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Abstract. An analysis of a combined dataset of Wave 1 and 2 cases, aligned at 

approximately Local Time Zero + 2 months with unsupervised machine learning 

methods such as PCA and deep autoencoder dimensionality reduction allows to 

clearly separate milder background cases from those with more rapid and aggres-

sive onset of the epidemics. The analysis and findings of the study can be used 

in evaluation of possible epidemiological scenarios and as an effective modeling 

tool to design corrective and preventative measures to avoid developments with 

potentially heavy impact 
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1 Introduction 

A possible link between the effects of Covid-19 pandemics and a number of epidemio-

logical factors including universal immunization program against tuberculosis with 

BCG vaccine was proposed and investigated in [1-3]. Here we provide an analysis of 

the combined dataset of Wave 1 and Wave 2 cases adjusted and aligned at the time 

period of approximately 2 months after the first local exposure.  

The intent of this work is to analyze the distribution of case data points in the most 

informative parameter spaces identified by unsupervised machine learning methods and 

to attempt identification of the cases with the heaviest impact. Evaluating the combina-

tion of the parameters that can identify such cases would allow to evaluate and predict 

the potential risks of heavy impacts in the population proactively with the potential to 

make necessary corrections before the explosive onset that may result in a heavy cost 

to the society. 

The methodology is based on processing the input data expressed as a set of observ-

able parameters that were identified and described in the study with unsupervised ma-

chine learning methods to identify and extract a smaller set of the most informative 

components. In many cases, evaluating distributions of data in the representations of 

informative components such as principal components in PCA or dimensionality re-

duction with neural network autoencoder models allows to identify and separate classes 

in the data by essential characteristics that can be linked to the outcome. 
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2 Data 

2.1 Combined Case Dataset 

The zero time of the start of the global Covid-19 pandemics was defined in [2] as: 

𝑇𝑍 =  31.12.2019 

Clearly, the time of local exposure to the epidemics is one of the defining parameters 

of the impact, so the case data was adjusted and aligned at a similar phase in the devel-

opment, chosen based on the availability of data at approximately LTZ + 2 months, i.e. 

2 months after the first local exposure to the infection. That translates to the beginning 

of April, 2020 for Wave 1 cases (LTZ in January, 2020) and beginning of May for 

Wave 2 (LTZ end of February to early March, 2020). 

 A combined dataset of 43 cases was thus constructed based on the conditions out-

lined in [2], essentially, certain level of reliability of the reported data and exposure to 

the epidemics. 

2.2 Data 

The dataset was constructed from the current data on the epidemics impact per case, 

i.e., reporting jurisdiction as described in [2]. In addition to the current measure of im-

pact, several initial or observable parameters were recorded as described further in this 

section with the hypothesis of a certain level of correlation between the parameter set 

and the severity of the outcome, measured by a combination of perceived severity and 

the actual reported impact in mortality per capita (m.p.c.), per million of population. 

On the relative scale of m.p.c. by jurisdiction, the “explosive” cases were normally 

identified as those with relative m.p.c. (relative to the maximum among all reporting 

jurisdictions worldwide, New York City in both groups of cases) of around and above 

0.5. This subgroup of cases included all commonly reported cases of high epidemics 

impact. 

In evaluation of distribution in the coordinates of principal components two higher 

impact clusters of cases were identified by relative impact: explosive cases with relative 

M.p.c. above 0.8 group included the widely commented first wave cases: Italy; Spain 

and New York with the highest impact worldwide observed to date. In the second group 

were six somewhat milder-impact cases, namely: United Kingdom; France; Belgium; 

Netherlands; Ireland and Quebec (Canada), with relative M.p.c. in the range from 0.6 

to 0.8. 

2.3 Observable Parameters 

The examples of extra factors can include, among others: genetic differences; popula-

tion density, social traditions and cultural practices, past widespread public policy such 

as immunization; smoking habits and of course the epidemiological policy of the juris-

diction aimed at controlling the spread of the disease. 

 In addition to the factors of population density, smoking level and BCG immuniza-

tion practice described in [2,3] a number of other factors with potential impact on the 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 22, 2020. ; https://doi.org/10.1101/2020.05.17.20104661doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.17.20104661
http://creativecommons.org/licenses/by-nd/4.0/


3 

severity of the epidemics pattern were considered in this study as described in this sec-

tion. A common comment for several of them is that due to limitation of time and re-

sources, a rating scale approach was chosen for those factors that cannot or would be 

challenging to measure directly. Granted, such an approach can be influenced by sub-

jective perceptions; however, we believe that more robust and objective techniques can 

be developed over time improving the quality of the analysis and the resulting conclu-

sions. 

Connections hub: this band parameter defined in the range 0 – 1.0, was intended to 

measure the intensity of communications related to the case, on multiples levels for 

example, international, inter and intra-continental, regional and so on; clearly more in-

tensive connection hubs could be expected to have higher exposure to the pandemics 

increasing the probability of a heavier impact.  

Social proximity: a band parameter, range 0 – 1.0, intended to reflect the closeness 

of inter-personal connections in the case, again in multiple spheres and domains, for 

example: family connections; socializing practices and traditions; the intensity of busi-

ness connections; lifestyle practices; social events and others. Again, as was com-

mented previously [1] modeling such a complex factor as a single value parameter may 

open the analysis to the vulnerability of subjectiveness; yet we believed that it could be 

important for the analysis and improvements to make its evaluation, by case more ob-

jective and accurate are possible in the future studies. 

We also used three rating parameters intended to measure the policy of the jurisdic-

tion as relates to the response to the pandemics. They are: 1) epidemiological prepar-

edness of the health case system to an intensive and rapid development of an epidemics; 

2) the effectiveness of the policy response; and 3) the timeliness of the response. 

Epidemiological preparedness: a band parameter, range 0 – 1.0, intended to meas-

ure the preparedness of the health care system to handle a rapid onset of a large-scale 

epidemics (specifically, not the general state of the health care system, its technological 

level, funding and so on). 

Policy response: range 0 – 1.0, intended to indicate both the effectiveness of the 

policy in controlling the epidemics based on available scientific data at the time; as well 

as its clarity to the general population and its preparedness to participate. While some 

concerns can be expressed that this factor can be influenced by post-impact considera-

tions with potential post-factum correlated with the outcome, we believe that with the 

accurate approach these risks can be minimized. For example, it is clear that an unclear 

or misleading policy message could be highly detrimental to the intended effect of the 

policy and one doesn’t need the outcome to judge such policy parameters objectively 

at the time the decision is taken and before the outcome is recorded. 

Policy timeliness: measures the relative timing of introduction of the control policy 

to the local exposure to the epidemics. Range 0 – 1.0. 

The resulting dataset of 42 identified cases with 8 observable parameters and the 

“explosiveness” label, proportional to the relative impact of the epidemics is presented 

in Table 1, Appendix. 
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2.4 Machine Learning Methods 

To evaluate the hypothesis of the correlation between the identified parameters and the 

epidemiological outcome in the case, several well-known machine learning methods 

were used: 

1. Linear regression 

2. Principal Component Analysis and identification of principal informative factors 

3. Unsupervised deep neural network-based dimensionality reduction and selection of 

principal informative factors 

The first method produces a best fit linear approximation of the resulting effect series 

with a total deviation (error) from the trend [4]. 

PCA [5] produces a linear transformation of the dataset to the coordinates with the 

highest variation and does not use the resulting effect labels. 

A deep neural network autoencoder (method 3) produces a non-linear compression 

(i.e., dimensionality reduction) of the observable data to the lower-dimensional repre-

sentation with the most informative features [6].  The structure of the deep neural net-

work model used in this work is described in detail in [7]. The diagram of the model is 

given in Fig. 1. 

 

Fig. 1 Autoencoder with dimensionality reduction 

In the unsupervised training phase, the model is trained to reproduce the input data 

with a good accuracy and thus does not require labels marked with the outcome, same 

as PCA. Achieving an improvement in the accuracy of reproduction, that can be meas-

ured by a number of training metrics indicates that the model has learned some essential 

characteristics of the initial distribution. Once trained, the unsupervised model can per-

form two essential transformations: the encoding one, from the observable data creating 

a representation image; and the generative one, from the representation to the observa-

ble data space. The aim of unsupervised learning is thus to minimize the deviation of 

the original training sample from its regeneration created by the model.  

The models were implemented in Python, Keras, Tensorflow with a number of com-

mon machine learning and data processing packages 
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3 Results 

3.1 Linear Regression 

Linear regression with 8 identified input parameters produces a trend with a strong 

match score to the label of 0.9 of out 1.0 maximum. The most influential factors in the 

regression trend are shown in Table 1.  

Table 1 Linear Regression Analysis 

Factor  Linear Regression Correlation 

Policy, Time 0.534 0.906 

Connection hub 0.196 0.697 

Policy, Effectiveness 0.094 0.856 

BCG immunization 0.092 0.686 

Social proximity 0.078 0.794 

Policy factors were expected to have a strong influence on the outcome of the case 

that is confirmed by the results of the linear regression analysis. As well, the importance 

of other factors such as connection intensity, social proximity culture, BCG immuniza-

tion and smoking were also observed.  

3.2 Principal Component Analysis 

PCA identified three principal components with overall influence of 96% as described 

in Table 2. The highest influence factors in the PCA analysis are mostly aligned with 

the earlier results: policy-time, connection hub, social proximity, BCG and the smoking 

rate. 

PCA transformation is inherently unsupervised method of learning, meaning that the 

prior known outcome labels are not required to learn the principal components as well 

as representation of the input data in the coordinates of identified principal component 

eigenvectors. By plotting thus transformed dataset in the coordinates of the principal 

component vectors, interesting result can be observed by identifying the highest impact 

cases 

Table 2 Principal Components 

Eigenvector Main factors Relative Weight 

Axis 1 Policy-time, BCG 0.570 

Axis 2 BCG, smoking 0.166 

Axis 3 Connection hub, social proximity 0.127 
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Shown in Fig.1 are the visualizations of the distribution of the dataset in the coordinates 

of principal components identified by PCA analysis. The cases and the resulting region 

of the highest-impact cluster is shown in blue; whereas the milder cluster of 6 cases, in 

magenta. 

 

 
  

Fig. 1 High-impact clusters in the PCA representation 

In the visualizations of the case clusters in the principal component representation one 

can observe a clear separation of the higher-impact case clusters from the general back-

ground cases. Such a clear separation allows to identify the region where the cases with 

potentially higher impact including the “explosive” pattern can be located, in the coor-

dinates of principal component representation as well as in the initial, observable pa-

rameter space, with the possibility to identify the combinations of the observable pa-

rameters that can be linked to higher impact outcomes. 

3.3 Unsupervised Autoencoder Model 

A similar approach and results can be demonstrated with an unsupervised neural net-

work autoencoder model that reduces the number of parameters by compressing the 

observable date into a lower dimensional representation while unsupervised training 

process is aimed at improving the accuracy of regeneration form the compressed rep-

resentation to the observable space. 

 The dimensionality of the unsupervised representation for the models in the study 

that is defined by the size of its central encoding layer was chosen as 3 based on the 

results of the principal component analysis in the previous section, indicating three 

most informative dimensions.  
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Presented in Fig.3 are direct visualizations of the distributions of data in the unsuper-

vised representation created by a trained autoencoder model. 

 

   

Fig. 3 High-impact clusters in the autoencoder representation 

The highest impact cluster (3 cases) is shown in Fig.3 in green whereas the milder one 

(6 cases), in orange. Again, a similar pattern of clear separation of higher-impact cases 

from general background can be observed with these models as well. 

 It is worth noting that as with PCA, though essentially non-linear, autoencoder mod-

els also allow to identify the higher-impact regions in the coordinates of the unsuper-

vised representation as well as in the observable parameters, by forward-propagating 

through the model the identified set of points defining the region of interest in the rep-

resentation coordinates to the observable space. 

4 Conclusion 

The methods of unsupervised machine learning often allow to identify and separate the 

most informative components in complex general data. In this case, two different meth-

ods unsupervised learning methods applied independently demonstrated good separa-

tion of cases with higher impact from general background. 

Further studies can lead to more precise and confident measurement of the observa-

ble parameters resulting in higher confidence in the results.  

The analysis and the findings of the study can be used in evaluation of possible epi-

demiological scenarios and as an effective modeling tool to identify the areas of poten-

tial risk and design corrective and / or preventative measures to avoid the developments 

with potentially heavy impact. 
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Appendix Case Dataset 

Table 1 Combined Wave 1, 2 Case Factor Dataset, at LTZ + 2m 

Case Policy 
Conn Bcg Smo Den Soc Label R.mpc 

p-hc p-eff p-tme 

Taiwan 0 0 0 0.1 0 0.34 0.2 0.2 0 0.001 
Japan 0.1 0.1 0 0.6 0 0.674 0.1 0.2 0.1 0.002 
Singapore 0 0 0 0.4 0 0.33 0.5 0.3 0 0.004 
Australia 0.2 0.2 0 0.2 0.3 0.298 -0.5 0.3 0 0.005 
S.Korea 0.1 0.2 0 0.2 0 0.996 0.1 0.2 0.1 0.013 
Finland 0.3 0.2 0.1 0.1 0.3 0.418 -0.2 0.2 0.1 0.017 
Canada 0.4 0.2 0.2 0.3 0.8 0.354 -0.5 0.4 0.2 0.023 
Ontario 

(Canada) 
0.4 0.2 0.25 0.3 0.8 0.258 -0.25 0.4 0.25 0.025 

Germany 0.3 0.2 0.2 0.5 0.2 0.608 0 0.4 0.25 0.052 
Sweden 0.3 0.3 0.3 0.1 0.6 0.412 -0.2 0.3 0.3 0.148 
UK 0.5 0.7 0.7 0.7 0.8 0.398 0 0.5 0.55 0.248 
France) 0.5 0.5 0.6 0.7 0.6 0.596 0 0.7 0.60 0.371 
Belgium 0.5 0.4 0.5 0.7 1 0.53 0 0.5 0.65 0.429 
Spain 0.8 0.7 0.8 0.5 0.8 0.584 0 0.8 0.9 0.965 
Italy 0.8 0.8 0.9 0.7 1 0.566 0 0.8 0.9 0.969 
USA 0.5 0.5 0.5 0.3 1 0.39 -0.2 0.4 0.4 0.095 
New York 

City (US) 
0.8 0.8 0.9 1 1 0.25 0.5 0.8 1.0 1.000 

California 

(US) 
0.5 0.3 0.2 0.5 1 0.226 0.1 0.4 0.2 0.040 

Slovakia 0.2 0.2 0.2 0 0 0.794 0 0.2 0 0.016 

Argentina 0.4 0.3 0.3 0 0 0.478 -0.25 0.3 0 0.019 

Chile 0.2 0.2 0.1 0 0 0.76 -0.1 0.2 0.15 0.050 

Ukraine 0.6 0.4 0.3 0 0 0.94 0 0.4 0.1 0.027 

Kyiv 0.5 0.3 0 0.1 0 0.7 0.2 0.5 0.1 0.024 

Poland 0.3 0.2 0.1 0.2 0 0.648 0 0.3 0.15 0.066 

Moldova 0.6 0.4 0.3 0 0 0.56 0 0.4 0.2 0.125 

Czechia 0.3 0.2 0.1 0.1 0 0.766 0 0.25 0.15 0.082 

Croatia 0.3 0.2 0.1 0 0 0.74 0 0.25 0.15 0.068 

Albania 0.3 0.2 0.1 0 0 0.8 0 0.25 0.1 0.038 

Greece 0.2 0.1 0 0.4 0 1 0 0.5 0.1 0.049 

Israel 0.1 0.1 0.1 0.4 0.15 0.382 0.25 0.2 0.1 0.094 

Peru 0.5 0.4 0.3 0.1 0 0.096 0 0.3 0.2 0.125 

Prairies1 

(Canada) 

0.3 0.2 0.2 0 0.6 0.292 -0.4 0.2 0 0.016 

Quebec 

(Canada) 

0.6 0.4 0.5 0.3 0.8 0.304 -0.1 0.5 0.7 0.912 

Ecuador 0.6 0.4 0.4 0 0.6 0.28 0 0.3 0.3 0.309 

Norway 0.2 0.2 0.2 0.2 0.2 0.452 -0.2 0.25 0.2 0.138 

Denmark 0.2 0.2 0.2 0.1 0.3 0.352 0 0.25 0.3 0.303 

Switzer-

land 

0.2 0.2 0.2 0.2 0.3 0.51 0.1 0.25 0.5 0.603 

Austria 0.2 0.2 0.2 0.2 0.25 0.704 0 0.25 0.3 0.238 

Portugal 0.3 0.3 0.3 0.3 0 0.63 0.1 0.5 0.3 0.355 

Ireland 0.4 0.3 0.5 0.4 0 0.444 0 0.6 0.6 0.653 

Nether-

lands 

0.3 0.4 0.4 0.5 1 0.524 0.25 0.25 0.65 0.774 

Iran 0.7 0.6 0.8 0.1 0.1 0.6 0 0.7 0.3 0.265 

1 Manitoba and Saskatchewan provinces, Canada 

Case factors 

Policy 

 p-hc: health care preparedness, band 

 p-eff: response measures, band 
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 p-tme: response timing, band 

Conn: connection intensity, band 

Bcg: BCG immunization record 

Smo: smoking rate 

Den: population density, band 

Soc: social proximity, band 

Label: relative mortality per million capita, band 

R.mpc: Mortality per million capita, relative to world’s highest  
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