

COVID 19 in Bangladesh: Assumption of possible infection and death

Author: Sadik Hasan Shuvo¹

Abstract: It is a painful job to predict the death of people. But sometimes it is important to predict the future and concern the government. A furious future is waiting for Bangladesh.

Objective: Objective of the study is to assume the number of positive case and death till 30th December, 2020 in Bangladesh.

Study design: This study was designed with systematic review and data analysis.

Method: The study was completed by analyzing data available on website. First COVID 19 case in Bangladesh was identified on 8th March. Analyzing the data increasing rate/common ratio of infection and death has been identified. Then this common ratio has been used in the formula of multiplication series (at decreasing rate). Data of China, Iran, Italy and the USA was also analyzed to assume how the death and case number increased. Social issues of Bangladesh were also analyzed. Considering all these the assumption was made.

Result: It has been assumed that by the 43^{rd} week (on 30^{th} December, 2020) of first identification the total case can be 15640747 and total death can be 638769 by 30 December, 2020. As this is an assumption this can be true, partially true or false. But the base of assumption is strong enough so the possibility of being true or nearly true is higher.

Policy Suggestion: Government should choose properly one between two options. Either government should declare curfew or let people lead normal life for the purpose of herd immunity. A very weak lockdown for a long time doesn't make any sense.

Key word: Infection, death, rate, Bangladesh, COVID 19

¹ Shuvo.H.S is a lecturer in the department of Local Government and Urban Development, Jatiya kabi Kazi Nazrul Islam University. email: <u>sadik.jkkniu@gmail.com</u>

1.1. Introduction: Bangladesh is one of the most vulnerable countries to COVID 19 in the world. Till 20th May 386 people died and total case is 26738ⁱ. Just 10 week ago on 8th March first COVID 19 patient was identified and first death case was on 18th Marchⁱⁱ. Since then the number of both positive case and death is increasing. Within a very few time the virus is showing its devastating behavior in this country. The government has a lot to do still now but if they don't take proper steps what will happen? This article shows an assumption about the upcoming future. This assumption is not just a mere prediction. It is a mathematical certainty.

1.2. Significance of the study: This study will be helpful for the government and the policy maker. Still neither the people nor the government is concern enough about the virus. This study will show them the future with date. This will appear as live data to them and it will help them to think carefully and be more concern.

1.3. Research Questions: This study tried to find out the answer of the following questions.

- What is the increasing rate of positive case and death?
- What is waiting for the future?
- How many people will be affected and how many will die?
- How the positive case and death number will be increased?

1.4. Methodology of the study: The following sequence shows the incensement of positive case in every week in Bangladesh.

3+14+39+54+218+1231+3772+7103+11719+17822+26738...

The following sequence shows the incensement of death number in every week in Bangladesh. 1+5+6+20+50+120+163+186+269+386...

No available arithmetic formula works here as there is no common ratio or common difference of the increasing number. So author designed a formula to find out the common ratio. Then the common ratio has been used in the formula of multiplication series to find out the possible number of positive case and death. The whole process is described here.

First Part: R = (nearest ratios)/n

Second Part: *n*-th term = N*R^n-1 (Formula of multiplication series)

Simply the sequence is built by multiplying the previous number with common ratio

 $N = N*R^{1-1}, N+1 = R*N, N+2 = R*(N+1), N+3 = R*(N+2)....N+n = R*\{N+(n-1)\}$

Here R= increasing rate/common factor

N= last known number y= 2nd last number x= 3rd last known number w= 4th last known number N+1=Unknown 1st number N+2=Unknown 2nd number N+3=Unknown 3rd number

N+n=Unknown *n*-th number

1.4.1. Explanation of R= increasing rate/common ratio: In multiplication series R or common ratio (increasing rate) is determined by a formula, $\mathbf{r} = (\mathbf{n+1})/\mathbf{n}$. simply it divides each term by the previous term. But in this case there is no common ratio as it is increasing in a natural way. In this case mean of the nearest ratios has been considered as "R"

To find out the common ratio the mean formula has been used here. Increasing rate of last four weeks has been taken. Then the mean of the nearest rates of three weeks have been calculated and the result has been considered as the common ratio or increasing rate, r.

Data of the last three weeks have been taken as these weeks show a stable difference. For the COVID 19 positive cases the ratio of last weeks' are 1.64, 1.52 and 1.50 which are very close to

each other. But the ratios of previous weeks are: 4.7, 2.8, 1.4, 4, 1.9 and 5.6. The ratios in these weeks are so much fluctuating. So these ratios have been ignored in mean calculation.

Similarity has been found in the ratio of death number. For the death number the ratios of three weeks' among last four are 1.4, 1.4, and 1.4 which are same. But the ratios of previous weeks are: 5, 1.2, 3.3, 1.1 and 6. The ratios in these weeks are so much fluctuating. So these ratios have been ignored in mean calculation.

It has been found that the common ratio decreases in other countries in every month so the ratio has also been used in the formula with a decreasing rate. The rate was decreased considering the current rate and the socio economic condition of Bangladesh.

1.4.2. Calculation of Positive case

Mean ratio,

R= (nearest ratios)/n

Here, 26738/17822= 1.5	N (Positive case of last week)= 26738			
17822/11719 = 1.52	Y(Positive case of 2^{nd} last week)= 17822			
11719/7103 = 1.65	X(Positive case of 3^{rd} last week)= 11719			
Now, $(1.52+1.65+1.5)/3 = 1.6$	W (Positive case of 4^{th} last week)= 7103			
So, R (Common ratio) = 1.6				

Now, N (the last known number)	= N*R^n-1 =N*R^1-1= 26738*1.6^0= 26738*	1 = 17822
N+1 (First unknown number)	$= N*R^2 - 1 = 26738*1.6^1 = 26738*1.6$	= 42781
N+2 (2 nd Unknown number)	= N*R^3-1 = 26738* (1.6)^2	= 68449
N+3 (3 rd Unknown number)	= N*R^4-1 = 26738* (1.6)^3	= 109519

The possible positive cases have been calculated up to 30^{th} December. (Shown in table 1 and diagram 1)

1.4.3. Calculation of death number: The death

number was identified in the same way that of possible positive case identification.

Mean ratio,

R = (nearest ratios)/n	
Here, 386/269= 1.4	
269/186= 1.4	N (Death in last week) $= 386$
163/120 = 1.4	Y (Death in 2^{nd} last week)= 269
Now, $(1.4+1.4+1.4)/3 = 1.4$	X (Death in 3^{rd} last week)= 186
So, R (Common ratio) = 1.4	W (Death in 4^{th} last week)= 120

Now, N (the last known number) = $N*R^n-1 = N*R^{1}-1 = 386*1.3^{0} = 386*1$	= 386
---	-------

N+1 (First unknown number)= N*R^2-1 =
$$386*1.4^{1} = 386*1.4$$
 = 540

N+2 (
$$2^{nd}$$
 Unknown number)= N*R^3-1 = 386* (1.4)^2 = 757

N+3 (
$$3^{rd}$$
 Unknown number)= N*R^4-1 = 386* (1.4)^3 = 1059

The possible deaths have been calculated up to 30th December. (Shown in table 2 and diagram 2)

1.4.4. Changes in common ratio: Data of five countries (Chinaⁱⁱⁱ, Iran^{iv}, Italy^v, USA^{vi} and Bangladesh^{vii}) has been analyzed. It has been found that both death rate and rate of positive cases are increasing at a decreasing rate (showed in figure 3 and 4). From this it can be assumed that the rate of positive case and death in Bangladesh will be increased at a decreasing rate. The current data shows that in the ninth week the rates in Bangladesh are higher than other four countries in both death and positive cases. So it can be assumed that though the rates will be decreased it will not be like other countries. Sometimes it increases also. Increasing and decreasing depend on many things such as health care, lockdown, awareness etc. Analyzing all these it can be predicted that both death rate and the rate of infection will be decreased in every five weeks. The decreasing rates were determined observing the rates of other countries and the overall condition of Bangladesh.

2. Weakness of the study: It is not possible to predict the future perfectly. Based on data it can only be assumed. Assumption can be true, partially true or false. But if assumption is based on data, mathematical formula, social and other context then the possibility of perfection becomes higher. In this study data of five countries has been analyzed, formula of multiplication series has been applied and the health, social, political context of Bangladesh has been taken into consideration. So the possibility of being true of this assumption is higher but not 100%.

3. Policy suggestion: Government should impose stick lockdown (curfew) or it should go for herd immunity. But in Bangladesh lockdown is going on and amid of this garments factories and markets are opened. The number of both positive case and death is increasing rapidly. Government should take immediate action to tackle the situation.

4. Table and figure:

Week	Date (2020)	Total Positive	Increasing rate	Week	Date (2020)	Total Positive	Increasing rate
		case				case	
week 1	11-Mar	3		Week 23	12-Aug	2171358	1.20
week2	18-Mar	14	4.67	Week 24	19-Aug	2605630	1.20
week3	25-Mar	39	2.79	Week 25	26-Aug	3126756	1.20
week4	1-Apr	54	1.38	Week 26	2-Sep	3752107	1.20
week5	8-Apr	218	4.04	Week 27	9-Sep	4127318	1.10
week6	15-Apr	1231	5.65	Week 28	16-Sep	4540050	1.10
week7	22-Apr	3772	3.06	Week 29	23-Sep	4994055	1.10
week8	29-Apr	7103	1.88	Week 30	30-Sep	5493460	1.10
week9	6-May	11719	1.65	Week 31	7-Oct	6042806	1.10
Week 10	13-May	17822	1.52	Week 32	14-Oct	6586659	1.09
week 11	20-May	26738	1.50	Week 33	21-Oct	7179458	1.09
week12	27-May	42781	1.60	Week 34	28-Oct	7825609	1.09
week13	3-Jun	68449	1.60	Week 35	4-Nov	8529914	1.09
week14	10-Jun	109519	1.60	Week 36	11-Nov	9297606	1.09
week15	17-Jun	175230	1.60	Week 37	18-Nov	10041415	1.08
week16	24-Jun	280368	1.60	Week 38	25-Nov	10844728	1.08
week17	1-Jul	392516	1.40	Week 39	2-Dec	11712306	1.08
week18	8-Jul	549522	1.40	Week 40	9-Dec	12649291	1.08
week19	15-Jul	769330	1.40	Week 41	16-Dec	13661234	1.08
week20	22-Jul	1077063	1.40	Week 42	23-Dec	14617520	1.07
Week 21	29-Jul	1507888	1.40	Week 43	30-Dec	15640747	1.07
Week 22	5-Aug	1809465	1.20				

Table 1: Series of COVID 19 positive case

Diagram: Series of COVID 19 positive case

Week	Date (2020)	Total Death	Increasing rate	Week	Date (2020)	Total Death	Increasing rate
week 1	18-Mar	1		Week 22	12-Aug	15732	1.30
weed 2	25-Mar	5	5.00	Week 23	19-Aug	20452	1.30
week3	1-Apr	6	1.20	Week 24	26-Aug	26587	1.30
week4	8-Apr	20	3.33	Week 25	2-Sep	34563	1.30
week5	15-Apr	50	2.50	Week 26	9-Sep	43204	1.25
week6	22-Apr	120	2.40	Week 27	16-Sep	54005	1.25
week7	29-Apr	163	1.36	Week 28	23-Sep	67506	1.25
week8	6-May	186	1.14	Week 29	30-Sep	84383	1.25
week9	13-May	269	1.45	Week 30	7-Oct	105478	1.25
Week 10	20-May	386	1.43	Week 31	14-Oct	126574	1.20
week 11	27-May	540	1.40	Week 32	21-Oct	151889	1.20
week12	3-Jun	757	1.40	Week 33	28-Oct	182267	1.20
week13	10-Jun	1059	1.40	Week 34	4-Nov	218720	1.20
week14	17-Jun	1483	1.40	Week 35	11-Nov	262464	1.20
week15	24-Jun	2076	1.40	Week 36	18-Nov	301833	1.15
week16	1-Jul	2803	1.35	Week 37	25-Nov	347108	1.15
week17	8-Jul	3784	1.35	Week 38	2-Dec	399175	1.15
week18	15-Jul	5108	1.35	Week 39	9-Dec	459051	1.15
week19	22-Jul	6895	1.35	Week 40	16-Dec	527908	1.15
week20	29-Jul	9309	1.35	Week 41	23-Dec	580699	1.10
Week 21	5-Aug	12102	1.30	Week 42	30-Dec	638769	1.10

Table 2: Series of Death of COVID 19

Figure 3: Death rate of Italy, Iran, China, Bangladesh and the USA

Figure 3: Rate of positive case of Italy, Iran, China, Bangladesh and the USA

Authors' Statement: There was no funding for the research. There is no competing interest also. Ethical approval was not taken as this study is based on secondary data.

ⁱ IEDCR (15th May, 2020) Covid-19 Status Bangladesh, available at: <u>https://cutt.ly/byWORph</u> accessed on: 15th May, 2020

ⁱⁱ Worldometer (15th May, 2020) Bangladesh, available at: <u>https://cutt.ly/tyWOOdQ</u> accessed on: 15th May, 2020

ⁱⁱⁱ Worldometer (15th May, 2020) China, available at: <u>https://cutt.ly/fyEPndS</u> accessed on: 15th May, 2020 ^{iv} Worldometer (15th May, 2020) Iran, available at: <u>https://cutt.ly/iyEPbcl</u> accessed on: 15th May, 2020

^v Worldometer (15th May, 2020) Italy, available at: https://cutt.ly/4yEPbuA accessed on: 15th May, 2020

^{vi} Worldometer (15th May, 2020) USA, available at: https://cutt.ly/syEPvYc accessed on: 15th May, 2020 ^{vii} Ibid