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ABSTRACT 

Background: Pandemics do not occur frequently and when they do there is a paucity of predictive tools 
that could help drive government responses to mitigate worst outcomes. Here we provide a forecasting 
model that is based on measurable variables and that strives for simplicity over complexity to obtain sta-
ble convergent forecasts of death, prevalence, incidence, and safe days for social easing. 

Methods: We assume, based on prior pandemic data, that death rate rise and fall approximately follows 
a Gaussian distribution, which can be asymmetric, which we describe. By taking daily death data for for-
eign countries and U.S. states and fitting it to an appropriate Gaussian function provides an estimate of 
where in the cycle a particular population lies. From that time point one can integrate remaining time to 
obtain a final total death. By also using measured values for the time from infection to recovery or death 
and a mortality factor, the prevalence (active cases) and incidence (new cases) totals and rate curves can 
be constructed. It is also possible by setting a downward threshold on prevalence that an estimate of a 
minimum date to begin relaxing social restrictions may be considered.  

Results: To demonstrate the model we chose the most severe hot-bed countries and U.S. states as a test-
bed to evolve and improve our model and to compare with other models. The model can readily be ap-
plied to other countries by inputting data from public data bases. We also compare our forecasts to the 
University of Washington (UW) IHME model and are reassuringly similar yet show less variability on a 
weekly basis. The sum of squares for error (SSE) for international and U.S. states, respectively, that we 
track are: 34% and 33% for our model vs. 49% and 59% for the IHME model. 

Conclusions: Our model appears closest to the UW IHME model; however, there are important differences 
and while both models forecast many of the same results of interest, each one offers unique benefits that 
the other does not. We believe that the model reported here excels for its simplicity, which makes the 
model easy to use. 
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INTRODUCTION 

Most of the world was caught unprepared by the severity of COVID-19, though retrospectively, there were 
collective sighs of “we should have seen it coming,” and many did, but these warnings were more opinion 
than grounded in hard data that the world’s leadership could act on. The number of recorded deaths due 
to COVID-19 around the world (excluding China) for each month from January to April were 0, 84, 33,878, 
189,086, respectively. There is clearly a great need for predictive tools to provide real-time forecasts in 
order to implement mitigation efforts quicker.  

In this paper we describe a real-time statistical model for forecasting COVID-19 deaths, as well as estimat-
ing and forecasting the actual number of cases (prevalence) and rate of new cases (incidence). These 
values are generally greatly understated since they are confirmed by testing that is never in sufficient 
supply. So, reports of new cases are really reports of new tests of old cases. This model also can set criteria 
for which some degree of easing of social restrictions can occur on a gradual basis along with check-gate 
measurements for when these restrictions can be progressively eased. The model can also forecast the 
consequences of socially easing prematurely. The motivation for this work is to provide predictive tools 
that are reasonable and devoid of excessive complications that hinder some other models leading to po-
tential inaccuracies and instabilities in the outcome results. 

The traditional approach to modeling is epidemiological in nature and seeks to understand known behav-
ior, which for an epidemic, would be after the fact. Conventional epidemiological models include SIR, SEIR 
and SEIRS (susceptible, exposed, infectious, recovered, susceptible) models1,2 and are characterized as 
being mathematically complex and having many variables that are difficult to define.3, 4 They are also not 
well suited to real-time forecasting as new epidemics have their own distinct properties and further it is 
difficult for them to consider implementation of social restrictions or changes in social behavior due to 
government easing and/or public rebellion due to economic and social pressures. Our focus here is on a 
very different approach that uses real-time data to dynamically and statistically forecast important varia-
bles of an epidemic as they develop thereby automatically incorporating the epidemic properties and 
social response as they are embedded in the real-time data.5 We do note the development of hybrid 
epidemiological models for COVID-19 that try to incorporate real-time data, but they still appear to be 
dependent on many difficult-to-define variables and are very complex.6,7,8,9,10 We also note epidemiolog-
ical models that have used China COVID-19 data to extrapolate forecasts for the rest of the world.11 

Several real-time statistical models have emerged that specifically address the unique properties and be-
havior of COVID-19, knowledge that is only learned by following daily trends.12,13,14,15 Most of these mod-
els are being reported, reviewed and critiqued in the public (digital) forum, justifiably prior to being peer 
reviewed and published. The rationale for this approach is to provide useful information to help inform 
policy makers and public implementers on immediate responses that need to be taken, e.g., in deciding 
when it is prudent to ease social restrictions as they weigh against other considerations, such as the health 
of the economy. That real-time statistical models often update their forecasts is a strength, not a weak-
ness as long as it is within reason; the adjustments reflect the latest reality, which should not be ignored. 

The most widely cited and utilized model for COVID-19 is from the Institute for Health Metrics and Evalu-
ation (IHME) at the University of Washington (UW)11 and therefore we consider it a worthy benchmark 
for our model though we respect other models that attempt to provide similar information. As best as we 
can determine the IHME model uses the integrated total death curve (S-curve) to determine where on 
the time progression a population lies in order to integrate to total deaths. Alternatively, we use the death 
rate curve (1st derivative of the total death curve) as it is more sensitive to detection of the inflection point 
for peak death rate.5 This approach has also been taken by Luo,16 however, that model uses new cases 
(incidence) rather than death, which we consider to be a misleading variable as it is a convolution of actual 
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cases and testing, thereby giving understated values further exacerbated by the testing proportion not 
being constant (increasing) with time. 

METHOD 

On March 14, 2020 we launched a website blog to report our developing model for COVID-19.5 We as-
sume, based on prior pandemic data (e.g., COVID-19 in China and 1918 Spanish Flu17), that death rate 
rises and falls approximately following a Gaussian distribution. (We challenge this assumption shortly.) By 
taking daily death data for foreign countries and U.S. states and fitting it to a Gaussian provides an esti-
mate of where in the cycle a particular population lies. From that time point one can integrate remaining 
time to obtain a final total death. By also using measured values for the time from infection to recovery 
or death and a mortality factor, the prevalence (active cases) and incidence (new cases) totals and rate 
curves can be constructed. It is also possible by setting a downward threshold on prevalence that an esti-
mate of a minimum date to relax social restrictions may be considered.  

The general algorithm is to use death rate data and an assumed symmetric or asymmetric Gaussian rise 
and fall curve to forecast total deaths by estimating where on the Gaussian curve the actual death rate 
curve lies. Other functions besides a Gaussian could work (and we discuss some of them in the Discussion), 
but don’t have the mathematical simplicity and the COVID-19 data currently doesn’t provide a compelling 
reason to consider more complicated functions. We show how this model can accommodate an asym-
metric Gaussian or other function, e.g., kinetic curves associated with compartmental approaches. How-
ever, a Gaussian is convenient to demonstrate the model and we proceed as such.  

The operating equations are as follows: 

𝐷𝐷𝑅𝑅 = 𝑓𝑓(𝑡𝑡)         (1) 

𝐷𝐷𝑇𝑇 =  ∫ 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡2
𝑡𝑡1

         (2) 

Where DR and DT are death rates (e.g., daily) and total deaths, respectively. We first define f(t) as a Gauss-
ian function as follows: 

  𝑓𝑓(𝑡𝑡) = 𝑎𝑎 ∙ 𝑒𝑒−�
(𝑡𝑡−𝑡𝑡0)2

2𝜎𝜎2
�        (3) 

where 

  a = peak death rate (e.g., daily) 
  t = time relative to the peak death rate time t0 

  σ = width of the Gaussian where 2.3548σ is the full width at half maximum (FWHM) 

Figure 1 shows the basic premise of our algorithm with regard to the relationship of DR and DT and how 
final total deaths are calculated. Figure 1a shows a Gaussian DR function fitted to data for Italy up to April 
2, 2020, which in retrospect is very close to its peak death rate. The integral of Eq. (1) is the non-analytic 
error function, but which is easily computed (Figure 1b) as follows: 

DT(ti) = DT(ti-1) + f(ti)        (4) 

Where i is the increment of time used for the calculation (e.g., days, weeks). To compute the rate of new 
cases (incidence), CR, and the number of current active cases (prevalence), CT, we make assumptions based 
on measurable and statistical information. The operating equations are: 
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CR(t) = DR(t-tD)/M        (5) 

CT(ti) = CR(ti-1) + CR(ti) – CT(ti-tH)      (6) 

Where tD and tH are the times from infection (new case) to death and healed, respectively, and M is the 
mortality rate. The total active cases for ti is computed similarly for deaths in Eq. (4) except that we sub-
tract the total cases from tH time ago as being those patient cases who have run their course and either 
recovered/healed or died.  

 

 

 
 
 
 
 
 
 
Figure 1. Basic Gaussian model for 
death rate DR and cumulative deaths DT. 
Data from Italy for 4/2/20 is superim-
posed by best fit. Abscissa is plotted rel-
ative to σ, which for the example shown 
is assumed to be 2 weeks. The dotted 
lines show range of uncertainty and 
how they transpose to cumulative 
deaths. 
 

 

 
Figure 2 shows the relationships between DR, DT, CR and CT. For the purposes of this example we assume 
that tD = 2.5 weeks and tH = 3.5 weeks based on published data for China.18 We also assume that the 
Gaussian rise and fall has a σ = 2 weeks (FWHM = 2.3548 σ), which is consistent with the results for COVID-
19 in China and for the 1918 Spanish Flu17. Then the current number of deaths on a given day would reflect 
the number of new cases 2.5 weeks earlier divided by the mortality factor M [Eq. (5)].  

We now summarize some interesting and sometimes non-intuitive observations: 

• As assumed by the tD = 2.5 weeks, the CR curve peaks 2.5 weeks earlier than the DR curve. 
• The DT curve asymptotically reaches a final value. 
• The CT curve decreases due to recoveries and peaks about halfway between the DR and CR curves. 

The above explanation used the simple symmetric Gaussian function and treated many of the variables, 
e.g., σ, tD, tH as constants, based on reported data, in order to provide a basic understanding of the prin-
ciples to this statistical, real-time model. In the Results section next, we introduce several refinements. 
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Figure 2. Plots of (a) new deaths and cases, DR and 
CR and (b) total deaths and active cases, DT and CT. 
Time is relative to σ, but in this example we set 
that to 2 weeks since we are putting real time in 
for tD = 2.5 wk and tH = 3.5 wk. We assume M = 
1.0%. The arrows denote peaks in the curves. The 
ordinate is plotted on a log scale in order to cover 
the large dynamic range of the calculation. 
 

 

RESULTS 

As an example of the unknowable changing dynamics of COVID-19 and the effects of social response to 
the disease we show in Figure 3 the death rate plot for Italy that has progressed well past its peak (shown 
also in Fig. 1). Clearly the ascent and descent are very asymmetric as evidenced by the poor fit to a sym-
metric Gaussian function on the downslope. Also shown is an asymmetric Gaussian model that incorpo-
rates two key refinements: 

• An asymmetric Gaussian function based on a non-constant σ value. 
• The potential to functionalize σ to include social factors, e.g., the degree of social distancing and 

in turn other contributing factors, e.g., population density, mobility, and contract frequency. 

 

 
 
 
Figure 3. Death rate, DR, plot for Italy up to 
5/12/20 along with a symmetric (black dash) and 
asymmetric (red dash) Gaussian functional fit. 
The latter best fit curve corresponds to σa and σb 
values of 10 and 24 days, respectively. 
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Asymmetric Gaussian Functions 

The shape of a Gaussian function is fixed, but its width and asymmetry are embodied by the value σ, which 
is normally a constant value. We consider non-constant treatments for σ to try to represent the actual 
death rate behavior for different global populations.  

Figure 4 shows two examples of asymmetric Gaussian functions. Figure 4a shows the case for a two-side 
Gaussian for which there are separate constant σ values for the ascending (σa) and descending (σd) sides 
of the death rate curve, DR. The example shown is for values of σd = 2σa, (14 and 28 days if not on a relative 
abscissa scale), the σd value giving a slower descent as representative of the real-time data that we are 
observing for COVID-19 around the world and in U.S. states. Figure 4b shows the case for a linearly chang-
ing σ value with a functional form 

  σ(t) = σi + s ⋅ t         (7) 

An important observation is how the shape of the Gaussian influences the final total death count DT, which 
is the integral of the DR death rate curve. For the symmetric Gaussian in Figure 1, the DT is equal to 35.1 
times the peak death rate (in daily units). For the two-sided asymmetric Gaussian in Figure 4a, where the 
ascending and descending behaviors are described by σ and 2σ, respectively, the DT is equal to 52.6 times 
the peak death rate. In Figure 4b various functions are plotted for various values of σi and s and the final 
death count DT is given. As the descending part of the curve becomes more extended the integral value 
DT becomes greater. This has strong implications for populations to continue to practice social isolation to 
expedite the descent as long as is reasonable weighed against social and economic pressures. 

  
Figure 4. (Left) Ascending and descending width parameters are σa/2 = σa = 14 days, respectively. 
(Right) Linearly increasing σ value according to Eq. 7 where σI and s are shown along with the extrap-
olated final death count, DT. The abscissa is time in units of σa = 14 days. 

 

We note that Eq. (7) is just one functional form for σ(t) and others may be proposed, which could be 
utilized to model behavioral changes in the population during the epidemic due to social distancing and 
other factors. We propose some interesting avenues of development in the Discussion section, but don’t 
develop this term any further here. It should be noticed though that this linearized (and continuously 
increasing) function σ(t) has the effect of flattening the entrance wing and extending the exit tail of the 
total curve. While this is less representative of the death rate growth shape, it has minor impact on the 
integrated death count; however, the elongated and non-converging tail can have large integrated value, 
which we do not yet have evidence is a good representation. We discuss in the Discussion other functional 
forms that can represent reported statistic data as well as anticipated social behavior. 
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Application to COVID-19 

As this manuscript is being prepared in a middle of a pandemic, we can only provide progress on our 
capability to track and forecast deaths, prevalence, incidence, and safe easing dates. We have been re-
porting weekly updates for the most serious hotbed countries and U.S. states in a running blog where 
some details of this model are also presented.5 The international data is from the European Center for 
Disease Prevention and Control (ECDC)19 and the U.S. data is obtained from Worldometer.com.20 Death 
rate plots are presented in the Supplemental Material section (Figure S-1) as of May 12, 2020. An example 
for Italy is given in Figure 3. The results of our calculations and forecasts for international and U.S. popu-
lations (as of May 12, 2020) are presented in Table I. 

Table 1. Death, prevalence, incidence and easing dates forecasted from the Asymmetric Gaussian model 

 

We have not yet evaluated an ideal functional form for σ(t), for which Eq. (7) is just one and probably not 
the best representation, so here we instead use the 2-sided Gaussian model (Figure 4a) and optimize the 
σa and σd values as this function fits well to essentially all death rate data we are following (the σa and σd 
values for each country and U.S. state are presented in Supplemental Material, Table S-1. Notable results 
in Table I include: 

• The U.S. is forecasted to exceed 100,000 total deaths, but the per capita forecast of 346 deaths 
per million people is below several European countries, though all within a factor of 2x. 

• U.S. states tell a different story than the aggregate for the U.S. The forecasted per capita total 
deaths for New York and New Jersey exceed by many multiples those for the above stated foreign 
countries. However, we haven’t broken these countries down to states or cities, but on a popula-
tion basis (N.Y and N.J. at 28.3M vs. 10.1M to 67.9M for all other countries shown except China) 
one can conclude that N.Y. and N.J. were/are the most deadly large populations on earth. 
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Safe Easing of Social Restrictions 

Social, economic, and political pressure will ensure that relaxing of social restrictions will occur and prob-
ably prematurely. We have developed a protocol to forecast dates for which gradual and measured easing 
of social restrictions may begin. The easing date is based on the date for which the prevalence per million 
people drops to 200 or 2 active case per 10,000 people (0.02%). This is a somewhat arbitrary threshold, 
but seems reasonable based on that approximate value on the front-end was enough to start exponential 
outbreaks. So, assuming prevalence continues to drop and we don’t revert back to full normal social in-
teractions we should be able to ease while maintaining and even reducing the prevalence. By maintaining 
the prevalence and assuming a mortality rate of 1% corresponds to one death per million over the course 
of an infection (about 18 days) and for the U.S. with a population of 331M, would compute to about 18 
deaths/day. If we can define a tolerable death rate (perhaps greater than this), then we can back out a 
different prevalence threshold for social easing. The flatten-the-curve approach is to maintain a death 
rate sufficiently low to not overload the healthcare system and wait until a vaccine or herd immunity 
reduces the death rate. However, society may not have the heart to deliberately sustain this level of 
deaths. This is all weighed against the need to feed economic activity. So ultimately the acceptable death 
rate comes down to the decision of how many jobs is a death worth. That is a topic outside the scope of 
this manuscript. 

Importance of Prompt Government Intervention 

This model can also estimate the dependence of death rate and total deaths on the date when social 
distancing is implemented. We all recall how frightening it was to be seeing exponential growth in deaths 
and reading about its doubling every so many days. These deaths of course reflected exponential growth 
of new cases about 2.5 weeks earlier representing the date of the infection that led to these deaths. This 
alone drives home the point that swift action to reduce contact exposure could have huge significance on 
reducing overall deaths, but we can also semi-quantify this reality. 

Figure 5 presents a pedagogical illustration, but one modeled somewhat on the U.S. response. Here we 
forecast the difference in the occurrence of death based on starting social distancing at time points two 
weeks apart (3/4/20 vs. 3/18/20). For the assumed values (see figure caption), the consequences of a 2-
week delay in implementing social distancing has a consequence of a 5x increase in deaths. This model is 
very simple since it assumes a symmetric Gaussian, but the qualitative conclusions are nonetheless re-
vealing and sobering. 

 

Figure 5. Gaussian model forecast for death rate and total deaths for social distancing implemen-
tation on 3/4/20 vs. 3/18/20 for assumptions representative of the U.S. population. σ = 14 weeks. 
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Comparison to Other Models 

We do not compare ourselves to epidemiology models as explained in the Introduction because the pur-
pose of our development is very different, namely providing forecasting information based on latest data, 
so there will necessarily be changes in the forecasts as new data is reported. The former approach is too 
rigid to be a forecasting tool, but essential for understanding the properties of an epidemic once all the 
facts are known. Real-time statistical forecasting models are an invention of their times as each pandemic, 
rare in themselves, are different and therefore a model has to react to these differences. For COVID-19 
the most widely cited and utilized model is from the Institute for Health Metrics and Evaluation (IHME) at 
the University of Washington (UW)12 and therefore we consider it a worthy benchmark for our model. We 
have been reporting our forecasts relative to the IHME forecasts on a weekly basis.5  

  
Figure 6. Plots of total death forecasts by the IHME and Syage models for hotbed countries. 

Figure 6 shows the total death forecasts for hotbed international countries by the two models and shows 
that there is more similarity than differences. (Results for U.S. states are given in Figure S-2 in Supple-
mental Material.)  Still there are differences and that underlines the need to endorse multiple models, 
even if similar, to provide a range of outcomes representing different, even if subtle, algorithms and as-
sumptions. A true comparison awaits the end of this wave of the pandemic or picking a target date as 
IHME has for August 4, 2020. Our forecasts extrapolate to the end of the Gaussian tail, but there is very 
little integration value beyond August 4, 2020 so our comparison is suitable. At this present time, one 
figure of merit for the stability of a model is how much variation or volatility it has from one time point to 
the next. In Figure 7 we plot the sum of squares for error (SSE) measure of variability for the weekly fore-
casts presented in Figure 6. We caution that variability is necessary because it responds to real-time 
changes and results, but if excessive can also be detrimental for policy and planning purposes.  

 

 
 
Figure 7. Sum of squares for error 
(SSE) calculated as: 

𝑆𝑆𝑆𝑆𝑆𝑆 = ��
∑ �𝐷𝐷𝑇𝑇�𝑡𝑡𝑝𝑝� − 𝐷𝐷𝑇𝑇(𝑡𝑡𝑖𝑖)�

2𝑝𝑝
𝑖𝑖

𝑛𝑛 − 1
� 

Where tp is present time and ti are 
previous time periods. Updated to 
5/12/20. 
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By this SSE measure the IHME model forecasts have varied greater from week to week than the present 
model for all but one of the cases shown (France). If averaged for the international and U.S. states, re-
spectively, that we track the SSE’s are: 34% and 33% for our model vs. 49% and 59% for the IHME model. 
At present we do not see a penalty to the present model’s relative stability, but time will tell. 

DISCUSSION 

The above results describe a predictive model that is simple in principle, but with capability to address 
more subtle dynamics of the on-going COVID-19 pandemic. We now discuss some of these present and 
future refinements. 

Clearly the Gaussian model is simple and instructive for informing how to structure a data-driven statisti-
cal predictive model. However, it is now clear that whereas it is very descriptive of the growth phase of 
the epidemic, it does not represent the recovery side very well, at least not in its symmetric construction. 
We have shown that simple asymmetric Gaussian functions so far appear to fit well to the recovery side. 
We are satisfied with the asymmetric function with an ascent and descent sigma values, σa and σd (Figure 
4 left), even though it somewhat violates our sense of an abruptly changing sigma value. Alternatively, 
the linear sigma functional construct (Eq. (7) and Fig. 4 right) had detriments in the wings and the tails. 

We have explored other functions. Gamma and Poisson distributions have convenient and computable 
asymmetric shapes that could be fitted to real-time data, but we do not see an advantage over using an 
asymmetric Gaussian with a functionalized sigma σ(t). Many manifestations of SIR models have the basics 
of bi-exponential functionality. However, the bi-exponential growth phase does not show an exponential 
rise or an inflection point as it progresses to a peak rate, but rather has a progressively decreasing rate 
from inception so we dismiss this functional form. Of course, any of these functions can be modified to 
build in the dynamical characteristics of a true epidemic response, but the math becomes very complex. 

We are intrigued by the use of asymmetric Gaussian functions, particularly by functionalizing the sigma 
value σ(t) beyond the two-valued and the linear constructs discussed above. In future work we plan to 
explore how to functionalize σ(t) in such a way that it can incorporate social isolation time dependences. 
This may include a sum of displaced Gaussians to represent different waves and outbreaks. 

It is also useful to consider other means to identify the approach to death rate and other peaks. We be-
came aware of an interesting log-log plot that we have applied to death rate DR vs. total deaths, DT, which 
is shown in Figure 8.21 

 

  
Figure 8. Log-Log plot showing downward deviations representing exit from exponential growth. Each point rep-
resents a time interval of one week (updated to week ending 5/13/20). 
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Figure 8 shows downward deviations representing exit from exponential behavior. This is followed soon 
by peaking and downward recovery, which are not evident in the log-log plots, but are clearly evident in 
the rate curves, e.g., Figures 1a and 3. However, the rate curves do not show exiting from exponential 
growth very well so the combination of these plots provides a better estimation of the progression of an 
epidemic and where the current death rate lies on the fitting function f(t). Exiting from exponential growth 
generally occurs about 2 weeks before reaching peak death rate so this information. 

Finally, we address the uncertainty of defining a mortality factor, M. That can never be known for sure 
until after the pandemic has run its course though there are ways to infer it, which is necessary for im-
proving accuracy for calculating and forecasting true prevalence, not just confirmed tested cases. M will 
also obviously vary depending on the demographics of the populations (e.g., age distribution, healthcare 
system) and even change for a particular population due to changing dynamics such as crossing the thresh-
old for overwhelming the healthcare system both on the way and down the epidemic curve. We have 
made adjustments to our M value, particularly for Spain and Italy varying it between 2.0 to 1.5%. Most 
determinations in the literature are placing this value in the 1.0-1.5% range, 12,15,18 which is what we gen-
erally use as noted in Table 1. 

CONCLUSION 

In this manuscript we describe a predictive model that is based on measurable variables and that strives 
for simplicity over complexity to obtain stable convergent forecasts of death, prevalence, incidence, and 
safe days for social easing. This real-time, data-driven statistical approach is to be viewed as an alternative 
and not competitive model to epidemiological models (e.g., SIR, SEIR, etc.) that attempt to forecast epi-
demic behavior from collective knowledge and data from prior epidemics. Consequently, real-time statis-
tical models in general will revise their forecasts as new data is reported. 

We compare our forecasts to the venerable UW IHME statistical model, which apparently has similar al-
gorithmic constructs as this model as evidenced by the similar outcomes, but differ in key ways that make 
both models (and others of course) essential for testing different model assumptions, none of which can 
be truly validated until the properties of an epidemic are known at the end. However, the model described 
here, up to this point in time (March 12, 2020), displays less forecast variability and may even be a little 
ahead of trends when compared to the UW IHME model. There does not appear to be a penalty to this 
greater forecasting stability, though only time will tell. Forecast stability is vital for informing public policy 
and response. 
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SUPPLEMENTAL MATERIAL 

 

 

  
 

  
Figure S-1. Death rate plots for hotbed countries and U.S. States. The symmetric Gaussian function (dashed 
curve) is presented for visualization of reasonable fitness on the rising side and less so on the falling side of 
the death rate plots. 
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Table S-1. Tabulation of the asymmetric Gaussian model fitting parameters for May 12, 2020. 

 
 

 

  
Figure S-2. Plots of total death forecasts by the IHME and Syage models for hotbed U.S. states. 
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