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Abstract: Background: the COVID-19 pandemic has incurred significant disease burden 10 
worldwide, particularly on elderly population. This study aims to explore how risks of infection 11 
interact across age groups using data from South Korea. Methods: Daily new COVID-19 cases 12 
from March 10 to April 30, 2020 were scraped from online open sources. A multivariate vector 13 
autoregressive model for time series count data was used to examine the risk interactions across 14 
age groups. Case counts from previous days were included as predictors to dynamically examine 15 
the change of risk patterns. Results: In South Korea, the risk of coronavirus infection among 16 
elderly people was significantly affected by other age groups. An increase of virus infection 17 
among people aged 20-39 was associated with a double risk of infection among elderly people. 18 
Meanwhile, an increase in virus infection among elderly people was also significantly associated 19 
with risks of infection among other age groups. The risks of infection among younger people were 20 
relatively unaffected by that of other age groups. Conclusions: Protecting elderly people from 21 
coronavirus infection could not only reduce the risk of infection among themselves but also 22 
ameliorate the risks of virus infection among other age groups. Such interventions should be 23 
effective and for long term.   24 
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 26 

1. Introduction 27 

The coronavirus disease 2019 (COVID-19) is caused by the infection of a novel Severe Acute 28 
Respiratory Syndrome associated coronavirus (SARS-CoV-2) [1]. Since December 2019, over 11 29 
million people have been infected with SARS-CoV-2 and over 528,000 people died of coronavirus 30 
infection (https://coronavirus.jhu.edu/map.html, accessed on July 4, 2020). Of them, elderly people 31 
and people with underlying chronic conditions suffered the heaviest disease burden [2-4]. For 32 
example, about 80% of deaths were people aged 65 or above 33 
(https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/cases-in-us.html), and 43.4% of 34 
hospitalizations aged 65 or above [5]. In the state of Florida, US, people aged 65 or above accounted 35 
for 54% of hospitalizations, and the mortality rate was 14% if infected with virus [6].   36 

The reasons for the disproportional burden among elderly people were unclear [7]. Elderly 37 
people generally have weaker immune system than younger people due to aging, and they are also 38 
more likely to have multiple chronic conditions [8,9]. Thus, elderly people may have severe 39 
symptoms if infected with coronavirus [10,11]. On the other hand, elderly people may have 40 
exposed myriads of infections over their lifetime which may provide immunity against new virus 41 
infection. Although cross-reaction of antibodies between SARS-CoV and SARS-CoV-2 was 42 
observed, cross-neutralization was rare [12]. Thus, it was unlikely elderly people might have any 43 
effective immunity against SARS-CoV-2.  44 

Meanwhile, the COVID-19 pandemic is waning down in some countries such as South Korea 45 
since March 10, 2020 (see Figure 1) [13,14], and society is gradually returning to normalcy [15]. A 46 
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potential rebound of new cases has been warned by many public health experts [16]. This is 47 
reflected in an epidemic curve with a long tail and occasional spikes, which is demonstrated in the 48 
epidemic process in South Korea (https://www.kcdc.info/covid-19/) [17,18]. In addition, if the 49 
seasonality, immunity and cross-immunity of SARS-CoV-2 behave like previous coronaviruses, a 50 
recent study predicted a long lasting and multi-wave epidemic was possible in the US [19]. 51 
Therefore, it is imperative to examine risk patterns of coronavirus infection among elderly people 52 
after the peak of epidemic. 53 

Unfortunately, due to lack of testing kits and heterogeneous diagnosis criteria, epidemiological 54 
data on COVID-19 among different countries (and even within a country) were often 55 
noncomparable [20]. One notable exception is South Korea where extensive contact tracing and 56 
mass testing not only curtailed the epidemic but also generated high quality data. In South Korea, 57 
both asymptomatic and symptomatic cases were identified promptly [17,18]. Thus, a complete 58 
picture of the epidemic process was possible to depict.  59 

In this study, we will examine how risks of coronavirus infection interact across age groups 60 
using time series analysis. Using the high quality data from South Korea, we will focus on the post-61 
peak period of the epidemic process to evaluate the risk of infection among elderly people during 62 
the period of society re-opening.  63 

 64 

2. Materials and Methods  65 

Daily new COVID-19 case counts from South Korea were obtained from the website 66 
(https://www.kaggle.com/kimjihoo/coronavirusdataset) which were scraped from the Korea Center 67 
for Disease Control website. The first COVID-19 case in South Korea appeared on Jan 20, 2020, and 68 
the major epidemic started on Feb 19, 2020. Since the peak of first epidemic wave in South Korea 69 
ended around March 10 [21] (also Figure 1), we limited the time series of new cases between March 70 
10 to April 30, 2020 for South Korea. All daily cases were stratified by age groups (0-19, 20-39, 40-59, 71 
and 60 or above). Those aged 60 or above were referred as elderly people. 72 

The observed epidemic curves by age groups from March 10 to April 30, 2020 were plotted, 73 
and the predicted daily cases were obtained with a generalized additive model (GAM) [22] 74 
assuming daily new cases follow Poisson distributions. The smoothness of predicted values was 75 
achieved with thin plate regression splines with 16 knots using R mgcv package (see Appendix A).       76 

We developed a vector autoregressive (VAR) model to examine the associations of the 77 
infection risks across age groups simultaneously [23]. Specifically, we assumed daily new case 78 
counts (yj,t) followed a generalized Poisson distribution to account for over-dispersion of case 79 
counts (i.e., observed variance is larger than expected variance) [24]. The model also included case 80 
counts from previous days (lags) across age groups as predictors to form a dynamic model (see 81 
Appendix A for details). Therefore, the current risk of infection in each age group was predicted not 82 
only by previous case counts in its own group but also by previous counts from other age groups.   83 
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Where j = 1,…,J represented age groups, t=1,…,T represented days, and k = 1,…,K represented 85 
the number of time lags. Because the typical incubation period of COVID-19 is five days [25], we 86 
reported results from five-lag models. Three-lag and seven lag models were also explored, and 87 
results from all models were consistent (see online codes and results). The scale parameter ξ in the 88 
generalized Poisson distribution controls the magnitude of dispersion, that is, ξ = 0 corresponding 89 
to a standard Poisson (mean = variance), ξ < 0 suggesting under-dispersion (mean > variance), and 0 90 
< ξ < 1 indicating overdispersion (mean < variance).  The bj,t could be viewed as a random effect to 91 
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account for the correlation of daily counts between age groups. The bj,t was assumed a multivariate 92 
normal distribution.  93 

The above model framework was similar to the common log-linear relative risk models in 94 
epidemiological studies which assume multiplicative associations between predictors and outcomes 95 
[26]. The coefficients βs could be interpreted as natural logarithms of risk ratios per one unit change 96 
of natural logarithms of case counts.  97 

We fit the above models with Bayesian software stan through Rstan interface (http://mc-98 
stan.org) [27]. To keep the model simple, we assumed weakly informative priors of student t 99 
distributions for all αs and βs, and an LKJ prior with modal density around diagonals for 100 
correlations between case series (see Appendix A). Hamiltonian Monte Carlo was used to obtain 101 
posterior distributions of parameters. Diagnostic plots showed all chains mixed satisfactorily and 102 
were converged. In addition, negative binomial models were also fitted, and results were similar to 103 
those reported here except for wider confidence intervals (Appendix B, Tables 1). Noticed that the 104 
dispersion factors estimated from the generalized Poisson models were 2.66 (1.58 - 5.13), 1.44 (0.96 - 105 
2.46), 2.21 (1.37 - 3.82), and 0.90 (0.59 - 1.50) for those aged 60 or above, 40-59, 20-39, and 0-19, 106 
respectively. These estimates were of moderate magnitude and two of them (age group 40-59 and 0-107 
19) were not statistically different from 1. This also suggested that negative binomial models might 108 
overestimate the dispersion factors which led to wider confidence intervals. The data, replicable 109 
codes and other results were available online (www.github.com/xinhuayu/riskinteractions/).  110 

Ethics statement: This study was based on publicly available data. There was no direct 111 
involvement of human subjects. Therefore, it was exempted from the approval of Institutional Review 112 
Board. No informed consent was needed. All authors declared no conflict of interest in conducting 113 
this study. 114 

 115 

3. Results 116 

In South Korea, there were 3,383 COVID-19 cases between March 10 and April 30, 2020. Of 117 
them, 283 cases aged 0-19 (8.4%), 1,141 aged 20-39 (50.0%), 987 aged 40-59 (29.2%), and 972 aged 60 118 
or above (28.7%).  119 

Figure 1 presented the epidemic curves with fitted values by age groups for South Korea. After 120 
March 10, there was a small pike among those aged 60 or above around March 20,2020, and a small 121 
rebound among those aged 20-39 (e.g., around March 30 to April 5, 2020), followed by those aged 122 
40-59 and aged 60 or older.    123 

 124 

 125 
Figure 1. Epidemic curve of COVID-19 in South Korea from March 10 to April 30, 2020, by age 126 

groups 127 
 128 
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Table 1: Risk interactions in coronavirus infection across age groups during the COVID-19 pandemic, South Korea, March 10 to April 30, 2020 129 
 130 

Model 

Outcomes 

 Lags of predictors 

Predictors Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 

Aged 60 or above      

 60 or above 2.09 (1.28 - 3.17) * 1.21 (0.78 - 1.80) 0.90 (0.60 - 1.39) 1.03 (0.60 - 1.67) 0.96 (0.63 - 1.53) 

 40 - 59 0.95 (0.49 - 1.84) 1.81 (0.98 - 3.29) 0.59 (0.30 - 1.18) 1.37 (0.85 - 2.23) 1.03 (0.61 - 1.70) 

 20 - 39 0.89 (0.53 - 1.46) 2.02 (1.12 - 3.47) * 1.28 (0.72 - 2.31) 0.41 (0.22 - 0.78) # 1.11 (0.58 - 2.22) 

 0 - 19 0.90 (0.61 - 1.43) 1.36 (0.95 - 1.95) 0.82 (0.57 - 1.19) 0.61 (0.44 - 0.85) 1.64 (1.03 - 2.58) * 

Aged 40 - 59      

 60 or above 1.66 (1.19 - 2.29) * 0.79 (0.55 - 1.12) 0.89 (0.64 - 1.23) 0.98 (0.70 - 1.40) 1.02 (0.71 - 1.40) 

 40 - 59 1.01 (0.62 - 1.63) 1.76 (1.16 - 2.66) * 1.23 (0.76 - 1.96) 0.89 (0.62 - 1.29) 0.88 (0.62 - 1.28) 

 20 - 39 1.13 (0.75 - 1.73) 1.12 (0.76 - 1.67) 1.59 (1.03 - 2.50) * 0.60 (0.37 - 0.95) 0.88 (0.53 - 1.48) 

 0 - 19 1.04 (0.79 - 1.37) 1.28 (0.97 - 1.68) 1.17 (0.88 - 1.57) 1.14 (0.88 - 1.49) 1.17 (0.84 - 1.62) 

Aged 20 - 39      

 60 or above 0.95 (0.69 - 1.29) 0.89 (0.65 - 1.23) 1.01 (0.72 - 1.39) 1.54 (1.11 - 2.12) * 0.97 (0.69 - 1.31) 

 40 - 59 1.17 (0.73 - 1.88) 1.18 (0.78 - 1.78) 0.98 (0.60 - 1.52) 0.90 (0.64 - 1.26) 1.04 (0.75 - 1.47) 

 20 - 39 1.56 (1.05 - 2.36) * 1.02 (0.68 - 1.55) 1.45 (0.96 - 2.24) 1.06 (0.68 - 1.64) 0.85 (0.55 - 1.32) 

 0 - 19 1.04 (0.79 - 1.37) 0.96 (0.75 - 1.27) 0.88 (0.66 - 1.20) 0.97 (0.75 - 1.26) 0.74 (0.54 - 1.00) 

 Aged 0 - 19      

 60 or above 1.78 (1.23 - 2.61) * 1.34 (0.86 - 2.06) 0.99 (0.67 - 1.51) 0.82 (0.52 - 1.25) 1.55 (1.02 - 2.30) * 

 40 - 59 0.76 (0.41 - 1.38) 0.71 (0.42 - 1.18) 0.85 (0.47 - 1.56) 0.91 (0.55 - 1.57) 0.97 (0.62 - 1.54) 

 20 - 39 1.51 (0.92 - 2.55) 1.50 (0.85 - 2.57) 1.04 (0.61 - 1.80) 0.78 (0.44 - 1.38) 0.91 (0.51 - 1.62) 

 0 - 19 0.93 (0.64 - 1.36) 0.85 (0.60 - 1.21) 0.85 (0.60 - 1.27) 0.92 (0.62 - 1.38) 1.51 (0.99 - 2.31) 

Note: * and # for p < 0.05 131 
 132 
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Table 1 described associations of risks of infection across age groups in South Korea. In 133 
addition to tracking effect from the first lag day (yesterday) among elderly people, the current risk 134 
of infection among elderly people was associated with double risk by one unit increase of infection 135 
risk among those aged 20-39 in the second lag day. Additionally, an increase of infection in the 136 
youngest population during the fifth lag days was also associated with an increased risk of 137 
infection among elderly people by 64%.  138 

More importantly, an increase of virus infection among elderly people was associated with 139 
increases in risks of infection among all other age groups, but with longer delays in younger 140 
populations. Furthermore, the risk of infection among people aged 40-59 was affected by both old 141 
and young people, but to a less extent. Risks of infection among people aged 20-39 or 0-19 were less 142 
likely affected by other age groups.   143 

  144 

4. Discussion 145 

This was the first study to quantify risk interactions of SARS-CoV-2 infection across age 146 
groups based on vector autoregressive models using epidemic data of high quality from South 147 
Korea. We found that in South Korea, the risk of infection among elderly people was significantly 148 
affected by other age groups. An increase in virus infection among elderly people was also 149 
significantly associated with increased risks of infection among other age groups. Risks of infections 150 
among younger people were relatively unaffected by that of other age groups.     151 

Our results were consistent with the current COVID-19 epidemic process, in which risk of 152 
infections among elderly people might be affected by other age groups [28]. Although virus 153 
transmission might differ among age groups [7,29], the risk interactions were likely due to personal 154 
interactions between people of different age groups. Respiratory infectious diseases often spread 155 
through personal contacts [30]. Previous studies showed that contacts were more frequent in young 156 
age groups than older age groups, and interactions across age groups were less frequent than 157 
within each age group [31]. During the emerging pandemic like COVID-19, stringent control 158 
measures such as lock-down, strict social distancing and stay-at-home rules, were often 159 
implemented promptly, leading to a significantly abrupt change of contact patterns within and 160 
between age groups. Modern techniques such as contract tracing app, infection risk ID, and instant 161 
notification of cases, also allowed us to efficiently isolate cases and quarantine high risk people. The 162 
observed risk interactions between age groups in South Korea might be largely due to the change of 163 
contact patterns during the epidemic period. As shown in our study, there were 2-5 lagging days in 164 
the risk interactions across age groups, especial between old and young people. On the other hand, 165 
the infection among elderly people may still be affected by and also affect the risks of infection 166 
among other age groups. Passive community interactions such as grocery shopping might play an 167 
important role in sustaining the epidemic. 168 

Our results highlighted the importance of implementing and enforcing effective interventions 169 
in the whole society [32-34], and the highest priority of protecting elderly people [29]. Furthermore, 170 
we showed that an increase of coronavirus infection among elderly people was associated with 171 
increased risks of infection among other age groups, suggesting protecting elderly people and 172 
reducing the risk of infection among elderly people had spillover effect in the whole society. This 173 
was consistent with our previous simulation study in which reducing contacts among elderly could 174 
reduce the virus infection and hospitalizations in the whole society [35] .   175 

There were some limitations in this study. The most important one was that we relied on 176 
reported cases. The data from South Korea were more likely complete due to extensive contact 177 
tracing and mass testing. Furthermore, the case reporting date (or virus infection detection/lab 178 
confirmation date) was different from the virus infection date, and the average incubation period 179 
for SARS-CoV-2 was about 5 days [25]. The laudable efforts of extensive contact tracing and mass 180 
testing implemented by the South Korea government at the beginning of COVID-19 epidemic 181 
significantly reduced the reporting delays, and likely identified many cases before symptom onsets 182 
[17]. Therefore, the interval between virus infection and case reporting might be small. In addition, 183 
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there were other factors such as gender, socio-economic status and neighborhood environment 184 
might also affect the risk of infection.  185 

Moreover, although we interpreted the results with action terms, they had no explicit causative 186 
meanings. For example, younger people tended to have milder or no symptoms (i.e., subclinical 187 
cases) if infected with virus [36-38]. Thus, it was possible that an increased number of detected cases 188 
among young people implied the existence of an increase in subclinical cases in the community 189 
who might unknowingly infect other people, including elderly people. Subclinical cases could only 190 
be identified through extensive contact tracing and mass testing. Without this information, it is 191 
impossible to examine the route of infections in the community. 192 

Our study has several strengths. Firstly, data from South Korea were more likely complete 193 
which would provide information about underlying epidemic mechanisms. Although different 194 
social norms and health care systems might explain some differences in risk patterns between South 195 
Korea and other regions, results from South Korea provided a baseline picture of risk interactions 196 
among age groups under a well-controlled, ideal epidemic process. Different patterns might be due 197 
to differences in population structures, magnitudes of control measures and contact patterns in the 198 
society, while similar patterns in risk interactions between regions allowed us to infer the possible 199 
paths of infections.  200 

Secondly, we proposed a novel multivariate autoregressive model for time series of counts to 201 
examine the risk of virus infection across age groups simultaneously. A flexible generalized Poisson 202 
model fitted with Bayesian methods was used to account for overdispersion of count data [24].  203 
Unlike many other studies that used mechanistic epidemic models which was useful to describe the 204 
epidemic process [39] , our statistical models extended traditional relative risk models to time series 205 
of count data. It should be note that this type of model likely overfit the data and collinearity 206 
among lag variables also exist. Thus, having a priori hypotheses and choosing biologically relevant 207 
lags are critical in building correct models and interpreting the results. Our lag models were based 208 
on observed incubation period of COVID-19 and for testing pre-specific hypotheses. The principle 209 
of our methods was similar to that of Institute for Health Metrics and Evaluation (IHME) [40] and 210 
University of Texas-Austin models [41], all of which relied on time series analysis of count data. 211 
However, we did not attempt to predict future cases. Rather, we focused on disentangling risk 212 
interactions of infection across age groups, which was more important and relevant in disease 213 
preventions.  214 

Finally, during the process of re-opening the economy and society, the number of new cases 215 
may rebound, multiple small waves or a second big wave of epidemic are possible. A contentious 216 
issue was whether and how to protect high risk populations such as elderly people during the 217 
return of epidemic. Therefore, we limited our study period to the post-peak of epidemic to answer 218 
this imminent question. Our study strongly supported that high risk populations such as elderly 219 
people should still take serious precautions during the post-epidemic period. 220 

 221 

5. Conclusions 222 

In summary, protecting elderly people from coronavirus infection might not only be associated 223 
with a reduced risk of infection among themselves but also related to lower risks of virus infection 224 
among other age groups. Therefore, elderly people should keep on practicing social distancing and 225 
maintaining effective personal protections until the pandemic is completely over.   226 

6. Patents 227 

N/A 228 

Supplementary Materials: N/A 229 

Author Contributions: Dr. Xinhua Yu has full access to research data and conducted data analysis and report 230 
writing.  231 
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 235 
Abbreviations: 236 
The following abbreviations are used in this manuscript: 237 

SARS-CoV-2: severe acute respiratory syndrome coronavirus 2 238 
COVID-19: coronavirus infectious disease 2019 239 
GAM: generalized additive model 240 
VAR: vector autoregressive regression 241 
NB: negative binomial model 242 
REML: restricted maximum likelihood   243 
PMF: probability mass function 244 

  245 

Appendix A:  246 

I.  Obtained Smoothed predicted daily cases with Generalized Additive Model (GAM) 247 

Assuming daily new cases follow a Poisson distribution or negative binomial (NB) distribution 248 
(see below), the GAM is a linear regression with smoothed time term. For simplicity, a separate 249 
GAM regression was fitted for each age group: 250 

log� �������	 
 �� � 
 ��,� � ����������

��	

 

 where Yij represents the observed case counts of day i and group j, and E(Yij) is expected 251 
(predicted) value. The variable timei represents day (1,…,I), bk( ) represents a basis function for the 252 
kth term to smooth temporal trend, and βj,ks are regression coefficients for smooth term k and group 253 
j. Restricted maximum likelihood (REML) approach was used in parameter estimation. R mgcv 254 
package was used [22], and smooth terms were fitted using thin plate regression spline with 16 255 
knots.  256 

II. Model setups and comparisons 257 

The standard Poisson distribution describes the distribution of y events occurring at a constant 258 
rate of λ. The Probability mass function (PMF) is: 259 

��� 
 �|�� 
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In standard Poisson distribution, expected variance equals mean. If observed variance is larger 260 
than expected variance (i.e., the mean), then overdispersion exists. This often occurs when 261 
outcomes are correlated, such as daily new case counts during a disease outbreak. 262 

The generalized Poisson distribution introduces an additional scale parameter ξ [42] as quoted 263 
in Hilbe JM. 2014 [26]. The PMF is:  264 ��� 
 �|�, *� 
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	����
 is the dispersion factor indicating how variance changes with the mean. 265 

Therefore, if ξ = 0, then φ = 1, corresponds to a standard Poisson (mean = variance); 0 < ξ < 1, then φ 266 
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> 1, models overdispersion (mean < variance); and ξ < 0, then φ < 1, models under-dispersion (mean 267 
> variance).   268 

Reparametrize the PMF of generalized Poisson distribution with μ and ξ[24]: 269 
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On the other hand, the negative binomial distribution describes the distribution of the number 270 
of successes given a predefined r number of failures during a sequence of independent Bernoulli 271 
trials with a success probability p:  272 ��� 
 �� 
 -� � # ) 1� . �
�1 ) ���

 

���� �  
 #�1 ) � 

!"#��� 
 #��1 ) ���

  1 ) � 
  �  �#  

Thus, the overdispersion of Y is controlled by the shape parameter r.  273 
Reparametrize the PMF with μ and r,   274 ��� 
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Where gamma function Γ(x+1) = x! (x factorial) for an integer x, and the parameter r can be any 275 
positive real value.  276 

Note that negative binomial distribution can be viewed as a Gamma-Poisson mixture 277 
distribution in which Y ~ Poisson(λ) and λ ~ Gamma(r , λ/r). That is, the negative binomial 278 
distribution (r, p) is the posterior distribution of Poisson(λ) with Gamma(r, λ/r) as the conjugate 279 
prior of λ, where � �  
 #�/�1 ) ��. Rewriting Gamma(r, λ/r)  as Gamma(r, �/�1 ) ��) and using Γ 280 
functions to represent factorials: 281 
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Under this framework, negative binomial distribution is appealing as a natural extension of 282 
Poisson distribution to allow for overdispersion that is controlled by the shape parameter r.  283 

However, although negative binomial distribution is often used to model new case counts 284 
during disease outbreaks, it models only overdispersion and assumes a quadratic relationship 285 
between variance and mean, while the generalized Poisson model is more flexible and assumes a 286 
simpler first order association between variance and mean. Therefore, we chose to report results 287 
from generalized Poisson models. Results from negative binomial models were included in the 288 
appendix. In addition, it is also of note that there are extensions of negative binomial models in 289 
which the association between mean and variance can be estimated from data, leading to a more 290 
flexible model and also permitting the exploration of determinants of overdispersion [26].     291 

In this study, we proposed the following hierarchical vector autoregressive model (VAR) for 292 
count data: 293 ��,� |5�, ��,�, ��,�~ 789� �,�� 

 �,� 
 exp =α� � 
 
 ��,�ln ���,�����

��	

�

��	

� ��,�@ 

��,� |Σ ~ 8B'��C%#�"'�0, Σ� 

Where j = 1,…,J represents age groups, t=1,…,T represents days, and k = 1,…,K represents the 294 
number of lags.  The PMF of Y can be either standard Poisson (λ), generalized Poisson (μ, ξ), or 295 
negative binomial (μ, r) distribution.  296 

The above VAR model included new case counts from previous days (lags) across age groups 297 
as predictors[23], thus examining associations of the infection risks across age groups 298 
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simultaneously. That is, the current risk of infection in each age group was predicted not only by 299 
previous case counts in its own group but also by previous counts from other age groups.   300 

The correlation of daily counts between age groups was modeled through bj,t that can be 301 
viewed as a random effect. The bj,t was assumed a multivariate normal distribution.  302 

The exponential link between dynamic predictors and μ is equivalent to common relative risk 303 
models in epidemiological studies, i.e., log-linear models for count data. Under this multiplicative 304 
scale framework, the interpretation of βs are relative risks given one unit increase of predictors. 305 

During the model fitting, we assumed some weakly informative priors for all parameters: 306 5�~��DE 
 5, '%G"��%H 
 0, IG"'� 
 2.5�
 ��,�~��DE 
 5, '%G"��%H 
 0, IG"'� 
 2.5�

 *�~H%#�"'�0,0.3�, "HD ) 0.9 M *� M 0.9 1√# �  φ ~ positive half ) normal�0,1�
 

Σ 
 X�YX,         Z[�#� I�"HD"#D D�\�"��%H X 
 D�"&�ID��, ID�~G"BG[��0,5�
         "HD Y 
 G%##�'"��%H �"�#�], Y~ $^_�2� 

The LKJ prior is a special prior most suitable for correlations. The LKJ(2) assumes a modal density 307 
surrounding diagonals.  308 

The models were fit with Bayesian software stan through Rstan interface [27]. A customized 309 
stan function was constructed for fitting generalized Poisson model. We employed Hamiltonian 310 
Monte Carlo with 5 Markov chains, each with 50,000 iterations plus 2000 warmups, to obtain 311 
posterior distributions of parameters. Diagnostic plots through shinestan package showed all 312 
chains mixed well and were converged. The replicable data and codes, including models with daily 313 
case counts as standard Poisson, generalized Poisson or negative binomial distributions, were 314 
available online (www.github.com/xinhuayu/riskinteractions/). 315 

 316 
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Appendix B: Additional tables 317 

Table 1: Risk interactions in coronavirus infection across age groups based on negative binomial models, COVID-19, South Korea 318 
 319 
 320 
 321 
 322 
 323 
 324 
 325 
 326 
 327 
 328 
 329 
 330 
 331 
 332 
 333 
 334 
 335 
 336 
 337 
 338 

Note: * and # for p 339 
< 0.05340 

Model Lags of predictors 

Outcomes Predictors Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 

Aged 60 or above 

60 or above 1.93 (1.14 - 3.19) * 1.09 (0.66 - 1.80) 1.02 (0.61 - 1.82) 0.99 (0.57 - 1.67) 1.11 (0.68 - 1.87) 

40 - 59 1.03 (0.53 - 2.02) 1.66 (0.83 - 3.01) 0.69 (0.36 - 1.46) 1.26 (0.72 - 2.25) 1.00 (0.57 - 1.71) 

20 - 39 0.94 (0.54 - 1.69) 1.30 (0.66 - 2.42) 1.42 (0.73 - 2.68) 0.50 (0.25 - 1.01) 1.21 (0.63 - 2.37) 

0 - 19 1.10 (0.72 - 1.78) 1.29 (0.79 - 1.98) 0.85 (0.51 - 1.35) 0.62 (0.40 - 0.98) # 1.52 (0.88 - 2.55) 

Aged 40 - 59 

60 or above 1.64 (1.12 - 2.41) * 0.75 (0.50 - 1.09) 0.97 (0.67 - 1.49) 1.01 (0.69 - 1.53) 1.02 (0.69 - 1.53) 

40 - 59 1.15 (0.68 - 1.96) 1.55 (0.92 - 2.46) 1.14 (0.64 - 2.24) 0.90 (0.54 - 1.39) 0.95 (0.63 - 1.47) 

20 - 39 1.10 (0.59 - 1.73) 1.13 (0.70 - 1.81) 1.54 (0.95 - 2.47) 0.63 (0.37 - 1.27) 0.89 (0.44 - 1.56) 

0 - 19 1.09 (0.77 - 1.53) 1.23 (0.87 - 1.78) 1.16 (0.82 - 1.64) 1.16 (0.82 - 1.60) 1.15 (0.79 - 1.68) 

Aged 20 - 39 

60 or above 1.00 (0.71 - 1.44) 0.93 (0.65 - 1.39) 1.00 (0.69 - 1.48) 1.58 (1.10 - 2.26) * 0.90 (0.64 - 1.29) 

40 - 59 1.12 (0.69 - 1.86) 1.09 (0.67 - 1.72) 0.96 (0.58 - 1.53) 0.97 (0.65 - 1.44) 1.08 (0.72 - 1.61) 

20 - 39 1.63 (1.09 - 2.48) * 1.04 (0.66 - 1.64) 1.35 (0.86 - 2.11) 0.99 (0.58 - 1.56) 0.96 (0.60 - 1.56) 

0 - 19 1.04 (0.74 - 1.44) 0.95 (0.69 - 1.29) 0.89 (0.63 - 1.23) 0.95 (0.67 - 1.40) 0.73 (0.51 - 1.04) 

 Aged 0 - 19 

60 or above 1.77 (1.17 - 2.76) * 1.35 (0.82 - 2.14) 1.00 (0.62 - 1.61) 0.81 (0.50 - 1.32) 1.52 (0.97 - 2.44) 

40 - 59 0.76 (0.39 - 1.42) 0.71 (0.39 - 1.27) 0.86 (0.43 - 1.64) 0.94 (0.53 - 1.66) 0.96 (0.58 - 1.60) 

20 - 39 1.53 (0.87 - 2.72) 1.46 (0.82 - 2.69) 1.05 (0.57 - 1.92) 0.78 (0.41 - 1.41) 0.90 (0.49 - 1.74) 

  0 – 19 0.94 (0.63 - 1.44) 0.83 (0.57 - 1.25) 0.88 (0.58 - 1.33) 0.92 (0.59 - 1.44) 1.52 (0.95 - 2.42) 
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