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We estimated the initial rate of spread (r0) and basic reproduction number (R0) for States 

in the USA experiencing COVID-19 epidemics by analyzing death data time series using 

a time-varying autoregressive state-space model. The initial spread varied greatly among 

States, with the highest r0 = 0.31 [0.23, 0.39] (95% CI) in New York State, corresponding 

to R0 = 6.4 [4.3, 9.0] (95% CI). The variation in initial R0 was strongly correlated with 

the peak daily death count among States, showing that the initial R0 anticipates 

subsequent challenges in controlling epidemics. Furthermore, the variation in initial R0 

implies different needs for public health measures. Finally, the States that relaxed public 

health measures early were not those with the lowest risks of resurgence, highlighting the 

need for science to guide public health policies. 

 

The basic reproduction number (R0) is a fundamental metric in epidemiology that gauges how 

rapidly a disease will spread at the beginning of an epidemic (Delamater et al. 2019). While R0 

depends in part on the biological properties of the pathogen, it also depends on properties of 

the host population that, for example, determine the contact rate between individuals (Hilton 

and Keeling 2020). Estimating R0 is a requisite for designing public health measures for 

infectious diseases such as COVID-19. 

 

Computing a reliable estimate of R0 poses challenges (Obadia et al. 2012, Ma et al. 2014, 

Delamater et al. 2019), as illustrated by the wide range of values estimated for the COVID-19 

epidemic in Wuhan, China (Table 5 in Liu et al. 2020). Although R0 can be calculated by 

following the chain of infections between individuals using case-tracking, calculating R0 from 

the population-level spread of a disease has the advantage of integrating all of the complexities 
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of human interactions. Moreover, this potentially reveals the effects of enacted public health 

measures (Flaxman and al. 2020, Hurtado and Tinajero 2020).  

 

We computed R0 at the onset of epidemics for States in the USA from data on the number of 

deaths per day (Fig 1A,B) (The New York Times 2020). To meet the challenge posed by 

changes that affect R0 and the low numbers of counts in many States, we fit the State-level time 

series using a hierarchical time-varying autoregressive model to estimate r(t) that accounts for 

later changes caused by public response to the epidemics (Ives and Dakos 2012, Bozzuto and 

Ives 2019) (Supporting Information). From r(t) we then computed R0(t) using the Dublin-Lotka 

equation (Dublin and Lotka 1925) with the probability distribution of the timing of transmission 

(Li et al. 2020). We focused the analysis on death data even though fatalities (fortunately) 

represent only a fraction of newly infected cases, because deaths are less likely to be 

misreported compared to data on the number of cases. The proportion of people who have 

recovered from COVID-19, and are consequently immune, is still likely to be small, and 

therefore we refer to our estimates as the time-varying R0(t), in contrast to the effective 

reproduction number, R(t) (Flaxman and al. 2020, Hurtado and Tinajero 2020, Systrom and 

Vladeck 2020). 

 

Initial R0 values varied dramatically for those States that have experienced enough deaths for 

estimation (Fig. 1C). These values as a group are likely to be, if anything, underestimates due 

to the statistical challenges of inferring values of R0 that are changing rapidly, as they might at 

the start of an epidemic (Supporting Information). Estimates of the initial R0 with the same 

statistical method applied to reported case data show similar but generally higher values 

(Supporting Information).  

 

Some of the State-to-State variation is attributable to States with later epidemic onset showing 

lower initial R0 values (Fig. 1D). This might be explained by measures that citizens and 

governments took before the epidemic started within a State: States in which the epidemic 

(inferred by deaths) started before the World Health Organization declared COVID-19 a 

pandemic (11 March, 2020) had higher estimates of R0 (t34 = 3.68, P = 0.0008). Nonetheless, 

the relationship is not strong and has clear exceptions: for example, Washington State was the 

first to report multiple deaths but nonetheless maintained low values of initial R0.  
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High values of R0 also imply high potential impacts of epidemics. This is seen among States, 

for which higher initial R0 values correspond to higher peak daily mortalities (Fig. 1E). This 

relationship is not tautological (with high mortality causing high estimates of R0), because our 

estimates of R0 are for the onset of epidemics.  

 

The threat of high potential R0 values is important when assessing the risks of easing public 

health measures that States have enacted to slow their epidemics. In the second half of April, 

2020, eleven States reduced or removed restrictions; enough deaths had occurred in nine of 

these States for us to estimate R0 (Fig. 1C, asterisks). As a group, they did not have lower initial 

R0 than other States (Fig. 1F, t = –1.46, P = 0.15). A similar analysis using case data shows 

that States relaxing restrictions did not have, on average, lower estimates of R0 at the end of 

April (Fig. 1G, t = 0.55, P = 0.58; Supporting Information). This suggests that restrictions were 

not removed according to either the potential risk of disease spread within States (the initial R0, 

Fig. 1F) or the risk of spread at the time restrictions were removed (R0 at the end of April, Fig. 

1G). 

 

The presented State-by-State estimates of R0 confirm what is widely understood: COVID-19 

has the potential to spread rapidly, especially in urban areas (Fig. 1C), and States differ greatly 

in how they have experienced the disease. Our estimates put numbers to these observations. 

Estimates of R0 reveal the potential threat of epidemics when restrictions are eased, as well as 

the potential challenges for vaccination campaigns: using the rule of thumb that a proportion 1 

– 1/R0 of a population needs to be vaccinated (but see Gerberry and Philip 2016), vaccination 

coverage will have to be roughly 60% on average among the States we analyzed (Fig. 1C). 

This, however, is misleading, because it does not consider the variation among States, and for 

New York State the R0 = 6.4 suggests a vaccination rate of 85%. Furthermore, 

recommendations for vaccinations should also vary within States. Our initial R0 estimates are 

driven mainly by "hotspots" within States, like New York City, where deaths increased most 

rapidly. More generally, we caution that vaccination programs must consider not only local 

infection rates but also movement of infected individuals between States (Roberts and 

Heesterbeek 2003). Nonetheless, the challenges of producing and delivering vaccines once they 

have been discovered calls for a hierarchical distribution program targeting those areas that 

have the highest potential R0. 
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These results highlight the importance of data availability and statistical tools for State-level 

decisions about public health interventions to manage the spread of COVID-19. Unfortunately, 

the results also highlight that States are apparently making decisions to relax public health 

interventions without considering evidence in the data. 

 

Supporting Information 

The Supporting Information consists of five sections: (A) Overall statistical rationale, (B) 

Estimating time-varying r(t), (C) Data handling, (D) Assessment of robustness, and (E) 

Analysis of case data. 
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Fig. 1. Panels (A)-(B) show data and model fit for New York State as an illustrative example. 

(A) Death data time series (log-transformed), along with the model fit. (B) Estimated time-

varying R0(t), with point estimates (solid line) and accompanying approximate confidence 

intervals (66% in dark gray, 95% in light gray). The fitting uses a state-space model with time-

varying spread rates and quasi-Poisson sampling of death counts, and approximate confidence 

intervals are obtained with parametric bootstrapping. (C) Estimated initial R0 values for all 

analyzed States, shown as bootstrapped estimates (black horizontal bars) and approximate 66% 

and 95% confidence intervals (boxes and whiskers). Asterisks mark nine of the eleven States 

that eased restrictions in April, 2020; the remaining two States did not have sufficient numbers 

of deaths for estimating R0. (D) Estimated initial R0 values ordered by the date of epidemic 

onset. (E) Maximum daily number of deaths in each State ordered by estimated initial R0 

values. (F) Estimated initial R0 values from death data for nine of the eleven states in which 

restrictions were relaxed in April, 2020. For comparison, on the far left (dots) are the R0 

bootstrapped estimates for all other States for which estimates were made. (G) Estimated R0 

values using case data at the end of April, 2020, for nine of the eleven States for which we 

estimated R0, with R0 estimates for the remaining States on the far left. 
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This technical supplement consists of five sections:  

 

(A) Overall statistical rationale 

(B) Estimating time-varying r(t) 

(C) Data handling 

(D) Assessment of robustness, 

(E) Analysis of case data 

 

 

(A) Overall statistical rationale 

 

1. Estimating the rate of disease spread 

 

The rate of spread of a disease in a population at the early phase of an epidemic, r0, when the 

entire population is susceptible depends on the basic reproduction number, R0, giving the 

number of secondary infections produced per infected individual, and the distribution of the 

time between primary and secondary infections. Thus, if the spread rate and distribution of 

infection times can be estimated, R0 can then be calculated. Our strategy is to estimate r0 as the 

most direct parameter associated with the dynamics of an epidemic, and then subsequently 

estimate R0. 

 

The rate of spread of a disease can be estimated directly from the observed number of new 

deaths, or newly identified cases, in a population. The advantages of this approach to calculating 
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r0, and from this R0, instead of case-tracking include: (i) it captures all of the real-life 

complexities that affect R0 by simply observing what happened in real life, and (ii) it uses data 

that are (tragically) becoming more prevalent. The challenges include (i) the changes in r(t) that 

are to be expected (and hoped for) as people and governments respond to lessen the spread, and 

(ii) the statistical challenges and uncertainties of determining rates of disease spread when the 

numbers of deaths and/or cases are still low. 

 

We developed and tested statistical methods to overcome the two challenges of estimating R0 

from death and case data. Because the rate of spread of a disease may change rapidly in response 

to actions that are taken to reduce disease transmission, we used a time-varying autoregressive 

model that allows for the rate of spread to change through time, r(t). Other models take a related 

approach. For example, the Imperial College of London model (Cori et al. 2013, Flaxman and 

al. 2020) assumes that the rate of spread changes immediately following actions taken by 

governments. Our approach differs, because we instead allow r(t) to change as inferred from 

the data: we do not make a priori assumptions about when these changes occur. Thus, we use 

an approach to analyzing time series in which the parameters of the time series model 

themselves can change through time, with the rate of change estimated from the data to give 

the best fit, as measured by the maximum likelihood. This is similar to the approaches taken by 

other researchers (Balabdaoui and Mohr 2020, Scire et al. 2020, Systrom and Vladeck 2020). 

 

The second challenge is that the counts of deaths and cases at the beginning of an epidemic are 

low. To account for this, the time-series model includes increased uncertainty (measurement 

error) when the mean counts of deaths or cases are low. These low counts also mean that there 

is greater uncertainty in the estimates of r(t). Standard (asymptotic) approaches often have poor 

statistical properties (type I errors, correctly calculated confidence intervals) when sample sizes 

are small (Gelman and Hill 2007). Therefore, we use bootstrapping (Efron and Tibshirani 1993) 

in which simulation time series are reconstructed to share the same pattern as the observed time 

series; a large number of simulated time series are then fit using the same statistical model as 

used to fit the original data. This bootstrapping procedure thus gives estimates and confidence 

intervals for model fit to the real data. 

 

Our approach focuses on estimating the time-varying rate of spread, r(t), of the number of 

deaths and reported cases of new infecteds. Some approaches explicitly model the rate at which 

an individual infects susceptibles as a probability function of the length of time the individual 
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has been infected, and then model the probability of a newly infected individual being reported 

as infected (Cori et al. 2013, Thompson et al. 2019, Flaxman and al. 2020, Scire et al. 2020, 

Systrom and Vladeck 2020). In other words, these models are built around the processes of 

infection and reporting. We also built such a model, but we only use it to test the robustness of 

our statistical approach. For fitting the data, we instead use a simpler statistical model. Our 

rationale is that, for statistical fitting, it is better to keep the model as simple as possible, rather 

than "building in" assumptions about the processes of infection, reporting, and death. Our 

simple phenomenological model uses the same data as a more complicated, process-based 

model, and therefore both approaches ultimately rely on the same information. The simpler 

approach, however, does not depend on assumptions about the infection processes. 

Nonetheless, after fitting the simpler model additional assumptions can be made to interpret the 

fits. An advantage of the simple statistical model is that the assumptions about processes do not 

affect the results (fits), and how the assumptions affect the interpretation of the results is more 

transparent than if the assumptions are made in the statistically fit model. 

 

The approach we applied to the data was the best of several approaches that we tried. We also 

performed analyses with a related model having time-varying r(t), but also allowing step-

changes in r(t), with the location of the step changes selected to maximize the model likelihood. 

This approach, however, often led to model overfitting. Another approach we investigated was 

fitting a Generalized Additive Mixed Model (GAMM) to the death and case data while 

accounting for autocorrelation and greater measurement error at low counts (Wood 2017), and 

we tried a version of this GAMM model that allowed for step changes in r(t). However, the 

GAMM models tended to give greater bias than the approach we finally used. We fit the final 

models to the time series running both forwards and backwards to check that they gave 

consistent estimates. 

 

After estimating r(t), we computed R0(t) as 1/Ste-r(t)tp(t), where t is the number days after 

initial infection, and p(t) is the proportion of secondary infections produced per infected 

individual at t (Dublin and Lotka 1925). This expression assumes that deaths (removal of 

individuals from the population) occur after all secondary infections have occurred. The 

statistical analyses focus on the estimates of r(t), and different distributions of p(t) can be used 

as more information about the course of SARS-CoV-2 infection becomes available. We used 

the distribution of p(t) from Li et al. (2020). 
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For death and case time series, we used data provided by the New York Times (2020).  

 

2. Assessment of robustness 

 

To assess the performance of our methods, we built an age-structured simulation SIR model 

(susceptible-infected-recovered), iterated on a daily time step to generate realistic data for 

which we know the true underlying infection rate and R0. We simulated time series under 

different scenarios of changes in infection rates and assessed whether the time-varying 

autoregressive model could correctly estimate the initial R0 at the start of the simulated 

epidemic. This gives an assessment of the robustness of the statistical model to realistic 

challenges in the data. The SIR model was parameterized using results from previous studies 

on data from the epidemic in Wuhan, China (Ferretti et al. 2020, Li et al. 2020). 

 

3. Data selection and handling 

 

For analyzing time series of death and case data, decisions have to be made about which data 

to use and when to start the time series for analyses. Case data depend on both the level of 

infection in a State and the (changing) proportion of infections that are reported. The latter 

depends on changes in public awareness, changes in criteria used for identifying cases of 

COVID-19, changes in availability of physicians and testing to diagnose cases, etc. These 

factors introduce not only uncertainty (measurement error) in case data, but also possible bias. 

For example, as the epidemic and public awareness spread, the proportion of infections that are 

reported might increase. This would lead to an artificially high estimate of the spread rate. 

Therefore, for estimating the spread rate early in the epidemic, we used daily death counts that 

are less prone to these types of biases. Indeed, using case data early in the epidemics gives 

somewhat higher estimates of R0 than using death data for almost all States (section (E) 

Analysis of case data). 

 

Deciding when to initiate the time series for analysis involves balancing three factors. First, 

because our goal was to try to estimate R0 for a "naive" population in which few interventions 

were taken, pushing the initiation of the time series as early as possible is important. Second, 

initiating the time series earlier also means that the count data are sparser, increasing uncertainty 

in the estimates. Third, we wanted the R0 estimate to reflect conditions within a State and 

therefore exclude deaths or cases caused by infections contracted elsewhere and brought into 
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the State. To balance these factors, we selected a threshold of 3 deaths per day, or 30 cases per 

day, as the starting point of the time series we analyzed. We determined when these thresholds 

were met using the GAMM in the R package 'mgcv' (Wood 2019) to smooth the time series. 

The choice of start threshold did not affect the estimate of R0 for most States, with the exception 

of Wisconsin (section (C) Data handling). 

 

(B) Estimating time-varying r(t) 

 

1. Time-varying autoregressive model 

 

The time-varying autoregressive model that we applied to the COVID-19 death and case data 

is a variant of the TVIRI (time-varying intrinsic rate of increase) model presented in Bozzuto 

and Ives (2019), which is an implementation of time-varying autoregressive models (e.g., Zeng 

et al. 1998, Ives and Dakos 2012, Bragina et al. 2018) that is designed explicitly to estimate the 

rate of increase of a variable using non-Gaussian error terms. We assume in our analyses that 

the proportion of susceptible people relevant to the local epidemic is close to one, and therefore 

there is no decrease in the infection rate caused by a pool of individuals who were infected, 

recovered, and were then immune to further infection. Thus, the variant of the TVIRI model we 

used here does not include a density-dependent term that would account for decreases in the 

proportion of susceptibles in the population. 

 

The general specification of the model is 

 

 x(t) = r(t–1) + x(t–1) + cu(t) (S1a) 

 r(t) = r(t–1) + wr(t) (S1b) 

 x*(t) = x(t) + ϕ(t) (S1c) 

 

Here, x(t) is the unobserved, log-transformed value of deaths or cases at time t, and x*(t) is the 

observed count that depends on the observation uncertainty described by the random variable 

ϕ(t). Because a few of the datasets that we analyzed had zeros, we added 0.5 to the count data 

before log-transformation; other ways of treating zeros in the count data gave very similar 

results. The state variable x(t) can potentially depend on u(t), a measured environmental 

variable whose effect on x(t) is given by the coefficient c. This is used, for example, to produce 

a model in which there are break points in r(t). The model assumes that x(t) increases 
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exponentially at rate r(t), where the latent state variable r(t) changes through time as a random 

walk with wr(t) ~ N(0, s2r). This assumption allows r(t) to change through time as dictated by 

the data, and the estimate of s2r sets the rate at which r(t) can change from one day to the next. 

 

We assume that the count data follow a quasi-Poisson distribution. Thus, the expectation of 

counts at time t is exp(x(t)), and the variance is proportional to this expectation. On the log-

transformed scale of x*(t), this implies that ϕ(t) has mean zero and variance approximately  s2ϕ 

+ exp(–x(t)), where s2ϕ scales the variance. 

 

 We fit the model using the Kalman filter to compute the maximum likelihood (Harvey 1989, 

Durbin and Koopman 2012). In addition to the above-mentioned parameters s2r, s2ϕ, and c (if 

a covariate u(t) is included), we estimated the initial value of r(t) at the start of the time series, 

r0, and the initial value of x(t), x0. The estimation also requires an assumption for the variance 

in x0 and r0, which we assumed were zero and s2r, respectively. 

 

2. Interpretation of the time-varying autoregressive model 

 

The time-varying autoregressive model estimates the rate of spread of the disease, r(t), from 

the count of deaths or new cases observed each day, x*(t). Any value of x*(t) reflects the number 

of people infected over multiple days in the past, and the proportion that is counted as a result 

of dying or being diagnosed as infected on day t. If the disease had been spreading exponentially 

at constant rate for many days, and if the number of infected people was large, then the increase 

from x*(t–1) to x*(t) would approach a constant value; in other words, r(t) would give the 

exponential rate of spread of the disease. This would be true even if only a small fraction of the 

infected population died or was diagnosed, provided these fractions did not change through 

time. However, changes in the infection rate will mean that the disease is not at its "stable 

infection age distribution", the distribution of time since infection observed in the infected 

population (Caswell 1989). While this does not affect the statistical model fitting, it will mean 

that the observed spread of the disease is not exactly equal to the rate of new infections. 

Nonetheless, because the distribution of times between infection and counting (deaths or cases) 

is fairly broad, the assumption that populations are at their "stable infection age distribution" is 

unlikely to cause a great difference between the observed rate of disease spread and the 

infection rate. This is address in detail in the section (D) Assessment of robustness. 
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The "true" value of the number of daily deaths or new cases in the model, x(t) (S1a), is the 

probability that an infected or deceased person is counted. After accounting for measurement 

error (S1c), all of the variation in x(t) is assumed to be given by variation in the spread rate r(t) 

(S1b). Therefore, the variation wr(t) in r(t) includes both the day-to-day variation in the spread 

rate and the longer-term changes in r(t) that results when estimates of wr(t) have a mean 

different from zero. The assumption that r(t) is a random walk gives it flexibility to track the 

patterns in the data as the model is fit. We suspect that the true changes in the infection rate do 

not vary greatly on a day-to-day basis. This might argue for fitting a smoothing curve to r(t) or 

x(t); indeed, this is what the GAMM we used does. Nonetheless, we found that results from 

curve-fitting models were sensitive to decisions made about the type of curves that were fit. 

The time-varying autoregressive model was less dependent on a priori assumptions, due to few 

a priori assumptions about the data. Further, the bootstrapping method we applied to obtain 

estimates of the uncertainty of the model fits also acts as a smoothing method. 

 

We derived estimates of R0(t) directly from r(t) as 

 

 R0(t) = 1/Ste-r(t)tp(t) (S2) 

 

where p(t) is the distribution of the proportion of secondary infections caused when by a 

primary infection that occurred t days previously. We used the distribution of p(t) from Li et 

al. (2020) that had an average serial interval of T0 = 7.5 days; smaller or larger values of T0, 

and greater or lesser variance in p(t), will decrease or increase R0(t) but will not change the 

pattern in R0(t) through time. We report values of R0(t) at dates that are offset by the average 

length of time between initial infection and death, or, for case data, the time between initial 

infection and reporting. These are taken as 18 days (Zhou et al. 2020) and 8 days (the serial 

interval Li et al. 2020), respectively. Thus, our statistical model uses only the raw data on the 

observed changes in deaths or cases to calculate r(t), rather than making assumptions about the 

timing of transmission, death, and reporting. Assumptions about timing are used only after the 

model fitting to calculate R0(t) and the timing of infections. 

 

3. Parametric bootstrapping for uncertainty 

 

To generate approximate confidence intervals for the time-varying estimates of r(t), we used a 
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parametric bootstrap designed to simulate datasets with the same characteristics as the real data 

that are then refit using the autoregressive model. This procedure answers the question: If it 

were possible to observe many times series generated by the same process, how variable would 

be the results of the statistical model fit? This bootstrapping approach requires assumptions 

about the process underlying the true data. Because the underlying changes in r(t) are of interest, 

the bootstrap incorporates the time-varying changes in the estimated values of r(t) from the 

fitted data. 

 

Changes in r(t) consist of unbiased day-to-day variation and the biased deviations that lead to 

longer-term changes in r(t). The bootstrap treats the day-to-day variation as a random variable 

while preserving the biased deviations that generate longer-term changes in r(t). Specifically, 

the bootstrap was performed by calculating the differences between successive estimates of r(t), 

Dr(t) = r(t) – r(t-1), and then standardizing to remove the bias, Drs(t) = Dr(t) – E[Dr(t)]. The 

sequence Drs(t) was fit using a autoregressive time-series model with time lag 1, AR(1), to 

preserve any shorter-term autocorrelation in the data, and then for the bootstrap a new time 

series was simulated from this AR(1) model, Dr(t), and then standardized, Drs(t) = Dr(t) – 

E[Dr(t)]. The simulated time series for the spread rate was constructed as r(t) = r(t) + Drs(t)/ 

21/2, where dividing by 21/2 accounts for the fact that  Drs(t) was calculated from the difference 

between successive values of r(t). A new time series of count data, x(t), was then generated 

using equation (S1a) with the parameters from fitting the data. Finally, the statistical model was 

fit to the reconstructed x(t). In this refitting, we fixed the variance in r(t), s2r, to the same value 

as estimated from the data. Therefore, the bootstrap confidence intervals are conditional of the 

estimate of s2r. We imposed this condition, because the estimate of s2r tends to absorb to zero 

when the change in r(t) is small, with variation in x(t) transferred to the measurement error 

variance.  

 

4. Example fits 

 

As an example of the model fit, we will use death data for Wisconsin. We selected Wisconsin, 

because it posed the greatest challenge when deciding how to handle data (section (C) Data 

handling).  

 

The number of deaths per day in Wisconsin increased rapidly before beginning to plateau (Fig. 
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S1A). The differences between the fitted and observed death counts, x(t) and x*(t), are 

determined by measurement error. The time-varying estimates of r(t) decrease to near zero (Fig. 

S1B). The dashed lines in Fig. S1B give the standard deviations for the point estimates of r(t) 

produced by the Kalman filter. There is considerable day-to-day variation in the estimates of 

r(t), as anticipated by the observed changes in the death count. The bootstrap smooths out these 

fluctuations (Fig. S1C). Furthermore, when the fitted line strays from the bootstrap confidence 

intervals, the data changes in a manner that cannot be captured by the bootstrap procedure. In 

other words, the deviation in r(t) estimated from the data exceeds that expected from model 

underlying the bootstrap. Because the bootstrap assumes that the variance in r(t) is 

homogeneous over the time series, places where r(t) strays from the bootstrap suggest more-

rapid changes in the estimates of r(t) than elsewhere in the time series. Thus, the bootstrap gives 

a way to assess lack-of-fit of the data to the assumptions of the model. 

 

5. Fitting reversed time series 

 

A useful model diagnostic is to fit the model to the reverse of a time series to determine whether 

the fit changes. We did this with two goals. First, time-series models require assumptions about 

the variances at the start of the time series, in our case the variances in r0 and x0. Reversing the 

time series investigates this, because the variances of r0 and x0 in the reversed time series will 

have variances that have been accumulated over the future values that were reversed. Second, 

the model (S1a-c) updates changes in r(t) from changes in x(t), and if there are rapid changes 

in the true value of r(t), changes in the estimates of r(t) will occur with a lag. This lag can be 

captured by reversing the time series. 

 

Fitting the reversed time series shows little effect of initial assumptions about the variances in 

r0 and x0, because the estimates of r0 are the same in the forward and reversed analyses (Fig. 

S2). Nonetheless, the analysis of the reversed time series showed an earlier decrease in r(t). 

This suggests a delayed response of the model fit to true changes in r(t). Despite this delay, 

however, estimates of r0 for forward and reverse time-series fitting were similar for all States 

(Fig. S3). The exception is Wisconsin, which is discussed in more detail in the section (C) Data 

handling. 

 

6. Alternative statistical models 
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We investigated a variant of our approach in which we allowed r(t) to change as a step function, 

with up to two steps. The model was fit with all possible step-change time points that were 

separated by at least 6 days, with the best model selected as the one having the highest log 

likelihood. Thus, we did not discount for the number of parameters, although using AIC or 

other selection criteria is also possible. We then used the same bootstrap procedure to obtain 

confidence intervals. As the example for Wisconsin shows (Fig. S4), this often gave similar 

results to the time-varying model, although in some cases it gave wide confidence bounds that 

suggests overfitting. 

 

As an alternative approach, we fit a GAMM to the daily death or case count data assuming 

ARMA(1,1) residuals and quasi-Poisson measurement error (Wood 2017, 2019). We then 

calculated the values of r(t) as the differences x(t) – x(t-1). The GAMM requires selecting the 

number of additive functions, and using AIC to select the model of appropriate complexity 

generally led to simple models that were too "stiff" to capture rapid changes in r(t). Increasing 

the number of functions, for example k = 10, led to more dynamic changes in r(t) (Fig. S5). 

Nonetheless, the bootstrapped confidence bounds indicate that the GAMM is prone to missing 

true changes in r(t). 

 

(C) Data Handling 

 

1. Selecting the initial time point 

 

The estimates of r0 depend on when the time series is started, that is, what date (Julian day) is 

regarded as time zero. We selected a threshold of 3 deaths per day, or 30 cases per day, as the 

starting point of the time series we analyzed. We determined when these thresholds were met 

using the GAMM (Wood 2019) to smooth the time series. This avoids the bias that would be 

caused if a criterion such as "the first day on which deaths exceed 3" were used. 

 

Wisconsin proved to be a complicated case for which small changes in the threshold used to 

start the time series made a large difference in the estimate of r0. This appears to be due to a 

single zero early in the epidemic. When we used a threshold of two rather than three days, the 

estimate of r0 dropped from 0.28 to 0.12 (Fig. S6). This also brings the bootstrap estimates of 

r0 from analyses of the forward and reversed time series into agreement (Fig. S3). 
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2. Weekly artifacts in reporting 

 

In death and case data aggregated for the entire USA, weekly cycles begin to appear in late 

April and May (New York Times 2020) with low numbers of cases occurring on Sunday and 

Monday. We suspect that this is due to reporting bias. An alternative explanation is that it is a 

rippling effect caused by the serial interval of roughly a week, so that a burst of infection in one 

week will generate a secondary burst the following week. However, because the data are 

aggregated for the entire USA, it is unlikely that these bursts would be synchronized sufficiently 

to generate the observed weekly cycles in the data. For the State data, however, these cycles 

are rarely observed and do not affect the analyses, except for the case data in Michigan, New 

York, Ohio, and South Dakota. These cycles were never observed in the early parts of the time 

series, and therefore our estimates of r0 should not be affected from the death data. 

 

(D) Assessment of Robustness 

 

To assess the robustness of the statistical model, we built a simulation SIR model (susceptible-

infected-recovered) of a hypothetical epidemic. The simulation model was not the same as the 

statistical model, so the goal was to determine whether the phenomenological statistical model 

was capable of capturing the rate of infection spread in the process-based simulations. 

 

The simulation model tracks the number of infected individuals on day t who were infected t 

days previously, X(t;t). After 25 days, they are all assumed to be recovered or died. The 

probability distribution of the day on which a susceptible is infected, p(t), is given by a Weibull 

distribution with mean 7.5 days and standard deviation 3.4 (Li et al. 2020) (Fig. S7A). For an 

individual who dies, the day of death, d(t), is given by a Weibull distribution with mean 18.5 

days and standard deviation 3.4 (Li et al. 2020) (Fig. S7B). Finally, for case data we need to 

know the time between initial infection and diagnosis, h(t), which we assume is lognormally 

distributed with mean 5.5 days and standard deviation 2.2 (Ferretti et al. 2020) (Fig. S7C). 

 

On day t, the number of new infections produced by individuals who were infected t days 

earlier is b(t) p(t). The term b(t) is closely related to R0(t), the number of secondary infections 

caused per infection. However, because we allow b(t) to fluctuate on a daily basis, here we use 

a notation that differs from R0(t). Note, however, that on average R0(t) = St b(t + t) p(t). The 

total number of new infections on day t is given by a lognormal Poisson distribution in which 
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the mean of the Poisson process is b(t) a(t) St p(t)X(t;t), where the lognormal random variable 

a(t) is included to represent environmental variation.  

 

Deaths occur according to a binomial distribution for each infection age category X(t;t), so that 

the probability of death of individuals that had been infected t days earlier is     (1 – s) b(t) d(t), 

where s is the overall survival probability and b(t) is a lognormal distribution. We assume that 

the overall survival probability for COVID-19 is 98%; changes in this assumption had little 

effect on the simulation study. Once an individual dies, they are removed from the pool of 

individuals. 

 

Cases are reported according to a binomial distribution for each infection age category X(t;t), 

so that the probability of a person with the infection for t days being diagnosed is G c(t) h(t), 

where G is the overall probability that a case is reported, and c(t) is a logit-normal distribution 

to represent daily variation in reporting. We assume that the overall reporting probability is G 

= 0.5.  

 

To illustrate the simulations, we assumed that the expectation of the infection rate, b(t), changes 

as a step function (Fig. S8A, black line), while there is also daily variation around this 

expectation (Fig. S8A, points). We also calculated the asymptotic rate of disease spread, R0(t) 

(Fig. S8A, red line). This shows that the expected daily infection rate, b(t), is closely related to 

the population-level R0(t). Over the simulated time series of 60 days, we then recorded the 

number of deaths (Fig. S8B) and diagnosed cases (Fig. S8C). We initiated the simulation with 

a single cohort of individuals, all infected on day 1 (Fig. S8C, filled black dot). This gives the 

"worst-case" situation in which the distribution of times-since-infection is far from the stable 

age distribution.  

 

We fit this simulated dataset using the same procedure as we used for the real data, including 

the same rules to determine which day to initiate the fitted time series (Fig. S9). To compare 

the model fit of r(t) to the simulation, we computed the asymptotic rate of spread for the 

simulation model (Fig. S9B, red line). In this example, the statistical model gave a reasonable 

fit to the simulated data. We do not expect a perfect fit, because the simulation model had a 

step change in r(t) that cannot occur in the statistical model. 
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We performed a similar exercise while assuming that the expectation of the infection rate, b(t) 

changes geometrically, producing a linear change in r(t) (Fig. S10). In this particular example, 

the estimated values of r(t) are below the true values in the simulation in the first part of the 

time series. This downward bias in the early estimates of r(t) was not uncommon. 

 

We performed 100 simulations with the expectation of b(t) changing as either a step function 

(Fig. S11) or geometrically (Fig. S12) to assess the overall robustness of the modeling approach. 

We investigated bias in the estimates of r0 (e.g., black line in Figs S9B and S10B) by generating 

a histogram of the differences between the estimated and true value of r0 from the simulation 

model, where the estimates were made using both the forward and reversed time series, 

respectively (Fig. S11). The estimates of r0 for the simulation model with step changes in r(t) 

(e.g. Fig. S9) were unbiased, whereas the estimates for the simulation model with geometric 

changes (e.g., Fig S10) were biased downwards (underestimates). We performed the same 

comparison using the mean of the bootstrapped estimates of r0 and obtained the same pattern 

and magnitude of bias (Fig. S12). For reporting the estimates of r0 and R0, we used the mean 

of the bootstrapped estimates of r0, because they are necessarily centered between the 

bootstrapped confidence intervals. Finally, we also investigated bias in the estimates of r0 from 

simulated case data using mean of the bootstrapped values (Fig. S13) which showed similar 

patterns as the death data (Fig. S12), although the analyses of the reversed time series with step 

changes in r(t) showed some positive bias. 

 

We further used the simulations to assess the accuracy of the bootstrapped confidence intervals. 

Because the estimates of r0 for the simulation with geometric changes in r(t) were biased, and 

we wanted to know whether the width of the confidence intervals were accurate, we counted 

the number of simulations in which the true value of r0 lies outside the confidence bounds after 

subtracting the observed bias (Fig. S12). The tendency for the method to underestimate r0 is 

apparent in the bias-corrected 95% confidence intervals (Table S1) that are too low on the upper 

end, leading to more true values of r0 exceeding the confidence bound than expected. 

 
In summary, the simulation study shows that the approach is reasonably robust when applied 

to realistic data. When the true r(t) changes slowly and continuously, the approach gives 

estimates that are downward biased, although there was little bias in the estimates when r(t) 

showed steps changes (Figs. S12, S13). Furthermore, even with the bias, the width of the 

confidence intervals for r0 was fairly accurate, although the upper confidence bounds were a 

little narrow.  

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 27, 2020. ; https://doi.org/10.1101/2020.05.17.20104653doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.17.20104653
http://creativecommons.org/licenses/by-nc/4.0/


 21 

 

(E) Analysis of case data 

 

We analyzed the time series of reported cases of COVID-19 using the same approach as we did 

with the death data. For most States, the estimate of r0 from the case data was slightly higher 

than for the death data (Fig. S14). The fits for Michigan and Virginia were visually poor (e.g., 

Fig. S15); in both cases, there were patterns in the latter part of the time series that forced a 

high estimate of s2r and a very imprecise estimate of r0. A simple solution is to discard the 

latter part of the time series. However, we do not pursue this here and instead use this example 

to show that the method can fail when there are clear confounding effects in the data.  

 

Also, for the estimate of r0 in Wisconsin (Fig. S14) we used an initial threshold of two deaths 

per day, rather than three, as described above (Fig. S6). This estimate, r0 = 0.12, is close to the 

estimate obtained from the case data (r0 = 0.10).  

 

The higher estimates of r0 from case data relative to death data have at least two explanations. 

First, this pattern is consistent with greater reporting of infections as public awareness increased, 

leading to an observed increase in r0 due to changes in reporting bias. Second, the simulation 

study showed that the estimates of r0 from analyses of death data tended to be more downward 

biased than analyses of case data, presumably due to the lower numbers of deaths than cases. 

Because we could not distinguish these two explanations, we took the more conservative 

approach of using death data that led to lower estimates. Note that this is conservative from a 

statistical perspective, although for designing public health measures, it would be more 

conservative to use higher estimates of r0 and R0. 
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Table S1. Proportion of simulations in which lower and upper 66% and 95% confidence 
intervals were exceeded. The expected values are 0.025 for 95% confidence intervals and 0.17 
for 66% confidence intervals. 

 

data shape lower 95% lower 66% upper 66% upper 95% 

deaths step 0.01 0.12 0.24 0.061 

deaths geometric 0.01 0.22 0.28 0.130 

cases step 0.04 0.18 0.20 0.050 

cases geometric 0.03 0.24 0.24 0.091 
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Fig. S1. Time-varying state-space model fit to death data from Wisconsin. (A) Observed and 

fitted (line) deaths counted per day. (B) Estimated values of r(t) with ±1 SD from the state-

space model (Eq. S1a-c). The dates have been offset by 18 days, the average time between 

infection and death. (C) Estimated values of r(t) with bootstrap 66% and 95% confidence 

intervals (dark and light gray, respectively) from 300 bootstrap simulations. 

●

●

●

●

●

●

● ●
●

● ●
●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

●
●

0.
5

2.
0

5.
0

20
.0

N
um

be
r

28
−M

ar

05
−A
pr

13
−A
pr

22
−A
pr

30
−A
pr

08
−M

ay

A

−0
.2

0.
0

0.
2

0.
4

r(t
)

10
−M

ar

18
−M

ar

26
−M

ar

04
−A
pr

12
−A
pr

20
−A
pr

B

−0
.2

0.
0

0.
2

0.
4

r(t
)

10
−M

ar

18
−M

ar

26
−M

ar

04
−A
pr

12
−A
pr

20
−A
pr

C

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 27, 2020. ; https://doi.org/10.1101/2020.05.17.20104653doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.17.20104653
http://creativecommons.org/licenses/by-nc/4.0/


 25 

 
 

Fig. S2. Time-varying state-space model fit to death data from Wisconsin using analyses in the 

forward (A, B) and backward (C, D) directions. See also figure S1. 
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Fig. S3. Estimates of the initial R0 for 36 States obtained by analyzing time series in the forward 

and backward directions. 
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Fig. S4. Time-varying state-space model fit to death data from Wisconsin in which up to two 

breakpoints are allowed. The locations of the breakpoints were selected to give the highest 

likelihood, conditional on breakpoints being at least 7 days apart.  
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Fig. S5. GAMM model fit to death data from Wisconsin. For the full data (Fig. 1), the GAMM 

fit a straight line to x*(t), and therefore for this example the time series was shortened by 21 

days. (A) Observed and fitted (line) deaths counted per day. (B) Estimated values of r(t) with 

bootstrap 66% and 95% confidence intervals (dark and light gray, respectively). The bootstrap 

was performed by simulating data from the GAMM and re-fitting 300 simulated datasets. The 

GAMM was fit assuming k = 10 additive functions, ARMA(1,1) autocorrelated residuals, and 

variances of x(t) equal to exp(–w x(t)) where the coefficient w is estimated during the fitting 

process. 
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Fig. S6. Time-varying state-space model fit to death data from Wisconsin. In contrast to Fig. 

S1, here the threshold to determine when to initiate the time series was set to two deaths per 

day, rather than three; all else is the same. (A) Observed and fitted (line) deaths counted per 

day. (B) Estimated values of r(t) with bootstrap 66% and 95% confidence intervals (dark and 

light gray, respectively). 
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Fig. S7. Probability distributions used in the process-based SIR simulation model used to test 

methods for robustness. (A) The probability distribution of the day on which a susceptible is 

infected, p(t), which is given by a Weibull distribution with mean 7.5 days and standard 

deviation 3.4. (B) For an individual who dies, the day of death, d(t), which is given by a Weibull 

distribution with mean 18.5 days and standard deviation 3.4. (C) For case data, the time between 

initial infection and diagnosis, h(t), which is lognormally distributed with mean 5.5 days and 

standard deviation 2.2. 
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Fig. S8. Example simulation from the process-based SIR model. (A) Changes in the infection 

rate, b(t), are modeled as a step function (black line) with daily variation (points). R0(t) (red 

line) tracks changes in b(t). (B) and (C) The number of deaths (B) and diagnosed cases (C) 

when the simulation is initiated with a single cohort of individuals, all infected on day 1 (solid 

black dot).  
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Fig. S9. Statistical model (Eq. S1a-c) fit to simulated data with step changes in b(t) using the 

same procedure used for the real data (Fig. 1). In (B), the red line gives the asymptotic rate of 

spread calculated from the simulation model (i.e., ln(l(t)), where l(t) is the leading eigenvalue 

of the iterated age-of-infection structured matrix underlying the SIR). 
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Fig. S10. Statistical model (Eq. S1a-c) fit to simulated data with geometric changes in b(t). See 

figure S9. 
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Fig. S11. For death data, bias in the point estimates of r0 as the difference between the estimated 

and true values of r0 in the simulations. Simulations where performed in which r(t) experienced 

either step changes (Fig. S9) or geometric changes (Fig. S10), and the time series were either 

fit in the forward or reverse directions. 
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Fig. S12. For death data, bias in the bootstrap estimates of r0 as the difference between the 

estimated and true values of r0 in the simulations. See figure S11. 
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Fig. S13. For case data, bias in the bootstrap estimates of r0 as the difference between the 

estimated and true values of r0 in the simulations. See figure S11. 
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Fig. S14. Comparison of r0 estimates from case data vs. death data.  
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Fig. S15. Case data and estimated r(t) for the State of Michigan. In (B), the poor fit is 

presumably caused by the high variance estimated for in wr(t) (Eq. S1b) due to the weekly 

cycles in reported cases. 
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