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Abstract

Predictions of the COVID-19 pandemic in USA are compared using curve fitting and various recurrent neural networks (RNNs)
including the standard long short-term memory (LSTM) RNN and 10 types of slim LSTM RNNs. The curve fitting method predicts
the pandemic would end in early summer but the exact date and scale vary with the evolving data used for fitting. All LSTM RNNs
result in short-term (8 to 10 days) predictions with comparable accuracies (smaller than 10 %) to curve fitting—they do not show
advantage over curve fitting.
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1. Introduction

Since the first report in late January, COVID-19 has spread
to the whole world and become a global pandemic. The accu-
rate prediction of the scale and time of the pandemic is helpful
information to the the public to cope with the crisis. In this pa-
per, we compare the predictions with two methods, i.e., curve
fitting of a modified exponential function and recurrent neural
network (RNN). The curve fitting method is basically an ex-
trapolation based on a well-fitted analytical function that can
be used for full-range predictions (including short-term predic-
tions up to any time before end). If no noise added, the function
or its derivative (delta values if not differentiable) is not ex-
pected to capture local fluctuations. RNN is typically used for
predicting serial events, which is potentially capable for captur-
ing daily cases fluctuations of the COVID-19 pandemic. This
paper aims at (i) evaluating full-range predictions with curve
fitting as well as at (ii) comparing short-term (8-10 days) fore-
casting with smooth curve fitting (no noise added) and RNN.

In order to overcome the possible long-term learning diffi-
culty due to gradient vanishing or gradient explosion of sim-
ple RNN, long short-term memory (LSTM) technique is usu-
ally adopted [1]. In addition to the standard LSTM RNN, we
also experiment with simplified (slim LSTM) networks—less
parameters in the gate (8 types) and memory cell (2 types) struc-
tures [2, 3].

2. COVID-19 data

Data source is located at Github repository https://

github.com/CSSEGISandData/COVID-19, which is origi-
nally from Johns Hopkins University Coronavirus Resource

∗Corresponding author
Email address: zhaozhuo@egr.msu.edu (Zhuowen Zhao)

Center. It has confirmed patients and deaths data in time se-
ries in the category of regions and the corresponding countries.
We plot confirmed patients from Hubei province of China (first
report location), China, USA, and Italy with respect to the days
since first case reported in each region shown in Fig. 1. Italy
curve is shorter than the other regions because the first patient
reported for Italy was on January 31 while it was January 22 for
both China and USA.
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Figure 1: Top: confirmed COVID-19 cases of the whole world and four regions
since first case was reported. Bottom: cumulative patients and new cases re-
ported per day of USA since the first case was reported. Data in both plots are
up to April 28.
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3. Full-range prediction with curve fitting

Langel [1] reported a model in the form of a modified ex-
ponential function Eq. (1) that describes the evolution of the
cumulative cases of the pandemic.

ln x(t) =
ln x∞

1 + ( ln x∞
ln x0
− 1) exp(−t

τ
)

(1)

,where x∞, x0, τ are final fitting parameter (ultimate number
of cases), initial fitting parameter (for numerical purpose), and
a parameter that controls the “curvature” of the curve. The idea
behind this model is that the cumulative patients/death curve in
principle follows the trajectory of exponential function whose
derivative (daily increment) looks like a skewed normal distri-
bution curve.

The model is fitted (least square) with cumulative patients
data of three different lengths (82, 88, 98-day) to investigate
its performance with evolving data. Table 1 shows the three
optimized parameter sets and one parameter set for death data.

Table 1: Optimized parameters x∞, x0, τ based on cumulative patients (82, 88,
98-day) data and death (60-day) data in USA.

parameters
cumulative patients death

82-day 88-day 98-day 60-day

x0 1.1 1.2 1.6 6.8
x∞ 9.7 × 105 1.0 × 106 1.3 × 106 7.7 × 104

τ 1.0 1.1 1.3 1.2

The metric to evaluate the goodness of the fitting, i.e., nor-
malized root mean square error (RMSE) is calculated based on
true values and the fitted values within the same time frame—
their RMSE divided by the mean of true values. The normalized
RMSE is only 0.04 (or 4 %) by fitting with confirmed infection
data and 0.02 by fitting with death data up to April 28 (98-day).
The daily patients curve (red dashed line in Fig. 2 top)—delta
values of the fitted function—suggests the pandemic in USA
would end around June 30, 2020. The daily death curve (blue
dashed line in Fig. 2 bottom) suggests the America would see
zero death since July. Unfortunately, the model also predicts
about 1.3 million infections and 77 thousand deaths in Amer-
ica at the end of COVID-19 pandemic based on the 98-day
data. However, the ultimate number of patients by prediction
increases from 1.0 to 1.3 million with more data (16 days), see
Table 1. This suggests the COVID-19 is a quickly evolving
situation, thus one-time full-range prediction may not be very
reliable using the curve fitting.

4. Short-term prediction with curve fitting and LSTM
RNNs

4.1. Short-term prediction with curve fitting

The dataset is split into training/fitting (90 %) and testing
(10 %) subsets (to evaluate the short-term prediction). The
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Figure 2: Prediction of total patients (top) and deaths (bottom) due to COVID-
19 in USA using data up to April 28 (98 days for patient data and 60 days for
death data). The first reported death in USA was on February 29 according to
the JHU dataset (this date varies with other media).
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Figure 3: Short-term prediction of COVID-19 patients in USA by fitting with
82-day (top) and 88-day data (bottom).
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function is firstly fitted with the training set to get optimized pa-
rameters. Then the prediction from extrapolation are evaluated
using normalized RMSE against testing set . Figure 3 shows the
short-term predictions (9-day and 10-day) using 82-day and 88-
day data for fitting respectively. The normalized RMSE values
vary with different fitting data lengths and they are both smaller
than 10 %. Moreover, curve fitting tends to underestimate cases
for short-term prediction.

4.2. Short-term prediction with standard LSTM RNN

forget gate
Wf Uf bf
σin = tanh

input gate
Wi Ui bi
σin = tanh

memory cell
Wc Uc bc
σ = tanh

output gate
Wo Uo Vo bo
σin = tanh

σ = tanh

inner product sum

Figure 4: Schematics of LSTM RNN structure.
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Figure 5: Prediction of cumulative patients in USA with LSTM using 82-days
(top) and 88-day data (bottom).

The standard LSTM RNN is built on Keras with Tensor-
Flow as the backend software. The network has an architecture
of four LSTM cells followed by a dense output layer. Figure 4
shows the structure for one of the LSTM cells. Hyperbolic tan-
gent (tanh) function (default in Keras library) is used as acti-
vation function for all gates and memory cells. We also tested

sigmoid function, another popular choice for activation func-
tion in RNN, but the prediction was totally off with the same
network architecture. “Adam optimizer” from Keras library is
adopted for the backpropagation updates and mean squared er-
ror is used as the loss function. The formula of standard LSTM
RNN are summarized in the following[4, 5].

ft = σin(W f xt + U f ht−1 + b f )
it = σin(Wixt + Uiht−1 + bi)
c̃t = σ(Wcxt + Ucht−1 + bc)
ct = it � c̃t + ft � ct−1

ot = σin(Woxt + Uoht−1 + Voct + bo)
ht = ot � σ(ct)

σin (·) = σ(·) = tanh(·)

(2)

, where ft, it, ot, ct denotes forget, input, output gate, and cell
structure at time t in LSTM cells respectively. ht is state variable
at time t. W f ,Wi,Wo,Wc,U f ,Ui,Uo,Uc,Vo are weight matrices
and b f , bi, bo, bc are bias vectors. σin(·) (for gates, see Fig. 4)
and σ(·) are activation functions.

The short-term predictions are made using dataset of two
different lengths (91 and 98 days) respectively. Each dataset
is normalized into the range of 0 to 1. Four new subsets
Xtrain,Ytrain, Xtest, and Ytest are made from each dataset, among
which Xtrain and Ytrain are used to train the RNN network, and
Ytest is used for evaluating the predictions from Ytrain. Take 91-
day data for example, data points in the first 82 days are used
as training set (90 %) and the rest (9 days) are used as testing
set (10 %). From the training set, Xtrain and Ytrain are made by
removing the last day and the first day from the original train-
ing set respectively, such that Ytrain is one day ahead of Xtrain
for each data point. In other words, Ytrain contains true values
of the one-day evolution of Xtrain (both subsets have 81 days).
Xtest and Ytest are made in the same way from the training test (8
days).

Figure 5 shows evaluation results against the training and
testing sets. The normalized RMS E train and RMS E test
demonstrate how well the RNN network is trained and how well
the trained network forecasts respectively. It is seen from Fig. 5,
both evaluations are of the same level of magnitude compared
to curve fitting.

4.3. Short-term prediction with slim LSTM RNN

LSTM RNN can be simplified by reducing parameters in
the three gates (forget, input, and output gate) or in memory
cells[2, 3], which is expected to accelerate the convergence.
There are 10 types of simplified LSTM RNN used in this study,
which are denoted as LSTM1, LSTM2, LSTM3, LSTM4,
LSTM4a, LSTM5, LSTM5a, LSTM6, LSTM10, LSTM11 re-
spectively. The detailed formula for each type can be found in
Section 7 Appendix.

Figure 6 shows the prediction of patients in USA with slim
LSTM RNN(s) using 82-day data. They all have same level
of accuracies compared to standard LSTM and curve fitting,
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Figure 6: Prediction of cumulative patients in USA with slim LSTM RNN(s) using 82-day data.

among which LSTM6 demonstrates the best prediction accu-
racy (least normalized RMSE against testing set). All slim
LSTM RNN networks tend to underestimate the future cases
compared to the reported data (magenta dash-dotted line is be-
low the black solid line for all models in Fig. 6).

5. Summary

This paper assesses full-range predictions of COVID-19
pandemic in USA with curve fitting using data of different
lengths and compares short-term (8 to 10 days) predictions with
curve fitting and 11 different LSTM recurrent neural networks.
The full-range predictions using the latest data (up to April 28)
suggests the pandemic in USA would end around the 160th day
(June 30, 2020) since the first reported case and there would be
over 1.3 × 106 infections and 7.7 × 104 deaths . Nevertheless,
as the pandemic is evolving quickly on the daily basis and there
are many variables (policies, people’s compliance to stay-home
order etc.) that affect the real situation, one-time prediction of
the ultimate date and scale might not be reliable enough. There-
fore, it is advisable to fine tune the full-range predictions with
the evolving data for the curve fitting method. In terms of short-
term predictions, LSTM6 does the prediction with the highest
accuracy among the standard LSTM RNN and 10 types of slim

LSTM RNNs tested in this study. However, LSTM RNNs do
not show advantage over curve fitting for this type of predic-
tions. Curve fitting might be better to fit the true distribution of
how COVID-19 infections “behave” because it does not overfit
on the training set compared to RNN.
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7. Appendix

Gate equations parameter-reductions[1]:
LSTM1

ft = σin(U f ht−1 + b f )
it = σin(Uiht−1 + bi)
c̃t = σ(Wcxt + Ucht−1 + bc)
ct = it � c̃t + ft � ct−1

ot = σin(Uoht−1 + bo)
ht = ot � σ(ct)

(3)

LSTM2

ft = σin(U f ht−1)
it = σin(Uiht−1)
c̃t = σ(Wcxt + Ucht−1 + bc)
ct = it � c̃t + ft � ct−1

ot = σin(Uoht−1)
ht = ot � σ(ct)

(4)

LSTM3

ft = σin(b f )
it = σin(bi)
c̃t = σ(Wcxt + Ucht−1 + bc)
ct = it � c̃t + ft � ct−1

ot = σin(bo)
ht = ot � σ(ct)

(5)

LSTM4

ft = σin(u f � ht−1)
it = σin(ui � ht−1)
c̃t = σ(Wcxt + Ucht−1 + bc)
ct = it � c̃t + ft � ct−1

ot = σin(uo � ht−1)
ht = ot � σ(ct)

(6)

LSTM4a

ft = α,−1 < α < 1(default = 0.96)
it = σin(ui � ht−1)
c̃t = σ(Wcxt + Ucht−1 + bc)
ct = it � c̃t + ft � ct−1

ot = 1.0
ht = ot � σ(ct)

(7)

LSTM5

ft = σin(u f � ht−1 + b f )
it = σin(ui � ht−1 + bi)
c̃t = σ(Wcxt + Ucht−1 + bc)
ct = it � c̃t + ft � ct−1

ot = σin(uo � ht−1 + bo)
ht = ot � σ(ct)

(8)

LSTM5a

ft = α,−1 < α < 1(default = 0.96)
it = σin(ui � ht−1 + bi)
c̃t = σ(Wcxt + Ucht−1 + bc)
ct = it � c̃t + ft � ct−1

ot = 1.0
ht = ot � σ(ct)

(9)

LSTM6

ft = α,−1 < α < 1(default = 0.96)
it = 1.0
c̃t = σ(Wcxt + Ucht−1 + bc)
ct = it � c̃t + ft � ct−1

ot = 1.0
ht = ot � σ(ct)

(10)

Memory cell equations parameter reductions:
LSTM10

ft = σin(u f � ht−1)
it = σin(ui � ht−1)
c̃t = σ(Wcxt + uc � ht−1 + bc)
ct = it � c̃t + ft � ct−1

ot = σin(uo � ht−1)
ht = ot � σ(ct)

(11)

LSTM11

ft = σin(u f � ht−1 + b f )
it = σin(ui � ht−1 + bi)
c̃t = σ(Wcxt + uc � ht−1 + bc)
ct = it � c̃t + ft � ct−1

ot = σin(uo � ht−1 + bo)
ht = ot � σ(ct)

(12)
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