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Summary 23 

To optimize epidemiologic interventions, predictors of mortality should be identified. The US 24 

COVID-19 epidemic data −reported up to 3-31-2020− were analyzed using kernel regularized 25 

least squares regression. Six potential predictors of mortality were investigated: (i) the number of 26 

diagnostic tests performed in testing week I; (ii) the proportion of all tests conducted during 27 

week I of testing; (iii) the cumulative number of (test-positive) cases through 3-31-2020, (iv) the 28 

number of tests performed/million citizens; (v) the cumulative number of citizens tested; and (vi) 29 

the apparent prevalence rate, defined as the number of cases/million citizens. Two metrics 30 

estimated mortality: the number of deaths and the number of deaths/million citizens. While both 31 

expressions of mortality were predicted by the case count and the apparent prevalence rate, the 32 

number of deaths/million citizens was ≈3.5 times better predicted by the apparent prevalence rate 33 

than the number of cases. In eighteen states, early testing/million citizens/population density was 34 

inversely associated with the cumulative mortality reported by 31 March, 2020. Findings support 35 

the hypothesis that early and massive testing saves lives. Other factors –e.g., population density− 36 

may also influence outcomes. To optimize national and local policies, the creation and 37 

dissemination of high-resolution geo-referenced, epidemic data is recommended.  38 

 39 

Bullet points 40 

• A multidimensional –numerical, geographic, demographic and temporal− approach that 41 

emphasizes interactions is used to identify predictors of COVID-19 related mortality. 42 

• A combinatorial template helps detect the impact of early testing on mortality. 43 

• This rapidly conducted, policy-oriented analysis applies to many geographic scales. 44 

 45 
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To control a pandemic associated with a substantial mortality −such as COVID-19−, 46 

WHO recommends massive testing [1]. In spite of its relevance, the power of testing-related 47 

variables to predict mortality has not yet been empirically investigated in this disease. 48 

To predict and identify when and where mortality is likely to occur, at least three types of 49 

metrics may be considered, which focus on: (i) cases (counts), (ii) disease prevalence in a 50 

specific geographic location and/or time, and (iii) the demographic density of infected locations 51 

[2]. However, assessing the actual prevalence of a disease characterized by a substantial number 52 

of asymptomatic infections –such as COVID-19− is not possible, unless 100% of the population 53 

is tested with a highly sensitive test, repeatedly [3, 4]. Consequently, we use the term apparent 54 

prevalence to describe the ratio of test-positive cases to all tested individuals. If expressed per 55 

million residents, the apparent prevalence can compare different geographical units, e.g., each 56 

and all states of the US. 57 

Unfortunately, to conduct comprehensive studies that investigate numerous states, a 58 

protracted research program is required. To rapidly provide policy-makers with usable 59 

information, here a quasi-real time assessment was designed, which captures both nationwide 60 

and state-specific dimensions.  Analyzing the epidemic data reported in all 50 states of the USA, 61 

during March of 2020 (the month when testing started), we investigated whether testing-related 62 

variables –including massive and early testing− predict mortality.  63 

Six variables were assessed as possible predictors of fatalities: (i) the number of  64 

diagnostic tests performed in week I of testing; (ii) the proportion of all tests conducted during  65 

the first week of testing; (iii) the cumulative number of (test-positive) cases through 3-31-2020,  66 

(iv) the number of tests performed/million citizens; (v) the cumulative number of citizens tested; 67 

and (vi) the apparent prevalence rate, defined as the number of cases/million citizens. To 68 
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examine the predictive ability of these variables, we modeled the data using a nonparametric 69 

machine learning approach known as kernel regularized least squares (KRLS) regression [5]. To 70 

implement the procedure we used the KRLS R software package [6]. KRLS is appropriate when 71 

linear regression assumptions −such as linearity and additivity− are not met and the precise 72 

functional association between the predictors and criterion is unknown.   73 

Because there is no prior knowledge on the use of these composite variables, no pre-74 

established method or criterion was chosen to analyze the data. Instead, recognition of patterns 75 

observed after the data were collected was adopted. When distinct patterns were observed –such 76 

as L-shaped data distributions [9]−, thresholds were selected to match the upper limit of a data 77 

segment linearly distributed so that the intersection of two orthogonal lines would identify three 78 

groups of data. 79 

A public source was used to collect the overall US and state-specific data on the COVID-80 

19 pandemic, which was complemented with state-specific population data [7, 8]. All analyses 81 

included data from each state of the US (Supplemental Table 1).  82 

The six predictors accounted for 93.5% of the variance in number of deaths and 86.7% of 83 

the variance in deaths/million cases (Supplemental Tables 2A, 2B). Of the six predictors, two 84 

were statistically significant: cumulative number of confirmed cases and apparent prevalence 85 

rate. These two variables were comparable predictors of mortality count. However, for predicting 86 

deaths per million citizens, the apparent prevalence rate was a 3.5 times stronger predictor than 87 

was the number of confirmed cases (Supplemental Table 2B). 88 

In addition, the number of tests administered during week one of testing/million 89 

citizens/population density distinguished three groups of states when the number of 90 

deaths/million citizens was the outcome variable (Fig. 1A). Two of these groups exhibited  91 
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statistically significantly different medians (p<0.001, Mann-Whitney test, Fig. 1B).  92 

Whether cases or fatalities are considered, findings indicate that reporting COVID-19  93 

data as counts is not as informative as reporting metrics that consider two or more interacting  94 

quantities, such as the apparent prevalence rate and the number of deaths/million citizens. While  95 

isolated metrics –e.g., counts− ignore dynamics as well as geographical factors (including  96 

population density), composite metrics integrate numerous dimensions that facilitate  97 

geographically-specific interventions [3].  98 

Although the KRLS regression method is a powerful and flexible approach to modeling 99 

predictive associations, to rapidly generate results, here it was used to only provide a snapshot-100 

like assessment. If shorter time intervals were used, the KRLS approach could capture epidemic 101 

dynamics.  102 

As evidenced by our nonparametric regression results, the variables analyzed offer a 103 

combinatorial template that highlights the importance of investigating metrics consisting of 104 

interacting quantities. For example, a recombination of those variables (the number of tests 105 

performed in week I/million citizens/population density) empirically demonstrate that massive 106 

and early testing may save lives (Figs. 1A and B). Such a finding is likely to also be influenced 107 

by several factors, including, but not limited to (i) availability of diagnostic kits, equipment, 108 

reagents, and trained personnel, (ii) availability of hospital beds and/or Intensive Care Units, and 109 

(iii) local and regional demographic and geographical interactions. For example, regions with a 110 

higher population density (more abundant and closer contacts among infected and susceptible 111 

citizens) tend to be associated with a higher connectivity (more highways, ports and/or airports), 112 

which foster epidemic spread [3].  113 

While composite metrics could address pandemics as a group of local and regional  114 
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interacting processes, the COVID-19 related information currently found in the press as well as 115 

national and international governmental agencies tends to lack point-based (high-resolution), 116 

geo-referenced information. While surface-based data are usually provided (e.g., state--related 117 

data), this type of data is an aggregate of geographical points and lines and, consequently, 118 

internal processes −those affecting specific cities or neighborhoods− are missed [10]. To better 119 

identify when and where interventions are most effective, point- (city- or neighborhood-related) 120 

and line-based (road-related) data are needed. To optimize these approaches and reduce the 121 

COVID-19 related mortality, the collection and reporting of high-resolution, geo-temporal data 122 

constructed as interactions is recommended.   123 
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Figure legend 165 

Recognition of COVID-19 mortality-related patterns across the United States. Even a small 166 

number of variables, such as the ones reported in Supplemental Table 1, provide a combinatorial 167 

template that can reveal additional relationships. For example, when the number of tests 168 

performed in the first week of testing (adjusted to state-specific population, expressed per million 169 

citizens, and also adjusted to state-specific population density) was plotted against the number of 170 

deaths per million citizens reported throughout March of 2020, two perpendicular data segments 171 

were observed and the upper limit of each data segment was used as a threshold, that is, the 172 

intersection of two perpendicular lines differentiated three groups of states (vertical and 173 

horizontal lines, A): (i) eleven states that conducted a low number of tests in week I and reported 174 

a high number of deaths, (ii) seven states that displayed the opposite pattern, and (iii) the 175 

remaining states (A). The medians of the variables analyzed differed ≥16 times between the 176 

group of states characterized by conducting many tests and reporting few deaths and the group of 177 

states that exhibited the opposite pattern (p<0.001, inserts, B). 178 

 179 

  180 
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Supplemental Files 181 

Table 1.  Epidemic data collected in all states of the US in March, 2020. 182 
 183 

State Tests 
wk I 

Total 
tests 

Wk I/ 
all tests 

Pop  
(mill) 

Pop 
dens 

Tested/ 
mill 

Cases Cases/ 
mill inh 

Deaths 
(count) 

Deaths/ 
mill 

New York 1661 172360 0.96 19.440 137.5 8866.2 59513 3061.37 965 49.63 

New Jersey 284 35602 0.79 8.936 395.5 3984.1 13386 1497.99 161 18.01 

California 4260 90657 4.69 39.937 94.2 2270.0 5708 142.93 123 3.07 

Washington 4415 59206 7.45 7.797 42.2 7593.4 4310 552.78 189 24.24 

Michigan 274 17379 1.57 10.045 40.1 1730.1 5486 546.14 132 13.14 

Florida 1380 48998 2.81 21.992 129.1 2228.0 4950 225.08 59 2.68 

Illinois 1622 27762 5.84 12.659 84.4 2193.1 4596 363.06 66 5.21 

Massachusetts 171 39066 0.43 6.976 255.2 5600.1 4955 710.29 48 6.88 

Louisiana 368 27871 1.32 4.645 34.2 6000.2 3540 762.11 151 32.50 

Georgia 48 12596 0.38 3.991 25.9 3156.1 2683 672.26 80 20.04 

Pennsylvania 403 33455 1.20 12.820 107.4 2609.6 3394 264.74 38 2.96 

Colorado 938 14470 6.48 5.845 21.7 2475.6 2307 394.70 47 8.04 

Texas 48 25760 0.18 29.472 42.4 874.0 2552 86.59 34 1.15 

Connecticut 551 11900 4.63 3.563 248.2 3339.9 1993 559.36 34 9.54 

Tennessee 73 20574 0.35 6.897 63.2 2983.0 1537 222.85 7 1.01 

Ohio 148 20665 0.71 11.747 101.2 1759.2 1653 140.72 29 2.46 

Wisconsin 259 17662 1.46 5.851 34.5 3018.6 1112 190.05 13 2.22 

N. Carolina 17 19072 0.08 10.611 76.1 1797.3 1167 109.98 5 0.47 

Indiana 149 9830 1.51 6.745 71.5 1457.4 1514 224.46 32 4.74 

Arizona 373 13872 2.68 7.378 25.0 1880.2 919 124.56 17 2.30 

S. Carolina 97 3789 2.56 5.210 62.8 727.3 774 148.56 16 3.07 

Oklahoma 206 1634 12.60 3.954 21.8 413.2 429 108.50 16 4.04 

N Hampshire 232 5396 4.29 1.371 56.6 3935.8 258 188.18 3 2.18 

N Mexico 488 11179 4.36 2.096 5.9 5333.5 237 113.07 2 0.95 

Delaware 129 3701 3.48 0.982 152.3 3768.8 236 240.33 6 6.11 

 184 
  185 
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Table 1.  Epidemic data collected in all states of the US in March, 2020 (cont’d) 186 

State Tests 

wk I 

Total 
tests 

Wk I/ 
all tests  

Pop 

(mill) 

Pop 
dens 

Tested/ 

mill 

Cases Cases/ 

mill inh 

Deaths 
(count) 

Deaths  

/ mill 

Maryland 447 13593 3.28 6.083 189.3 2234.6 1239 203.68 10 1.64 

Nevada 262 10534 2.48 3.139 10.9 3355.8 920 293.08 15 4.77 

Missouri 236 14107 1.67 6.169 34.2 2286.7 903 146.37 12 1.94 

Virginia 314 10609 2.95 8.626 77.9 1229.9 890 103.17 22 2.55 

Alabama 352 5014 7.02 4.908 36.1 1021.6 830 169.11 4 0.81 

Mississippi 969 3318 29.20 2.989 23.8 1110.1 758 253.59 14 4.68 

Utah 279 13993 1.99 3.282 14.9 4263.6 719 219.07 2 0.60 

Oregon 1023 11426 8.95 4.301 16.9 2656.6 548 127.41 13 3.02 

Minnesota 889 17657 5.03 5.700 25.3 3097.7 503 88.24 9 1.57 

Kentucky 207 6018 3.43 4.499 43.0 1337.6 439 97.57 9 2.00 

Arkansas 115 3453 3.33 3.038 22.1 1136.6 426 140.22 6 1.97 

Iowa 330 5349 6.16 3.179 21.8 1682.6 336 105.69 4 1.25 

Kansas 167 4513 3.70 2.910 13.7 1550.9 319 109.62 6 2.06 

Idaho 427 4706 9.07 1.826 8.4 2577.2 310 169.77 6 3.28 

R. Island 550 3134 17.54 1.056 263.9 2967.8 294 278.40 3 2.84 

Maine 272 3647 7.45 1.345 14.7 2711.5 253 188.10 3 2.23 

Vermont 291 3701 7.86 0.628 25.2 5893.3 235 374.20 12 19.10 

Hawaii 12 8013 0.14 1.412 49.9 5674.9 175 123.93 0 0 

Montana 160 4069 3.93 1.086 2.8 3746.8 161 148.25 1 0.92 

W. Virginia 38 3108 1.22 1.778 28.3 1748.0 124 69.74 0 0 

Nebraska 272 2345 11.59 1.952 8.9 1201.3 120 61.47 2 1.02 
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Alaska 227 3654 6.21 0.734 0.4 4978.2 114 155.31 3 4.08 

N. Dakota 393 3724 10.55 0.761 4.2 4893.6 98 128.77 1 1.31 

S. Dakota 185 3218 5.74 0.903 4.5 3563.7 90 99.66 1 1.10 

Wyoming 308 1641 18.76 0.567 2.2 2894.2 87 153.43 0 0 

 187 
Predictors 188 
1. Tests wk I: number of tests performed in the first 7 days of testing. 189 
2. Total tested: total number of people tested. 190 
3. Wk I / all tests: tests wk I / total tested, i.e., the proportion of all tests that were  191 

conducted during the first week of testing, expressed as a percentage. 192 
4. Pop (mill): the population of each state, expressed in million inhabitants. 193 
5. Pop dens: state population density (inhabitants per sq km). 194 
5. Tested/mill: number of tests performed per 1 million inhabitants. 195 
6. Cases: cumulative number of confirmed (test-positive) infections (through 3-31-2020). 196 
7. Cases/ mill inh: the apparent prevalence, calculated by dividing the number of cases by  197 

the population (expressed in million inhabitants). 198 
 199 
Outcomes (cumulative values through 3-31-2020) 200 
1. Mortality count: number of deaths (raw count). 201 
2. Deaths / mill: number of deaths per 1 million citizens. 202 
  203 
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Table 2.  KRLS regression of potential predictors of COVID-19 related mortality 204 
 205 
A – Predictors of the mortality count 206 
 207 

Predictors Estimate Standard error t value Pr (>|t|) (p-value) 
Tests wk I 0.009 0.010 0.926 0.36 
Total tested      0.0002 0.003 0.650 0.52 
Wk I / all tests (%) -104.35 118.8 -0.878 0.38 
Tested/mill -0.004 0.003 -1.153 0.25 
Cases 0.002 0.0007 3.430 <0.01 
Cases/mill inh 69104 21607.2 3.198 <0.01 
Estimates are sample-average partial derivatives. Predictors accounted for 93.5% of the variance 208 
in mortality count (R2: 0.9347)    209 
 210 
 211 
B –  Predictors of deaths per million citizens  212 
 213 

Predictors Estimate Standard error t value Pr (>|t|) (p-value) 

Tests wk I 0.00061 0.0009 0.611 0.54 

Total tested       <-0.0001 <0.0001 -1.314 0.19 

Wk I / all tests (%) 1.99 11.1 0.179 0.86 
Tested/mill 0.0002 0.0003 0.773 0.44 

Cases 0.0001 <0.0001 2.214 0.03 

Cases/ mill inh 15623.3 2017.1 7.746 <0.0001 

Estimates are sample-average partial derivatives. Predictors accounted for 86.7% of the variance 214 
in deaths per million citizens (R2: 0.8675). 215 
 216 
 217 
 218 
 219 
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