufficient testing. While the current gold standard for COVID-19 

diagnosis is detection of viral RNA in a reverse transcription PCR test, the number of tests is limited by financial 

and logistic constraints. In a time when almost all countries are faced with the same health challenge, resources 

are scarce. This creates the need for a prioritization mechanism to allocate tests and resources more efficiently 

towards individuals who are more likely to test positive, leading to earlier identification of COVID-19 patients 

and reduced spread of the virus. Despite this need, most countries still employ a simplistic testing strategy based 

on display of symptoms associated with the disease and either close epidemiological contact with a confirmed 

COVID-19 case or belonging to a high risk group3. In practice, these strategies lead to a relatively small fraction 

of positive tests among those tested and thus to inefficient use of the precious testing resources. 

 

Here, we present a model that provides statistically significant estimates of the probability of an individual to 

test positive for SARS-CoV-2 infection in a PCR test, based on a national symptom survey that we distributed 

in Israel. Notably, while most studies describing the clinical characteristics of COVID-19 cases were based on 

symptoms of hospitalized patients 4, our survey data allowed us to also study symptoms of milder cases and 

reveal which symptoms hold the highest predictive power for COVID-19 diagnosis. Using our model, the risk 

for a positive COVID-19 test can be evaluated in less than a minute and without added costs, or risk of exposure 

to a suspected patient. Our approach can thus be used globally to make more efficient use of available testing 

capacities, by significantly increasing the fraction of positive tests obtained, and by rapidly identifying 

individuals that should be isolated until definitive test results are obtained.  
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Methods 

Data  

In this study, we utilized data that originates from two versions of a one-minute survey that was developed and 

deployed by our research group in the early stages of the COVID-19 spread in Israel 5. The online version of the 

survey includes questions relating to age, gender, prior medical conditions, smoking habits, self-reported 

symptoms and geographical location (see section 1a in the supplementary appendix). Questions regarding prior 

medical conditions and symptoms included in the survey were carefully chosen by medical professionals. Each 

participant is asked to fill the survey once a day for himself and for family members that are unable to fill it for 

themselves (e.g. children and the elderly). The survey is anonymous to maintain the privacy of the participants, 

and has been collected since March 14th, 2020. As the number of COVID-19 diagnosed individuals in Israel 

rose, in some cities more than others, a shortened version of the survey was deployed using an Interactive Voice 

Response (IVR) platform. This version of the survey included information on respondents' age group, gender, 

presence of prior medical conditions, general feeling and a partial list of symptoms, including fever, cough, 

shortness of breath, sore throat and loss of taste or smell (see Section 1b in the supplementary appendix). Cities 

were targeted to participate in the IVR version of the survey according to the number of diagnosed patients and 

an increased concern for COVID-19 outbreaks (Table S1). Starting April 5, 2020, citizens in the targeted cities 

were contacted and responses were collected anonymously. This study followed the Transparent Reporting of a 

Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) reporting guideline 6. 

Study Design and Population 

Overall, 695,586 and 66,447 responses were collected up until April 26th, 2020, from the online and IVR 

versions of the survey, respectively. Since children express different clinical manifestations of COVID-19 

infection 7,8, we decided to focus our analysis only on adults (age above 20 years old). To avoid translation 

discrepancies, we included only responses in Hebrew. We also excluded responses that did not meet quality 

control criteria, such as a reasonable age (<120 years old) and body temperature (35-43℃) or responses 

suspected as spam (see Section 3 in the supplementary appendix) (Figure 1). A total of 33,737 responses were 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 21, 2020. ; https://doi.org/10.1101/2020.05.18.20105569doi: medRxiv preprint 

http://sciwheel.com/work/citation?ids=8625396&pre=&suf=&sa=0
https://www.equator-network.org/reporting-guidelines/tripod-statement/
http://sciwheel.com/work/citation?ids=2764168&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=8453671,8572824&pre=&pre=&suf=&suf=&sa=0,0
https://doi.org/10.1101/2020.05.18.20105569
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 

 

eventually included from the IVR version of the survey. Since surveyed cities were at relatively high risk (Table 

S1), the prevalence of COVID-19 diagnosed responders in the IVR data was 1.14%, 6 times higher than the 

national prevalence of 0.18% 3. These cities also had very high response rates, between 6% to 16% of the cities’ 

population (Table S1). From the online version of the survey, we randomly sampled a single response for each 

individual that was recognized by a unique identifier we created (see Section 4 in the supplementary appendix), 

and when an individual reported a COVID-19 diagnosis, we randomly sampled one response only from those 

which included a positive diagnosis answer. A total of 131,166 responses were identified in the online version, 

of which 0.09% reported a positive COVID-19 diagnosis, which is closer to the national prevalence of 0.18% 3. 

The characteristics of these unique responders are described in Table S2 of the supplementary appendix. 

 

For the integration of the two survey versions, all 33,737 IVR responses were combined together with all 114  

uniquely identified responders in the online survey that self-reported COVID-19 diagnosis and a random sample 

of 9,901 undiagnosed responders in the online version, to maintain the same diagnosis prevalence as in the IVR 

version (Figure 1). Overall, 43,752 responses were eventually included in the study, of which 498 self-reported 

as being COVID-19 diagnosed. The characteristics of these responders are described in Table 1. 

Predicting the Outcome of a COVID-19 Test 

We defined survey self-reporting of a COVID-19 laboratory confirmed diagnosis as our outcome. We 

constructed two models. The first, which we term the primary model, was constructed from the integrated 

responses from both the IVR and online versions of the survey and included the reduced set of questions that 

were surveyed in the IVR version. The second model, which we term the extended features model, was 

constructed using only responses from the online version, and included additional symptoms and questions that 

were not part of the IVR survey. We trained both the primary and extended features models using Logistic 

Regression. In addition, in order to capture nonlinear interactions and interactions amongst features, in both 

cases we also constructed models using a Gradient Boosting Decision Trees algorithm 9. To test the validity of 

our models, all model constructions were done using the framework of cross-validation, in which model 

performance is evaluated on a subset of the data that was not used in the model’s construction. For more 
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information on handling of missing values and the models construction process, see Section 6 in the 

supplementary appendix. 

 

Primary Model 

The primary model was constructed using responses to both the IVR and the online version of the survey. 

Features included in this model were determined by the IVR version, since it included a subset of the online 

version questions. These consisted of age group, gender, presence of prior medical conditions, general feeling, 

and the following symptoms: fever, cough, shortness of breath, sore throat and loss of taste or smell. 

Extended Features Model 

The extended features model was constructed using only responses from the online version of the survey, as it 

had 14 additional features that were not available in the IVR version. This extended list added dry cough and 

moist cough (instead of general cough in the primary model), fatigue, muscle pain, rhinorrhea, diarrhea, nausea 

or vomiting, chills, confusion and reporting on presence of specific prior medical conditions separately (as 

opposed to the presence of any of the prior medical conditions in the primary model). 

Baseline Models 

To assess the contribution of reported symptoms and prior medical conditions to both the primary model and the 

extended features model (in both the Logistic Regression and the Gradient Boosting Decision Trees versions), 

we constructed baseline models using only age group and gender information to predict our outcome. 

Analysis of feature contributions 

To gain insight into the features that contribute most to the predicted probability of being diagnosed with 

COVID-19 of our models, we analyzed feature contribution in the Gradient Boosting Decision Trees models 

using SHAP (SHapley Additive exPlanation) 10. SHAP aims to interpret the output of a machine learning model 

by estimating the Shapley value of each feature, which represents the average change in the output of the model, 

by conditioning on that feature while introducing other features one at a time, over all possible features ordering. 
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Analyzing feature contributions in each of the models allowed us to compare the inner workings of each model 

and to identify which features dominated in each prediction. 

 

We further analyzed SHAP interaction values, which uses the ‘Shapely interaction index’ to capture local 

interaction effects between features 10. Interaction values are calculated for each pair of the model's features, and 

for each individual prediction of the model, allowing us to uncover interaction patterns between pairs of features. 

We placed particular emphasis on the contribution of participants’ age and the interaction of age with all other 

features. 
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Results 

Our primary model for prediction of a positive COVID-19 test result, which was constructed using Logistic 

Regression, achieved an area under the Receiver-Operating-Characteristic (auROC) of 0.737 (CI: 0.712-0.759), 

and an area under the Precision-Recall (auPR) of 0.144 (CI: 0.119-0.177). This model substantially outperforms 

the baseline model, which uses only age group and gender and achieved an auROC of 0.556 (CI: 0.527-0.581), 

and an auPR of 0.013 (CI: 0.012-0.015) (Figure 2A-B). Aside from discrimination performance measures, we 

also tested whether the model was calibrated. In a perfectly calibrated model, the distribution of the predicted 

probabilities is equal to the distribution of outcomes observed in the training data. We found that our primary 

model is well calibrated across the relevant prediction range (Figure 2C). The model has a positive predictive 

value (PPV) of 46.3%, at 10% sensitivity, while the baseline model only has 0.014%, at 10% sensitivity. 

 

As an additional validation for the risk scores obtained, we compared the model predictions on the online survey 

data that was not used in the model construction process (n=121,151), with the actual number of confirmed 

COVID-19 patients in Israel over time. Notably, we found that the average predicted probability of individuals 

to test positive for COVID-19 according to our model, is highly correlated with the number of new confirmed 

COVID-19 cases 4 days later (pearson r=0.90, p<10-8) (Figure 3). 

 

To better understand which features contribute to the probability of being diagnosed with COVID-19, and to 

examine feature interactions, we analyzed the primary model constructed using the Gradient Boosting Decision 

Trees algorithm (see Methods). This model showed similar performance to the Logistic Regression model 

(Figure 2D-F, Table S3), with a positive predictive value (PPV) of 52.6%, at 10% sensitivity, while the baseline 

model only has 0.025%, at 10% sensitivity. Predictions on the online survey data not used in the model’s 

construction process were highly correlated with the predictions of the primary Logistic Regression model 

(pearson r=0.91, p<10-8).  
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Analysis of feature contributions was performed using Shapley values (see Methods). Loss of taste or smell and 

cough had the largest overall contribution to the model (Figure 4A), when analyzing the mean absolute SHAP 

value of features on the entire data. Since the primary model contained a limited number of features, we 

compared its feature contributions to those obtained from the extended features model, also constructed using a 

Gradient Boosting Decision Trees algorithm. Notably, loss of taste or smell was the most contributing feature in 

both the primary model and the extended features model, which contained 14 additional features (Figure 4), as 

well as in an odds ratio analysis (Figure S1). Although the extended features model included 23 features - 14 

additional features over the primary model, all symptoms included in the primary model were among the 12 

features the algorithm found to be most contributing (Figure 4B). 

 

As age was reported as a dominant factor in COVID-19 infection and its clinical manifestation 11, we examined 

the interaction of age with every symptom using SHAP interaction values (see Methods). The contribution of 

age to the probability of being diagnosed with COVID-19 is the highest in the oldest age group (>70 years old) 

(Figure 5B). Presence of cough and loss of taste or smell exhibits a sharp transition-type (sigmoid-like) 

interaction with age, such that above the age of 40 years old, presence of each of these symptoms sharply 

increases the model’s predicted probability of COVID-19 infection (Figure 5G-H). In contrast, shortness of 

breath and sore throat show a more gradual (parabolic-like) interaction with age with presence of these symptoms 

increasing the model’s prediction more gradually as the age of the subject being predicted increases (Figure 5I-

J). Negative answers to all these features show no interaction with age. Other examined features, such as fever 

and general feeling, do not show such interactions with age. 
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Discussion 

In this study we constructed a model that predicts the probability of individuals to test positive for COVID-19. 

Our model is based on 9 simple questions that every person can easily answer in less than a minute from the 

comfort of their home. Our model can assist the worldwide fight against COVID-19 by better prioritizing the 

limited tests available without additional costs or risk of exposure to suspected patients, thereby increasing the 

rate at which positive individuals can be identified and isolated. 

 

In Israel, as well as in many other countries, due to limited testing resources, suspected patients are only tested 

if they were exposed to a COVID-19 confirmed patient as well as exhibited acute respiratory symptoms 3. By 

taking an unbiased approach to predicting COVID-19 diagnosis from symptoms data, our analysis highlights the 

importance of additional symptoms. Of note, anosmia and ageusia that were less described in patients in the 

early stages of the COVID-19 pandemic 4,12 were the most impactful features in both models for predicting 

COVID-19 diagnosis as well as in an odds-ratio analysis. This is in line with recent literature demonstrating the 

importance of these symptoms in early detection and identification of the disease 13,14,15. Our model also 

successfully recapitulated patterns of the disease that are described in the literature, such as its complex 

relationship with age 11. In addition, our model unraveled several patterns that are not described in the literature, 

such as the different patterns of interactions that particular symptoms have with age, suggesting variation of the 

clinical manifestation in different age groups. Although our analysis is purely predictive and not causal, these 

new patterns may be used to devise better testing policies, and pave the way for future studies that can uncover 

new aspects of the disease that were not studied to date. 

 

Analysis of an extended features model that included 23 features compared to 9 in the primary model, validated 

our choice of questions in the shortened version of the survey and suggested that fatigue should also be 

considered. In addition, the extended features model suggested that while dry cough has an essential role in 

predicting COVID-19 diagnosis, moist cough does not and thus may help distinguish between cases of COVID-

19 and other infections. Some of the most contributing symptoms to the prediction of a COVID-19 diagnosis are 
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currently not included in the Israeli testing policy 3, such as loss of taste or smell and sore throat. Our analysis 

suggests that adding these symptoms to the testing policy may help discriminate which individuals should be 

tested, and improve testing prioritization. 

 

While informative, our feature contribution analysis has several limitations. First, we did not include children in 

our datasets and thus, symptoms such as nausea or vomiting and diarrhea that were mostly described in children 

7,8, may have a more significant part in models designed for younger age groups. Second, although we included 

a large set of prior medical conditions that may have a role in COVID-19 susceptibility, some of these conditions 

are not highly prevalent in our dataset and their contribution may thus be underestimated in our model. Finally, 

body temperature was the only non-mandatory question in our survey, and may thus have higher predictive 

power than portrayed within our model. 

 

Several studies attempted to simulate and predict different aspects of COVID-19, such as hospital admissions, 

diagnosis, prognosis and mortality risk, using mostly age, body temperature, medical tests and symptoms 16. 

Most diagnostic models published to date were based on datasets from China and included complex features that 

had to be extracted through blood tests and imaging scans 16. In this work, we devised a prediction model which 

was based solely on self-reported information, and as such it could be easily deployed and used instantly in other 

countries. 

 

Our study has several additional limitations. First, our data is biased by Israel’s MOH ever changing testing 

policy, such that at some point all of the COVID-19 positively diagnosed participants in our study had to be 

eligible for a test under that policy. An ideal dataset for purposes of devising a classifier should include a large 

random sampling of the population, but such data coupled with symptom surveys is currently unavailable at 

large-scale. Accordingly, all the diagnosed responders in our study are not in the first stage of showing 

symptoms, but are in some time-lag after diagnosis. In addition, our study is based on self reports of willing 

participants and is therefore bound to suffer from some selection bias. The bias is significantly reduced in the 

data collected via the IVR platform, since all residents in the IVR-surveyed cities were actively contacted only 
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once, on the same day and in the same manner. In the online version of the survey we made attempts to reduce 

this bias by promoting it in several media outlets and by engaging leaders of underrepresented communities. 

Finally, we acknowledge that the ideal choice of a baseline model would be the Israeli MOH testing policy, but 

since it constantly changed during the pandemic and included questions that were not part of our survey we were 

unable to compare to it. Nevertheless, at an unknown sensitivity (as we do not know the actual number of cases), 

the overall predictive value (PPV) of all tests in Israel was 4.6% 3, and although the measures are not directly 

comparable, we believe that our model substantially outperforms this PPV. 

 

In conclusion, our constructed model predicts COVID-19 PCR test results with high discrimination (positive 

predictive value (PPV) of 46.3% at a 10% sensitivity) and calibration. It also suggests that several symptoms 

that are currently not included in the Israeli testing policy exhibit intriguing interactions with age and should 

probably be integrated into revised testing policies. Overall, our approach can be utilized worldwide to direct 

the limited resources towards individuals who are more likely to test positive for COVID-19, leading to faster 

isolation of infected patients and therefore to reduced rates of virus spread. 
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Figures and Tables 

 
Figure 1. Study population flow chart. Numbers represent recorded responses. Blue colored boxes show reponses 

which were used in extended features model (top) and primary model (bottom) constructions. 
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Table 1. Baseline characteristics of the primary model population 

Characteristic,  

mean (SD) or % 

All individuals 

n=43,752 

(100%) 

IVR version 

n=33,737 

(77.11%) 

Online version 

n=10,015 

(22.89%) 

COVID-19 

undiagnosed 

n=43,254 

(98.862%) 

COVID-19 

diagnosed 

n=498 

(1.138%) 

Age in years 44.941 

(15.499) 

43.897 

(15.244) 

48.460 

(15.831) 

44.894  

(15.47) 

49.076 

(17.363) 

Gender - male 23,630 

(54.009%) 

19,151 

(56.766%) 

4,479 

(44.723%) 

23,339 

(53.958%) 

291  

(58.434%) 

COVID-19 diagnosed 498 (1.138%) 384 (1.138%) 114 (1.138%) 0 (0.0%) 498 (100.0%) 

Prior medical 

conditions 

8,070 

(18.943%) 

5,176 

(15.884%) 

2,894 

(28.897%) 

7,946 

(18.861%) 

124  

(26.271%) 

Symptoms 

Feel well 41,661 

(95.221%) 

32,132 

(95.243%) 

9,529 

(95.147%) 

41,217 

(95.291%) 

444  

(89.157%) 

Sore throat 1,507 (3.445%) 1,141 (3.382%) 366 (3.655%) 1,422 (3.288%) 85 (17.068%) 

Cough 2,138 (4.887%) 1,459 (4.325%) 679 (6.78%) 1,984 (4.587%) 154 (30.924%) 

Shortness of breath 576 (1.317%) 443 (1.313%) 133 (1.328%) 505 (1.168%) 71 (14.257%) 

Loss of taste or smell 605 (1.388%) 545 (1.624%) 60 (0.599%) 469 (1.088%) 136 (27.812%) 

Fever (body 

temperature above 38 

°C) 

77 (0.176%) 53 (0.157%) 24 (0.24%) 64 (0.148%) 13 (2.61%) 
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Figure 2. Primary model performance. A-C: Logistic Regression, D-F: Gradient Boosting Decision Trees. Abbreviations: 

auROC/auPR - area under the ROC/PR curve, ROC - Receiver-Operator-Characteristic, PR - Precision-Recall. Parenthesis - 

Confidence Interval. A, D:  ROC curve of our model (blue) consisting of 9 simple questions and of the baseline model consisting 

of only age group and gender (red). Different decision probability thresholds are marked on the curve. B, E: Precision-Recall 

curve of our model (blue) and the baseline model (red). Different decision probability thresholds are marked on the curve. C, F: 

Calibration curve. Top: Blue dots represent deciles of predicted probabilities. Dotted diagonal line represents an ideal calibration. 

Bottom: Log-scaled histogram of predicted probabilities of COVID-19 undiagnosed (green) and diagnosed (red). 
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Figure 3. Comparison of primary model predictions to new COVID-19 cases in Israel over time. 

A: Primary model predictions, averaged across all individuals on a 3-day running average (solid blue), and shifted 4 days forward 

(dotted blue), compared to the number of newly confirmed COVID-19 cases in Israel by the ministry of health (MOH), based 

on a 3-day running average. B: Number of survey responses per day. 
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Figure 4. Feature contribution analysis. Mean absolute Shapley value (in units of log-odds) of A: the Primary model, 

including all features used in the model, and B: the Extended features model, for the 13 highest contributing features. 
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Figure 5. Feature interpretation analysis. A: SHAP values (in units of log-odds) for positive report of a feature colored in red, negative report 

of a feature colored in blue and missing answers in grey. B: SHAP values for age with number of responses as a histogram at the bottom. C-F: 

SHAP value for age, stratified by positive (red) and negative (blue) responses of loss of taste or smell (C), cough (D), shortness of breath (E) and 

sore throat (F). G-J: SHAP interaction values of age with positive (red) and negative (blue) responses of loss of taste or smell (G), cough (H), 

shortness of breath (I) and sore throat (J). 
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