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Blacks/African American Communities are at Highest Risk of COVID-47 

19: Spatial Modeling of New York City ZIP Code-Level Testing Results 48 

Introduction. The population and spatial characteristics of COVID-19 infections are poorly 49 

understood, but there is increasing evidence that in addition to individual clinical factors, 50 

demographic, socioeconomic and racial characteristics play an important role.  51 

Methods. We analyzed positive COVID-19 testing results counts within New York City ZIP Code 52 

Tabulation Areas (ZCTA) with Bayesian hierarchical Poisson spatial models using integrated nested 53 

Laplace approximations. 54 

Results. Spatial clustering accounted for approximately 32% of the variation in the data. For every 55 

one unit increase in a scaled standardized measure of Chronic Obstructive Pulmonary Disease 56 

(COPD) in a community, there was an approximate 8-fold increase in the risk of a positive COVID-19 57 

test in a ZCTA (Incidence Density Ratio = 8.2, 95% Credible Interval 3.7, 18.3). There was a nearly 58 

five-fold increase in the risk of a positive COVID-19 test. (IDR = 4.8, 95% Cr I 2.4, 9.7) associated 59 

with the proportion of Black / African American residents. Increases in the proportion of residents 60 

older than 65, housing density and the proportion of residents with heart disease were each 61 

associated with an approximate doubling of risk. In a multivariable model including estimates for 62 

age, COPD, heart disease, housing density and Black/African American race, the only variables that 63 

remained associated with positive COVID-19 testing with a probability greater than chance were the 64 

proportion of Black/African American residents and proportion of older persons. 65 

Conclusions. Areas with large proportions of Black/African American residents are at markedly 66 

higher risk that is not fully explained by characteristics of the environment and pre-existing 67 

conditions in the population.  68 
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Introduction 69 

The SARS-Cov-2 virus poses unprecedented clinical and public health challenges world-wide. 70 

While much of the attention has been rightfully focused on the clinical aspects of the disease, 71 

epidemiological studies and prevention research are becoming of increasing importance, 72 

particularly as no effective therapeutic has yet been identified.1 Epidemiological and population-73 

based studies can contribute to the identification of patient risk factors for disease severity. 74 

Recent studies of observational registry data have found COVID-19 mortality to be 75 

independently associated with coronary artery disease (CAD) (Odds Ratio (OR) for 76 

mortality=2.7, 95% CI 2.1, 3.5), chronic obstructive pulmonary disease (COPD) (OR =3.0; 95% 77 

CI, 2.0 to 4.4), and age greater than 65 years (OR = 1.9; 95% CI, 1.6 to 2.4).2 In one case 78 

series, 68% of laboratory-confirmed COVID-19 ICU patients had at least one comorbidity, of 79 

which hypertension was most common.3 80 

Not all risks, however, are physiologic. As the COVID-19 pandemic continues to ravage 81 

communities across the United States and the world, attention is increasingly turning to 82 

population-level demographic, socioeconomic, racial and environmental risk factors for COVID-83 

19. Blacks/African Americans have been reported to contract and die from COVID-19 at higher 84 

rates than others.4 In Chicago, a large number of COVID-19 deaths are concentrated in five 85 

largely black neighborhoods.5 A similar mortality concentration among Black/African American 86 

persons has been reported in New Orleans.6 At the built-environmental level, drivers of disease 87 

include population density 7 and housing density, with urban counties in the US having the 88 

highest COVID-19 death rates.8 89 

Few regions of the US have been more grievously affected than the five boroughs of New York 90 

City. A neighborhood-level analysis of New York City found higher rates of COVID-19 disease in 91 

areas with higher population shares of Black/African American and Hispanic persons, and in 92 
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areas with higher population density.9 While it certainly is possible that those affected have 93 

higher rates of underlying health conditions that may increase their susceptibility to the virus, the 94 

authors speculate that “residents of these neighborhoods are less likely to be able to work from 95 

home, disproportionately rely on public transit during the crisis, are less likely to have internet 96 

access,” and “have higher rates of overcrowding at the household level.” 97 

In this analysis, we analyze positive COVID-19 testing result counts within New York City ZIP 98 

Code Tabulation Areas (ZCTA) using Bayesian hierarchical Poisson spatial models with 99 

integrated nested Laplace approximations. We attempt to quantify the amount of spatial 100 

clustering in New York City neighborhoods, and the association of positive test counts in a 101 

neighborhood with population-level estimates of demographic, socioeconomic, health, and built 102 

environmental variables. The results quantify and provide insights into the complex interplay of 103 

individual and ecologic risks for COVID-19 spread and may be helpful in the effective allocation 104 

of  testing resources and interventions in similar urban settings. 105 

Methods 106 

Data 107 

COVID-19 test result data were obtained from the New York City Department of Health and 108 

Mental Hygiene (NYC DOHMH) GitHub Page. Variables consisted of ZIP Code Tabulation Area 109 

(ZCTA) designation, total number of positive test and total number of tests performed. Files are 110 

updated approximately every 2 days. The data in these analyses were current as of 22 April 111 

2020. 112 

ZCTA-level data for total population, proportion of persons older than 65, number of persons 113 

self-identifying as Black/African American, Asian or Hispanic, number of persons older than 5 114 

speaking a language other than English, population density, housing density, school density, 115 
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(number of people, housing structures and schools per square mile respectively), proportion of 116 

persons receiving public assistance, were obtained from or derived from the US Census.10 117 

We created a social fragmentation index based on the work of Congdon11 which combines 4 118 

variables extracted from US census variables: the proportion of total housing units in a ZCTA 119 

that are not owner occupied, the proportion of vacant housing units, the proportion of individuals 120 

living alone, and the proportion of units into which someone recently moved. Based on Census 121 

definitions, a “recent” move is defined as anytime in the previous 9 years (since the last 122 

decennial census). Variables are standardized and added with equal weight. The resulting 123 

variable is normally distributed with mean zero and 95% quantiles -2.463311 and 2.205669. 124 

Data on ZCTA health metrics were derived from shapefiles downloaded from the Simply 125 

Analytics company 12 and consisted of the number of persons in a ZCTA with heart disease or 126 

congestive heart failure (which are combined as a metric) and the number of persons with 127 

COPD. 128 

Spatial shapefiles of New York City ZCTAs were downloaded and derived from the New York 129 

City Department of City Planning.13 The testing and covariate data were merged to the spatial 130 

shapefile data and restricted to ZCTAs with valid data entries. An adjacency matrix was created 131 

from the map file using the R tool spdep::poly2nb(), and manually edited to create 132 

adjacencies between New York City boroughs using spdep::edit.nb(). 133 

Statistical Analysis 134 

After merging the testing to the covariate data, descriptive statistics consisted of counts, means 135 

and medians and maps of the number of positive COVID-19 tests per 10,000 total population 136 

and 10,000 tests performed in a ZCTA. 137 
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Counts of positive COVID-19 test results in New York City ZCTAs were spatially modeled 138 

according to Besag-York-Mollie as described by Lawson.14–16 139 

𝑦" ∼ 𝑃𝑜𝑖𝑠(𝜆" = 𝑒"𝜃")
𝑙𝑜𝑔(𝜃") 𝛽𝑥" + 𝜐" + 𝜂"
𝜐 ∼ 𝑛𝑙(0, 𝜏9)
𝜂 ∼ 𝑛𝑙:𝜂;, 𝜏< 𝑛;⁄ >

 140 

where, 141 

1. the 𝑦" counts in area 𝑖, are independently identically Poisson distributed and have an 142 

expectation in area 𝑖 of 𝑒" , the expected count, times 𝜃" , the risk for area 𝑖. 143 

2. a logarithmic transformation (𝑙𝑜𝑔(𝜆")) allows a linear, additive model of regression terms 144 

(𝛽𝑥"), along with 145 

3. a spatially  random effects component (𝜐") that is i.i.d normally distributed with mean zero 146 

(∼ 𝑛𝑙:0, 𝜏<>), and 147 

4. a conditional autoregressive spatially structured component (𝜂 ∼ 𝑛𝑙:𝜂;, 𝜏< 𝑛;⁄ >) in which a 148 

“neighborhood” consisting of spatially adjacent shapes is characterized by the normally 149 

distributed mean of the spatially structured random effect terms for the spatial shapes that 150 

make up the neighborhood (𝜂;), and the standard deviation of that mean divided by the 151 

number of spatial shapes in the neighborhood (𝜏< 𝑛;⁄ ). This spatially structured conditional 152 

autoregression component is also sometimes described as a Gaussian process 𝜆 ∼153 

𝑁𝑙(𝑊, 𝜏A) where W represents the matrix of neighbors that defines the neighborhood 154 

structure, and the conditional distribution of each 𝜆" , given all the other 𝜆" is normal with 𝜇 155 

= the average 𝜆 of it,s neighbors and a precision (𝜏A). 156 

A baseline convolution model that consisted solely of an intercept term with unstructured and 157 

spatially structured random effect terms was extended to include univariate association of 158 

explanatory variables with the number of positive COVID-19 tests in a ZCTA. Important and 159 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 7, 2020. ; https://doi.org/10.1101/2020.05.14.20101691doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.14.20101691
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7 

likely associations were chosen for inclusion in a multivariable model with the primary exposure 160 

variable being the proportion of Black/African American residents in an area and additional 161 

explanatory variables included as potential confounders. 162 

The final linear model consisted of an intercept (𝛽C); a vector of scaled ZCTA-level explanatory 163 

variables (𝛽𝑥"D) for the proportion of persons in a ZCTA identifying as Black/African American, 164 

with COPD, heart disease, older than 65 years, a measure of housing density,  a spatially 165 

unstructured random effect term (𝜐"), and a spatially structured conditional autoregression term 166 

(𝜂"). An offset varible for the total number of tests was included in all models. Model selection 167 

was based on deviance information criteria and number of effective parameters. 168 

𝑙𝑜𝑔:𝜃"E> = 𝛽C + 𝛽𝑥"D + 𝜐" + 𝜂" + (𝑜𝑓𝑓𝑠𝑒𝑡) 169 

The spatially unstructured random effect term captures normally-distributed or Gaussian 170 

random variation around the mean or intercept. The spatially-structured conditional 171 

autoregression term accounts for local geographic influence. The intercept is interpreted as the 172 

average city-wide risk on the log scale adjusted for the covariates, random effects and spatial 173 

terms. The exponentiated coefficients for the explanatory covariates are interpreted as 174 

incidence density ratios. Coefficient results are presented with 95% Bayesian Credible Intervals 175 

(95% Cr I) 176 

Spatial risk, controlling for or holding the covariates constant, was calculated as 𝜁" = 𝜐" + 𝜂",17 177 

and is interpreted as the residual spatial risk for each area (compared to all of New York City) 178 

after covariates and spatial clustering are taken into account. The probability of spatial risk 179 

greater than 2 (PrK𝑒LM > 1P) was calculated. As originally described by Clayton and 180 

Bernardinelli,18 these exceedance probabilities are the posterior probabilities for an area’s 181 

spatial risk estimate exceeding some pre-set value. This was extended by Richardson, et al 19 to 182 

decision rules “for classifying whether (an area) has an increased risk based on how much of 183 
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the posterior distribution of the relative risk parameter … exceeds a reference threshold”.20 They 184 

are calculated as the proportion of simulations for which the linear combination of effects (𝜁) 185 

exceeds the target value. Lastly, the proportion of spatially explained variance was calculated 186 

as the proportion of total spatial heterogeneity accounted for by the spatially structured 187 

conditional autoregression variance.17 188 

Spatial modeling was conducted using integrated nested Laplace approximations (INLA) with 189 

the R INLA package21 using approaches described by Blangiardo, et al. 17 The study protocol 190 

was exempted as not human research by the New York University School of Medicine 191 

Institutional Review Board. 192 

Results 193 

Descriptive Statistics 194 

There were 177 ZCTA’s in the data set. The mean COVID-19 positive test rate per 10,000 195 

ZCTA population was 166.2 (95% CI 156.7, 175.7). The mean COVID-19 positive test rate per 196 

10,000 tests was 5,176.0 (95% CI 5,045.9, 5,306.1) and appeared skewed and peaked, 197 

indicating that a relatively small number of ZCTAs accounted for highest rates. (Figure 1) The 5 198 

ZCTAs with highest positive COVID-19 test numbers per 10,000 population were the same as 199 

those with the highest proportion per 10,000 tests (10464, 10470, 10455, 10473, 11234, and 200 

11210). The 5 lowest ZCTAs were also the same for both measures (11103, 11102, 11693, 201 

11369, 11363, and 10308). Table 1 presents comparative statistics for the ZCTA’s with the 202 

highest and lowest quantiles for population-based positive test rates. Figure 2 presents a 203 

choropleth of positive COVID-19 tests per 10,000 per 10,000 positive tests. 204 
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Spatial Models 205 

A frailty model consisting of only a random effect term and no explicit spatial component, 206 

returned a deviance information criteria (DIC) 1831.58, with 174.5 effective parameters. The 207 

random effect term was normally distributed around the mean value of 64.9 (sd= 1.1, 95% 208 

Credible Interval 55.5 , 75.6) reflecting random nature of the distribution of the unstructured 209 

heterogeneity or variance.  210 

A convolution model with a spatially-structured conditional autoregression term added to the 211 

spatially-unstructured heterogeneity random effect term of the frailty model, returned a DIC of 212 

1807.60 (with 175.98 effective parameters) reflecting an improvement over the baseline 213 

unstructured heterogeneity frailty model, and indicating the spatial component added 214 

information to the simple unstructured model. In Figure 3,  the spatial risk estimate is calculated 215 

as the sum of the unstructured and spatially structured variance components ((𝜁 = 𝜐 + 𝜈)) 216 

Finally, in figure 4, we calculate and map the probability of relative risk greater than 1, which is 217 

interpreted in the context of figure 3 as a type of “hot spot” map place the risk estimates in the 218 

context of their probabilities. Lastly, we estimate the proportion of the variance explained by 219 

geographic variation or place, which for this model is approximately 32% 220 

Simple and Multivariable Models 221 

The convolution model is extended to include ecological-level variables for population, housing, 222 

income, social fragmentation, population characteristics, and clinical conditions.  Table 2 223 

summarizes the results of a series of unadjusted single Covariate Models of Associations with 224 

Positive COVID-19 Test Counts.  The single strongest unadjusted association is for the 225 

proportion of persons in a ZCTA with COPD, which returned an incidence density ratio (IDR) of 226 

8.2 (95% Credible Interval 3.7, 18.3), indicating that for each single unit increase in the 227 

standardized proportion of persons in a ZCTA with COPD, there was an eight-fold increased 228 
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 10 

risk of an additional positive COVID-19 test in that ZCTA.  The proportion of Black/African 229 

American residents in a ZCTA was also strongly associated with the risk of positive COVID-19 230 

tests. For every one unit increase in a scaled standardized measure of the proportion of 231 

Black/African American residents, there was a nearly five-fold increase in the risk of a positive 232 

COVID19 test. (IDR = 4.8, 95% Cr I 2.4, 9.7) 233 

Variables for population density, proportion of residents older than 65 years, housing density, 234 

and heart disease were also associated with increased risk of positive COVID-19 testing rates. 235 

Median household income (MHI) in a ZCTA community was inversely related to positive COVID-236 

19 tests. For each unit increase in a standardized measure of MHI in a ZIP Code Tabulation 237 

Area, there is an approximately 46% decrease in the number of positive COVID19 tests. 238 

(Incidence Density Ratio = 0.54, 95% CrI 0.43, 0.69). Other variables that were associated with 239 

lower positive tests were proportion of Asian and proportion of Hispanic residents and increased 240 

measures of social fragmentation. School density, proportion of persons not speaking English, 241 

and the proportion of persons on public assistance were not associated with positive COVID-19 242 

testing rates. 243 

In a multivariable model including COPD, heart disease, proportion of Black/African American 244 

residents, housing density, and age greater than 65 years, the only 2 variables that remained 245 

associated with positive COVID-19 testing with a probability greater than chance were the 246 

proportion of Black/African American residents and older persons. (Table 4)  Proportion of 247 

Black/African American residents was the strongest predictor of higher positive testing rates in a 248 

community regardless of other factors. 249 

Discussion 250 

Despite the recent onset of the current COVID-19 pandemic, there is already growing evidence 251 

about both individual risk factors and population-level drivers of disease and mortality. This 252 
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study adds to the number of very recent similar spatial analyses of ZCTA-level testing data 253 

released by the New York City Department of Health and Mental Hygeiene,22–24 and illustrates 254 

the importance of sharing these kinds of data, as well as the informative nature of spatial 255 

epidemiology as the pandemic evolves across the nation and the world. Consistent with prior 256 

reports, we find that the clustering of positive COVID-19 testing results in NYC are unlikely to be 257 

due to chance,9, 23 and is driven in large measure by socioeconomics, age distribution,24 and 258 

race.9, 23 259 

Our study adds to this by demonstrating that the proportion of residents self-identifying as 260 

Black/African American is among the single strongest unadjusted bivariate predictors of the 261 

proportion of positive tests in a community. The only stronger such predictor is the proportion of 262 

residents with COPD, which at 8 times the risk of areas with less COPD, is stunning. But 263 

perhaps the more unexpected finding is that when Black/African American race and COPD are 264 

considered jointly, it is race that appears to be the stronger predictor. Unlike a previous New 265 

York City-based report,9 we did not find an independent risk associated with the proportion of 266 

Hispanic residents. It may be that census estimates of Black/African American persons includes 267 

persons who also identify as Hispanic. Three of the 5 ZCTAs with highest positive COVID-19 268 

test numbers per 10,000 population were in areas of the Bronx with large proportions of 269 

Hispanic and Latino residents. And, it may be that disparities may vary depending in part on 270 

how well-established Hispanic communities are within cities and states. 25  271 

The question of why COVID-19 affects one community more severely than another may provide 272 

clues to crucial questions about who is a risk and why.26 Our study indicates place is important. 273 

We find about a third of the variance in a simple spatial model can be accounted for by place. 274 

We found risk to be approximately doubled by environmental characteristics like population and 275 

housing density. This complements a report of a non-spatial, linear multivariable regression 276 
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model of similar data that reported that 72% of variance could be attributed to individual 277 

characteristics like household size, gender, age, race and immigration status.22. 278 

If ecologic and spatial analyses can provide clues, it remains to be determined what those clues 279 

point to. It could be that Black/African American race is a proxy for underlying physiological 280 

risks. There are preliminary reports that infection with SARS-Cov-2 may be associated with the 281 

A blood group,27 and that severe COVID-19 is driven in part by coagulopathies that may be 282 

associated with Factor VIII and von Willebrand factor,28  although the relationship of such 283 

factors with race is complex.29 Race may also be associated with exposure. By one account, 284 

80% of non-medical staff in New York City’s hard-hit public hospitals are Black/African American 285 

or Hispanic, compared to less than half of doctors and nurses. It may be that their risk of 286 

exposure to SARS-Cov-2  and need for similar personal protective equipment has been 287 

underestimated.30 Our results indicate that such exposure may be a more critical factor than 288 

underlying health conditions. That a risk like COPD should drop from a level of 8 to non-289 

significance when race is included in the model may point to something beyond physiological 290 

risk of infection. Placing risk factors in context, both within and across populations, may be key. 291 

Differences between New York City vs Chicago as a whole appear to influence the relative 292 

strength of associations between population-level demographic variables and testing 293 

outcomes.23 It will be increasingly important to conduct such comparative studies. 294 

Our results should be interpreted cautiously. Ecological studies can offer a view of disease 295 

processes in a community, but it may be a fractured view. Measures like school density and 296 

social fragmentation may not be measuring what we think they are measuring; the number of 297 

schools in an area, rather than acting as a disease multiplier, may be a measure of the strength 298 

of the tax base. Similarly, the Congdon Index treats empty houses as a measure of disorder, but 299 

this has a very different meaning in the setting of a rapidly-spreading infectious disease. The 300 

proportion of non-English speakers in a given ZCTA may be biased by a lack of self-reporting by 301 
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undocumented immigrants. And, as in any ecologic study, it is not certain that the persons with 302 

the risk factor being studied are those who are developing the outcome. 303 

SARS-Cov-2 testing results are imperfect, with numbers likely to be biased by the availability of 304 

testing. But, we would expect that bias, to be in the direction of increased counts in areas with 305 

higher socioeconomic status. Consistent with our findings, a recent geographic analysis 306 

reported that persons in poorer NYC neighborhoods were less likely to be tested but once 307 

tested were more likely to test positive.22  It is partly for this reason, we chose to base most of 308 

our analyses on the proportion of positive tests, rather than the population-based rates of 309 

positive tests, an approach taken by others. 22 310 

Despite these caveats, it is difficult to overlook the interplay of race and COVID-19. Race 311 

appears to be an indicator of risk independent of social status, income, built environment or 312 

even underlying health. This has implications not only for justice and equity, but for an effective 313 

response to the pandemic. 314 
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Tables and Figures 405 
 406 

 407 
Figure 1. COVID-19 Positive Test rate per 10,000 tests. New York City, April 3- 22, 2020. 408 

 409 

 410 

 411 

var total High Low V5 
n 72 36 (50.0%) 36 (50.0%)  

MHI 57,758.653 
(24,986.680) 

55,314.528 
(19,700.606) 

82,917.333 
(27,557.029) *** , 

School Density 5.167 (4.605) 2.658 (1.977) 7.289 (5.379) *** , 
Population 

Density 
16,584.935 

(11,770.940) 
9,486.726 

(7,238.221) 
26,000.104 

(13,418.550) *** , 

Housing 
Density 

18,165.214 
(19,748.001) 

8,784.774 
(6,788.215) 

37,361.654 
(33,665.045) *** , 

Congdon Index -0.089 (1.996) -1.118 (1.978) 1.603 (1.942) *** , 
Black 0.234 (0.263) 0.355 (0.308) 0.069 (0.125) *** , 

Hispanic 0.124 (0.045) 0.134 (0.045) 0.120 (0.051)     , 
Heart Disease 0.111 (0.207) 0.174 (0.268) 0.072 (0.160)     , 

COPD 2.011 (1.932) 2.276 (2.482) 1.554 (1.420)     , 
Table 1. Comparative Statistics Positive COVID-19 Tests per 10,000 Population, High and Low Quantile 412 
ZIP Code Tabulation Area. New York City, April 3- 22, 2020. 413 

 414 

 415 
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 416 

Figure 2. Choropleth Quintiles Positive COVID-19 Tests per 10,000 Tests. New York City, April 3- 22, 417 
2020. 418 

 419 

 420 

 421 

 422 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 7, 2020. ; https://doi.org/10.1101/2020.05.14.20101691doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.14.20101691
http://creativecommons.org/licenses/by-nc-nd/4.0/


 18 

 423 

Figure 3. Choropleth Quintiles Spatial Risk Estimates (Sum of Unstructured and Spatially Structured 424 
Variance) Positive COVID-19 Tests per 10,000 Tests. New York City, April 3- 22, 2020.  425 

 426 

 427 

 428 
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 429 

Figure 4. Choropleth Three Equal Groups, Probability of Relative Risk Greater than 1. Positive COVID-19 430 
Tests per 10,000 Tests. New York City, April 3- 22, 2020. 431 

 432 
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 434 

 435 

 436 
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 444 
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Model IDR 2.5% 97.5% 
Population 
Density 1.5 1.1 2.2 

Median 
Household 
Income 

0.5 0.4 0.7 

School 
Density 0.8 0.6 1.2 

Older than 65 
years 1.9 1.6 2.4 

Asian 0.4 0.2 0.8 
Housing 
Density 2.0 1.2 3.2 

Congdon 
Index 0.8 0.8 0.9 

Language 1.3 0.9 1.8 
Black/African 
American 4.8 2.4 9.7 

Hispanic 1.2 0.9 1.6 
Heart Disease 2.1 1.5 2.9 
COPD 8.2 3.7 18.3 

Table 2. Summary Series of Unadjusted Single Covariate Bayesian Hierarchical Poisson Models for 446 
Association with Positive COVID-19 Tests Counts in New York City ZIP Code Tabulation Areas, April 3- 447 
22, 2020.  448 

 449 

Variable IDR 2.5% 97.5% 
Intercept 353.82 197.66 632.23 
COPD 2.32 0.92 5.85 
Heart 
Disease 1.27 0.88 1.83 

Black/African 
American 2.29 1.13 4.68 

Older than 
65 years 1.50 1.17 1.92 

Housing 
Density 1.08 0.65 1.78 

Table 3. Summary Multivariable Bayesian Hierarchical Poisson Modes for Association with Positive 450 
COVID-19 Tests Counts in New York City ZIP Code Tabulation Areas, April 3- 22, 2020. 451 
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