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One sentence summary: 
Understanding travel before, during, and after the introduction of travel restrictions in China in 

response to the COVID-19 Pandemic. 
 
Abstract 
Understanding changes in human mobility in the early stages of the COVID-19 pandemic is 

crucial for assessing the impacts of travel restrictions designed to reduce disease spread. Here, 
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relying on data from mainland China, we investigated the spatio-temporal characteristics of 

human mobility between 1st January and 1st March 2020 and discussed their public health 

implications. An outbound travel surge from Wuhan before travel restrictions were implemented 

was also observed across China due to the Lunar New Year, indicating that holiday travel may 

have played a larger role in mobility changes compared to impending travel restrictions. Holiday 

travel also shifted healthcare pressure related to COVID-19 towards locations with lower access 

to care. Network analyses showed no sign of major changes in the transportation network after 

Lunar New Year. Changes observed were temporary and have not yet led to structural 

reorganisation of the transportation network at the time of this study. 

 

Introduction 

The COVID-19 pandemic began in Wuhan, China, in late 2019, came to prominence in January 

2020, and quickly spread within the country. January is also a major holiday period in China, 

and the 40-day period around Lunar New Year (LNY), or Chunyun, marks the largest annual 

human migration in the world, with major travel flows out of large cities1. In 2019, nearly 3 billion 

individual journeys were made during Chunyun2. In 2020, Chunyun lasted from 10th January to 

18th February3, with the first day of the LNY holidays on 24th January, followed by the first day 

of LNY on 25th January. This period coincided with the initial phase of the COVID-19 pandemic, 

and there has been speculation that holiday travel may have accelerated the propagation of 

COVID-19 both within China and internationally4. 

 

As part of initial efforts to contain the outbreak, the Chinese government announced a cordon 

sanitaire for the city of Wuhan, Hubei Province, starting on 23rd January 2020, one day before 

LNY holidays. This intervention restricted all non-essential movement into and out of the city. 

Services at airports, train stations, long-distance bus stations, and commercial ports were all 

suspended 5. Several studies have focused on assessing the effectiveness of the cordon 

sanitaire in Wuhan and other domestic travel restrictions in China in the context of COVID-19 

control 6–8. As other affected regions worldwide begin implementing similar travel restrictions9, it 

is critical to understand human mobility patterns during the initial phase of the COVID-19 

pandemic and their potential implications for other countries. 
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Out-going traffic from Wuhan was reduced by 89% within two days of the cordon sanitaire, 

according to data from Baidu Huiyan, an internet service company in China which uses location 

targeting to provide services to users. Baidu’s Location Based Service (LBS)10 provides travel 

fluxes between prefectures in China during the annual Chunyun period to allow monitoring of 

movement of people using their services.  

 

We used daily prefecture-level movement data across China provided by Baidu Huiyan 10 to 

understand the spatial and temporal characteristics of movement patterns before, during and 

after the COVID-19 epidemic in Wuhan. Relying on a range of techniques from trajectory 

clustering to network analysis, we examined human movement on multiple geographic scales to 

provide a complete picture of the overall dynamics while drawing links to their public health 

implications. 

Results 

Human movement surrounding the epicentre - Wuhan, Hubei 
Before the cordon sanitaire and during the initial phase of the COVID-19 epidemic, outbound 

travel from Wuhan was marked by an early-January peak, followed by a sharper second peak in 

the days before the LNY holidays (Figure 1a). The first peak was not observed in 2019, while 

the second peak was higher in 2020 than 2019. Because the start of Wuhan’s cordon sanitaire 

and the beginning of LNY holidays were only one day apart, we refer only to LNY while 

describing our results. 
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Figure 1. Travel patterns between Wuhan and its neighbors.  The identified patterns of outbound 
travel from Wuhan: a), the daily outbound travel from Wuhan in 2019 and 2020; b), relative timing of first 
case detection stratified by clusters of similar trajectories, using Cluster A as the baseline. The distribution 
shows the mean effect size adjusted for surveillance intensity; c), distribution of resident population sizes 
of individual prefectures (points); d), map of prefectures and province-level cities showing the spatial 
distribution of trajectory clusters; e), outbound travel trends from Wuhan to the most connected 
prefectures in China, stratified by clusters of similar trajectories. The trajectories have been normalised by 
the total flow of each, to allow comparison of the profile. The pie charts show the total flux out of Wuhan 
prefecture by destinations in each cluster. 
 
Using k-means clustering of the trajectories of outbound travel from Wuhan, we identified four 

general temporal clusters that captured the travel patterns from Wuhan to its neighbors (Figure 

1e).  Two of these clusters exhibited an increase in flow immediately before LNY (clusters A and 

B). Members of clusters A and B are geographically closer to Wuhan (Figure 1d), with fewer 

residents and overall lower population density (Figure 1e, and Table 3, Supplemental Table 

1-3). Cluster C exhibited two peaks around 7 and 22 January 2020, respectively. Cluster D 

showed one peak in early-January 2020, with no peak immediately preceding the LNY 

holidays.The findings are not sensitive to the number of clusters, (Supplemental Figures 1-5). 

 

The earliest detection of COVID-19 outside of Wuhan was 19th January 2020. Compared to 

Cluster A, Cluster B and C detected their first COVID-19 cases at approximately the same time 

(Fig 1d). Prefectures in cluster D confirmed their first cases 1.08 days earlier (Figure 1d). 

Cluster D includes large population centres; Beijing, Shanghai, Guangzhou, and Shenzhen. 

After the arrival of infected individuals from Wuhan, these highly connected cities could have 
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contributed to the further spread of COVID-19 to places less directly connected to Wuhan. 

There were also a small number of prefectures that did not have any confirmed cases until 3 

weeks after the cordon sanitaire in Wuhan . 

 

We repeated the same analyses for other large cities in China, finding that despite the different 

numbers of clusters identified, the general patterns in movement flows observed in Wuhan were 

seen elsewhere in mainland China, with an early january peak travel, and another increase in 

travel volume preceding LNY (Supplemental Figures 6-10). The association between the 

population size of destinations and geographic distance, however, was less apparent. The 

early-January peak in Wuhan coincided with the beginning of winter break for university 

students in China, approximately one million of whom study in Wuhan 11. Without information 

about the age composition of travellers at this time, we cannot provide a definite explanation of 

this observation. 

 

By late March, over 90% of prefectures and province-level cities (further detail on administrative 

levels included in Methods) in mainland China had at least one confirmed case of COVID-19. 

Most prefectures confirmed their first COVID-19 cases between 23rd and 26th January 2020.  

 

There is anecdotal evidence implying an association between the announcement of a cordon 

sanitaire on 23 January and temporarily increased outbound travel from Wuhan 12. This 

relationship, if true, could have hindered the effectiveness of the cordon sanitaire. Focusing on 

the six-day period preceding the LNY, we compared the outbound travel patterns from Wuhan 

with the rest of mainland China using 2019 as the baseline. We used two variability metrics to 

investigate potential outbound travel surges: (1) a proportion-based matric (Methods, eq. 3) that 

captures the relative between-year difference; and (2) an anomaly-based metric (Methods, eq. 

4) that captures the deviation observed in 2020 compared to 2019. We found that although 

there is evidence of an increase in outbound travel from Wuhan during this period, a similar 

increase was also observed in many other prefectures. Wuhan was ranked 46 (top 13%) and 88 

(top 24%) of 305, by the two metrics  for the change in flow (Supplemental Figure 11). 

 

Movement Patterns across China 

To investigate the movement patterns across mainland China, we divided prefectures and 

province-level cities into four population quartiles (i.e. “Low” (2000 to 1.44 million residents), 
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“Medium-low” (1.45 to 2.96 million residents), “Medium-high” (2.98 to 4.90 million residents), 

and “High” (4.92 to 24.20 million residents). We found that the trends of in- and outbound travel 

volume over time were relatively consistent across population quartiles (Supplemental Figure 

12). The flow between all pairs of quartiles, measured in Baidu’s migration index, increased 

prior to LNY and dropped sharply after Wuhan’s cordon sanitaire, with an increase in 

within-quartile flow following 23rd January for all quartiles. However, the underlying composition 

of these in- and outbound travel flows differed substantially by population quartile (Figure 2).  

 

 

Figure 2. Contribution by prefectures of each population quartile to in- and outbound travel to different 
locations . Shading marks the population quartile with highest population quartiles in the lightest shade. Red dashed 
line shows the first day of LNY (25th January 2020).  

 
Before LNY, all regions saw increased inbound travel from highly populated prefectures (Figure 

2a-d). These changes were more marked in prefectures of lower population sizes. After LNY, 

the contribution to inbound travel by prefectures in the middle quartiles stabilised at higher 

levels compared to pre-LNY. As the volume of inbound travel recovered through February 

(Supplemental Figure 12), the relative proportion of travellers from the most populated quartiles 

remained low. For outbound travel, a higher proportion of travellers from the most populated 

prefectures travelled to the middle quartiles before LNY, and a higher proportion from 
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medium-sized prefectures travelled to low-population prefectures (Figure 2e-h). Travel volumes 

and distance patterns in Beijing, Shanghai, Guangzhou began to return to normal more quickly 

than in Wuhan, and outbound travel generally recovered more after LNY (Supplemental Figure 

13). 

 

Analysis of origin or destination locations stratified by population sizes also revealed cascading 

effects: travellers from large prefectures more often travelled to other large or medium size 

prefectures; travellers from medium and small prefectures more often travelled between medium 

and small prefectures (Supplemental Figure 14). Therefore, medium sized locations could play 

a key role in limiting the spread of COVID-19 to prefectures with fewer residents.  

 

Healthcare availability at destination locations 
The observed movement patterns have important public health implications: before LNY, the 

move away from population centres was also a migration away from settings with high access to 

healthcare, measured by the number of Grade II and III hospitals per 100,000 residents (Figure 

3). Prefectures with higher access to healthcare had more outgoing than incoming travellers, 

and after LNY, travellers gradually returned to high healthcare access settings, but the overall 

geographic distribution of residents had not recovered to its pre-LNY conditions by 1st March 

2020 (Figure 3a). This pattern was associated with COVID-19 related healthcare pressure, a 

measure of confirmed cases compared with healthcare availability (Figure 3b). From the week 

before LNY to two weeks after, locations with low access to healthcare experienced significantly 

higher pressure compared to locations with high access to healthcare. Chunyun not only 

increased the chance of infection along mobility networks, but also shifted healthcare pressure 

caused by COVID-19 to regions with low access to healthcare 13–15. 
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Figure 3. Human mobility, healthcare services availability, and COVID-19 related healthcare 
pressure. A), The changes in traveller volume before (blue) and after (red) LNY. Net change is defined 
as inbound migration index minus outbound migration index. Thus, a negative change indicates more 
travellers leave than arrive while a positive value indicates more travellers arrive than leave. Solid line 
indicates the median level of healthcare access. B), The changes in the healthcare pressure (log 10  scale) 
related to COVID-19 each week in low and high healthcare access prefectures. Healthcare access is 
measured by the number of hospitals per 100,000 residents. Healthcare pressure is measured by 
confirmed COVID-19 cases divided by healthcare access. Darker shade represents weeks when low 
healthcare access settings experienced significantly higher pressure than high healthcare access 
settings; lighter shade represents when differences are not significant based on Mann-Whitney U test. 
 
 
Changes in overall travel network structure 
We determined the community structure of the local travel network by calculating the daily 

modularity, Q, of the directed network16 from 1st January to 1st March 2020. This provides a 

holistic view of transport throughout the country, highlighting macroscopic changes in the 
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network, e.g. rerouting behaviour or increased linkages between new prefectures, as the 

movement network adjusted to travel restrictions in Wuhan.  

 

 
Figure 4. Community structure and modularity of movement network. A) The time series of total and 
sub-community modularity, and B) snapshots of the community networks on days before and after the 
cordon sanitaire.. The communities for Wuhan (red) and several major cities (blues) are highlighted in A 
and B in both the community and edges between communities. The time series shows working week 
(grey bars; missing after nation-wide social distancing measures) as well as the initiation and enforcement 
of restrictions in Wuhan (red gradient) over 23rd to 24th January. The communities (circles) are sized 
according to within-community migration index, while their connections are sized according to their 
between community migration index.  
 
Preceding the implementation of travel restrictions, there was a stable pattern of communities 

connected to large cities, with significant flows between communities (Figure 4). Early January 

before  LNY represents typical travel in China with flow between major population centres 17. 

During this period, travel within China was generally structured into well-defined communities, 

with high Q (Figure 4, time point 1). Major cities had consistent, distinct communities over this 

time period, which remained fairly steady even as outflows began to increase from major cities 

for LNY (Figure 4, time point 2; see Supplement 6 for full time series).  

 

Immediately following the implementation of travel restrictions, we identified a marked peak in 

modularity where the Q value for Wuhan City increased, indicating that it temporarily became 

more integrated into the travel network (Figure 4a, time point 3). This increase in modularity 

indicated relatively more connectivity between Wuhan and other communities, although there 

was decreased flow, so the actual number of travellers was much lower. This could also reflect 
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the large movement of medical and other resources to Wuhan following the implementation of 

restrictions18.  

 

Overall connectivity decreased across China after the cordon sanitaire in Wuhan (Figure 4, time 

point 4). This coincided with the implementation of disease control interventions in other 

prefectures, and a decrease in travel following LNY. Consistent with a country-wide policy of 

restricted movement, we did not find large rerouting or the increasing importance of other 

transport connections after the restrictions in Wuhan,. This is critical as countries attempt to 

determine the efficacy of large scale movement restrictions.  

Discussion 

The cordon sanitaire in Wuhan was an intensive travel restriction that completely stopped all 

non-essential incoming and outgoing traffic. Previous studies have demonstrated that it may 

have had low effectiveness in preventing or delaying transmission to other regions of mainland 

China during the early phase of the COVID-19 pandemic7,19. There is however potential for 

infectious disease control and prevention, especially when timeliness and the necessary scope 

of restrictions can be achieved 20. Travel restrictions will likely continue to be considered an 

important infectious disease intervention option against  COVID-19 during the pandemic, and 

better understanding the mechanisms in play at different stages of travel restrictions is crucial to 

effective implementation. 

 

We found a limited relationship between spatial proximity and epidemic spread where larger, 

distant populations detected their first COVID-19 cases earlier than smaller locations that are 

closer to Wuhan. Due to the highly connected modern mobility network, spatial proximity is not 

the only measure for “closeness” between two cities21. While planning for travel restrictions, 

either domestic or international, it may be worthwhile to consider other functional connectivity 

measures, such as human mobility studied here. Although outbreaks may appear to have single 

source location in the beginning, such as the case in Europe 22, focussed travel restrictions 

around epicentres and their immediate geographic surroundings may lead to missed 

opportunities for epidemic control. 

 

 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 19, 2020. ; https://doi.org/10.1101/2020.05.14.20101824doi: medRxiv preprint 

https://paperpile.com/c/jTBbss/2kveb
https://paperpile.com/c/jTBbss/PjQM+tYtIj
https://paperpile.com/c/jTBbss/d4pp
https://paperpile.com/c/jTBbss/YOse
https://paperpile.com/c/jTBbss/UB1G
https://doi.org/10.1101/2020.05.14.20101824
http://creativecommons.org/licenses/by/4.0/


 

The timing of LNY and the initial stage of the COVID-19 epidemic makes it difficult to untangle 

regular holiday travel from travel in response to the outbreak or to impending travel restrictions. 

The increased outflow from Wuhan that we observed was not unique to the city, as similar 

patterns of outflow were observed in a large number of other prefectures, and so likely 

represents increased holiday travel. We therefore did not find evidence of an association 

between the announcement of the cordon sanitaire and the number of outbound travellers 

leaving Wuhan. Data from other countries not confounded by holiday travel (e.g., France 23) may 

yield insights on public responses to travel restrictions. Additionally, although the overall number 

of travellers leaving Wuhan was not exceptionally high before LNY, the composition of travellers 

may have changed, such as a shift from business to family travel, which could contribute to the 

spread of COVID-19 and could have implications for healthcare demand in destination 

locations24. Finer resolution mobility data, including traveller characteristics such as age and 

occupation, could improve our understanding of the potential outbreak risk and the likely 

impacts of different interventions in the future. 

 

Human mobility during Chunyun was marked by the general trend of people leaving large 

population centres for less populated locations, which was also migration away from locations 

with high access to healthcare. During the peak of the epidemics in mainland China, areas with 

low access to healthcare experienced significantly higher healthcare pressure related to 

COVID-19 compared to elsewhere. Temporarily mobilising resources such as medical 

personnel and equipment could aid epidemic control in places receiving a higher-than-normal 

number of travelers from places with potentially high COVID-19 prevalence, and thus could be 

evaluated as a potential public health intervention under similar circumstances25.  

 

The structure of the overall transportation network in China did not demonstrate compensatory 

responses to the cordon sanitaire. There was a brief alteration of the network structure 

immediately following the restrictions, before the network settled quickly back into the same 

relatively stable communities that existed before the restrictions, albeit at markedly lower flow. 

This implies that the overall transportation network did not undergo structural reorganisation as 

a result of Wuhan’s cordon sanitaire and other regional travel restrictions. Short-term travel 

restrictions may therefore not incur lasting impacts on the mobility network, but assessing 

long-term impacts will require longer time-series analyses. 
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Mobility data from Baidu Huiyan has some limitations. For example, travel volumes were 

collected on an eight-hourly basis between each pair of prefectures and then aggregated to day- 

and prefecture-level, which does not allow analysis of trips longer than a day. In a country the 

size of China, such trips may be relatively frequent. Pairwise travel patterns before 1 January 

2020 are not available, which makes it challenging to determine baseline travel patterns. 

Additionally, movement patterns from Baidu Huiyan reflect the movement of Baidu users, which 

may be a non-random subset of the general population in mainland China 26. 

  

This study analysed the human mobility patterns around China during different stages of the 

local COVID-19 epidemics, from early Chunyun to Wuhan’s cordon sanitaire and other travel 

restrictions. By the start of March 2020, regional inter-prefecture movements had started to 

recover. Many countries have now implemented similar travel restrictions to reduce disease 

transmission. Understanding the implications of travel patterns before, during, and following 

travel restrictions is valuable for informing public health interventions, surveillance, and 

healthcare demand planning globally. 

Methods 

Geographic Information 
The geographic unit of analysis in this study is prefecture, which is administrative level 2 in 

mainland China, just below the province (level 1). There are currently more than 360 

prefecture-level units in China. However, the four provincial level cities (Beijing, Tianjin, 

Shanghai, and Chongqing) are exceptions. They do not have a level 2 unit - level 1 directly 

manages level 3 administrative units (i.e., counties) in these locations 27. In this study, we 

analysed these province-level cities with prefectures for spatial completeness. 

 

Mobility Data 

The mobility data is publicly available through Baidu Huiyan 28, a web service that supports 

government agencies and businesses with big-data spatio-temporal analytics. Estimates are 

based on over 120 billion location-based service (LBS) enquiries each day from over 1.1 billion 

mobile devices, while taking into consideration more than 1.5 billion points of interests (POI). 

We obtained two variables directly from Baidu Huiyan: overall migration index (specific to each 

prefecture) and percentage of travellers arriving in or leaving specific locations (specific to each 
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pair of prefectures). Note that migration index is a relative measure of the magnitude of human 

mobility, scaled relative to the total volume of movement across the network. 

 

We calculate the volume of human mobility between each pair of prefectures between 1st 

January 2020 and 1st March 2020 using the following equation: 

 
 (eq.1)F  pT ij =  i, outbound *  ij, outbound  

 
where  Tij  is the volume of mobility from location i to location j, F  is the overall Baidu migration 

index with direction (inbound or outbound) at location i, and pij is the proportion of all outbound 

travel that occurred between location i and location j. We further validated this measure by 

assuming that inbound and outbound were equal, as: 

 (eq.2)F  p  F  pT ij =  i, outbound *  ij, outbound =  j, inbound *  ji, inbound    

Note that pij is only available from Baidu for the top 100 prefectures connected to i. In other 

words, pij and pji may not simultaneously exist, and so some values cannot be cross-validated. 

Using data from Baidu Huiyan, we created a 366*366 connectivity matrix for each day between 

1 January 2020 and 1 Mar 2020 (61 days). 

 
Demographic and Healthcare System Data 
The 2018 population sizes were retrieved from the China Statistics Yearbook29. The geographic 

boundaries of prefectures and province-level cities were obtained from the Institute of 

Geographic Sciences and Natural Resources Research (Chinese Academy of Sciences)30. The 

original source of daily confirmed incidence is the COVID-19 dashboard published by DXY.cn, 

which updates in near-real time based on government press releases31. Additionally, the 

package `nCoV2019 ̀32 and `DXY-COVID-19-Crawler ̀33 have reduced the time required for data 

gathering and data cleaning. Records of first case arrivals were cross-checked with news 

articles also found on DXY.cn 31. Information on the Grade II and III hospitals in China was 

retrieved from the National Health Commission 34 and was then geo-referenced using the 

non-commercial Amap API35. 

 

Trajectory Analysis and Surge Evaluation 
The patterns of movement out of Wuhan between 1st and 23rd January were analysed using 

trajectory cluster analysis of the magnitude-normalized trajectories of outflow over time. Outflow 
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trajectories were selected by thresholding journeys with greater than an average flow index of 

0.005 for the entire period. This threshold removed prefectures with negligible connectivity with 

the origin. In order to characterize the shape of the outflow trajectories, rather than the 

magnitude of certain outflows, outflow trajectories were normalised by dividing the flow for each 

day by the total migration between the 1st and 23rd January 2020 for each trajectory. 

 

We classified the trajectories using k-means clustering with four clusters36. The number of 

clusters was chosen using a plot of average silhouette width against number of clusters, for 

between 4 and 12 clusters. The silhouette width decreased significantly at four clusters, and a 

similar number of trajectories were allocated to each cluster (Supplemental Figures 1-5). 

Furthermore, when using a greater number of clusters, we observed the same four overall 

trajectory patterns with smaller differences between trajectories defining each cluster. We also 

observed an increasingly large number of clusters containing a small number of trajectories. 

Plots of the trajectories clustered using 2, 3, 4, 5, and 6 clusters are included in the 

supplementary material. K-medioids, and Agglomerative Clustering were also explored as 

alternatives to K-means clustering. The different clustering methods did not result in substantial 

differences and identified similar patterns among outflow trajectories.  

 

We also calculated the peak outflow from all prefectures 2 to 7 days before LNY (i.e., 0 to 5 

days before the cordon sanitaire). We used two parameters to quantify the magnitude of change 

since 2019 at location i: 

 
                               (eq.3)F / mean(F ) 1 V 1i =  i, outbound, t, 2020 i, outbound, t, 2019 −   

(eq.4) F  mean( F )) / sd (F ) V 2i = ( i, outbound, t, 2020 −  i, outbound, t, 2019 i, outbound, t, 2019  
 
The variable t corresponds to 29 January - 3 February 2019 and 18 January - 23 January 2020.  

 

The association between the arrival of the first case and travel clusters were explored via a 

linear model with two independent variables, travel cluster and population. Population sizes of 

prefectures were used as a proxy of surveillance intensity, i.e.we assumed that more public 

health surveillance was conducted in larger cities. The coefficients and the standard errors of 

travel clusters were then compared. 
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Assessing Access to Healthcare  
In this study, prefecture-level healthcare access was measured by the number of Grade II and 

III hospitals per 100,000 residents. In mainland China, Grade II and III hospitals have at least 

100 hospital beds and are equipped with ventilators. They are more important compared to 

community hospitals and clinics for COVID-19 management due to high healthcare need in 

cases, and thus are a good indicator of healthcare access. Healthcare pressure was calculated 

by dividing weekly confirmed COVID-19 cases31 by the access to healthcare. The distributions 

of healthcare pressure were highly skewed, and we therefore used non-parametric one-tailed 

Mann-Whitney U test to compare the differences of healthcare pressure between low and high 

access to healthcare settings (n1 = 157, n2 = 153). This test was repeated for each week from 

week three to nine, and the corresponding p-values are 8.75e-1, 1.98e-7, 1.21e-8, 3.67e-5, 

5.63e-2, 4.86e-1, and 9.26e-1.  

 

Network Analysis 
Using the weighted movement flows between locations, we calculated community structure in 

the network using the Leiden algorithm16. The Leiden algorithm maximizes the modularity, Q, on 

directed, weighted, time sliced networks with an inter-slice weighting of 10 -5, which is the order 

of magnitude of minimum intra-slice weight across all times37. Modularity is a metric of 

within-community vs between-community connectivity, and the algorithm detects communities 

by optimising the within vs between, thereby assigning nodes to communities. Using the 

community structure from this algorithm, we identified the relative contributions to modularity, Q, 

of 4 key communities:  the community containing Wuhan prefecture, and then the communities 

of four other major cities in China: Beijing, Shanghai, Guangzhou, and Shenzhen. The latter two 

were always assigned to the same community and are marked together in Figure 4. We 

presented 4 snapshots of communities in the travel network, but all are shown in Supplemental 

Figure 15, and the spatial locations of those networks in Supplemental Figure 16. 

 
Sensitivity Analyses 

We repeated clustering of temporal traveller flow trajectories to validate the method for 

assessing travel flux out of Wuhan between January 1st and January 23rd. Employing the same 

method of thresholding prefectures with little connectivity, the trajectories of travellers to 

individual destination locations over time were normalised by dividing by the total flow along 

each route in the period. These normalized trajectories were then clustered using the same 
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k-means clustering procedure discussed above. The number of clusters was determined using a 

silhouette plot in order to isolate the dominant temporal patterns of traveller movement to 

individual destinations. 
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