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ABSTRACT 

Rationale: Host response is a critical factor determining susceptibility to tuberculosis (TB). A delicate 

balance should be maintained between intracellular immunity against Mycobacterium tuberculosis (Mtb) 

and minimizing detrimental immunopathology. Studies have identified incongruous immune responses 

that can lead to a similar TB disease phenotype. Instead of envisioning that susceptibility to TB follows 

a singular path, we propose the hypothesis that varied host endotypes exist within the TB clinical 

phenotype. 

Methods and Results: Unbiased clustering analysis from 12 publicly available gene expression 

datasets consisting of data from 717 TB patients and 527 controls, identified 4 TB patient endotypes 

with distinct immune responses.  The two largest endotypes exhibit divergent metabolic, epigenetic and 

immune pathways. TB patient endotype A, comprising 333 TB patients (46.4%), is characterized by 

increased expression of genes important for i) glycolysis, ii) IL-2-STAT5, IL-6-STAT3, Type I and II 

Interferon IFN-γ and TNF signaling and iii) epigenetic-modifying genes. In contrast, TB patient endotype 

B, comprising 313 TB patients (43.6%), is characterized by i) upregulated NFAT and hormone 

metabolism, and ii) decreased glycolysis, IFN-γ and TNF signaling.  In silico evaluation suggests 

therapies beneficial for endotype A could be detrimental to endotype B, and vice versa. Multiplex ELISA 

completed from an external validation cohort confirmed a TB patient sub-group with decreased immune 

upregulation.  

Conclusions: Host immunity to TB is heterogenous. Unbiased clustering analysis identified distinct TB 

endotypes with divergent metabolic, epigenetic and immune gene expression profiles that may enable 

stratified or personalized treatment management in the future.  
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INTRODUCTION: 

For almost half a century, treatment recommendations for patients with drug-susceptible 

tuberculosis (TB) have not changed. With existing drug combination therapy lasting at least six 

months, there has been interest in identifying host-directed therapies (HDT) that could both 

improve the efficacy of and shorten existing treatment regimens. To date, a singular immune 

correlate of protection against TB has not been identified. In contrast, asthma, COPD and most 

cancers are managed based on their endotype or molecular sub-classification 1-3. For example, 

individuals with lung cancer are sub-categorized by histopathology (small-cell vs. non-small 

cell), by genotype (EGFR Exon 18-21 mutations, ALK translocations, ROS1 translocations, 

BRAF V600 mutations, NTRK fusion products), by PDL-1 expression and stage (localized vs. 

metastatic) 3. Treatment depends on these sub-categorizations. A classification system for 

guiding TB therapy has not yet been devised; however new data suggests that simple clinical 

information may help stratify the duration of TB therapy 4. Identification of host immune 

endotypes in TB would further guide a stratified based approach for host-directed therapeutics.  

Immune studies of TB have identified incongruous immune responses that can lead to a 

similar TB disease phenotype 5-9. Therefore, instead of envisioning TB as an infectious disease 

with a stereotypical immune response, we sought to assess whether diverse host immune 

responses could result in a similar clinical phenotype. Previous studies have identified a 

narrow host therapeutic window with both suppressed immunity or exuberant immunity 

resulting in decreased Mtb killing capacity 8,10,11. Anti-mycobacterial immunity is complex, 

requiring a multicomponent approach including multiple cell types. For example, upstream 

defects in the IL-12- IFN-γ signaling pathway result in decreased IFN-γ production and 

susceptibility to TB. In contrast, downstream defects in the IL-12- IFN-γ pathway result in 

excess IFN-γ but decreased IFN-γ-induced gene expression and increased susceptibility to TB 

7,12. Similarly complex is the immune response to TNF: decreased TNF results in intracellular 

mycobacterial survival, while excess TNF induces immune cell death via necroptosis and 

extracellular mycobacterial survival 5,11,13. A narrow therapeutic window of host mycobacterial 

immunity has also been described for the MyD88-adaptor-like protein (MAL) and immune 

checkpoint inhibitors 6,8,10. We also reasoned that some individuals would progress to TB 

despite an apparently well-functioning host immune response if they had been infected with a 

high bacillary burden, experienced prolonged exposure, or were infected with a hyper-virulent 

strain of Mtb. Therefore, to identify potential endotypes of host immune response during TB, 

we implemented an unbiased clustering of publicly available microarray gene expression 

datasets.  

 

METHODS 

Study inclusion  
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We implemented a systematic review and individual participant meta-analysis according to the 

PRISMA-IPD guidelines. An a priori hypothesis was established and shared with co-authors 

prior to implementation of bioinformatics. Publicly available data was identified using PubMed, 

and the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus 

(GEO) repository. Participants without microbiologic confirmation were not included. Studies 

that did not describe the methods of microbiologic confirmation, or evaluated cells other than 

whole blood, were excluded. Studies using microarray were used for a discovery cohort and 

genome-wide (RNA-seq) data sets were used for a validation cohort (Table 1). The Remove 

Unwanted Variation (RUV) method was used to normalize the data.  

 

Clustering 

To identify distinct TB endotypes, we used the Louvain network-based clustering algorithm 

implemented in the single-cell RNA-seq analysis package Seurat. Clusters were detected at a 

wide range of resolutions, from R = 0 to R = 1.2. Transcriptomes of identified clusters were 

compared to healthy controls; genes with an FDR-adjusted p-value<0.05 and fold change 

exceeding 2x were considered significant. Pathway enrichment analysis was implemented 

using Gene Set Enrichment Analysis (GSEA). Chemical compounds associated with the gene 

signatures were determined using the Library of Integrated Network-based Cellular Signatures 

(LINCS).  

Gene classifier 

 Table 1: Summary of the gene expression studies included.  
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Given the fundamental difference between the microarray and RNA-seq profiling platforms, we 

normalized independently the microarray data and the RNA-seq data and used the former as 

the discovery cohort and the latter as the validation cohort. Binary classifier for endotype A and 

B, which consisted of 89% of the discovery cohort, was built using Logistic Regression.  

Pseudotime 

Transcriptome profile trajectory analysis (pseudotime) was implemented on the 1244 TB 

patients and healthy controls using Monocle with data for selected gene groups plotted in the 

R statistical package.  

External Multiplex ELISA Validation Cohort 

In order to validate the gene expression clustering findings, a cohort of TB patients and their 

asymptomatic household contacts from Eswatini were evaluated (n = 79) 14. The study protocol 

was reviewed by appropriate ethical and institutional review boards and all participation was 

voluntary and in concordance with the Declaration of Helsinki. Pulmonary TB patients were 

defined by both the presence of symptoms and all included TB cases had microbiologic 

confirmation.  Twenty-two (55%) and nine (23%) of TB cases and household contacts were 

HIV co-infected. Included household contacts remained asymptomatic for 12-months after 

enrollment. Forty-eight percent of controls had a positive Quantiferon test (Qiagen, Hilden, 

Germany). 

Statistics 

Fisher’s exact test assessed incidence of clinical variables between endotypes. Rank-sum of 

the cytokines/chemokines from the ELISA validation was used to stratify the top and bottom 

50% of TB patients. Differences between ELISA sub-groups were analyzed using Mann-

Whitney rank sum test.  

RESULTS 

Systematic selection of TB patient cohorts with whole blood transcriptomic profiles 

Twenty-two gene expression studies were identified that included microbiologically confirmed 

pulmonary TB from whole blood. Studies evaluating less than 10,000 genes were excluded. 

Twelve studies applied microarrays that included 12,468 commonly evaluated genes, including 

717 individuals with microbiologically confirmed TB and 527 asymptomatic healthy controls 15-

25. These 12 studies were used to complete clustering identification of TB-endotypes. Four 

additional studies used RNA-seq transcriptome profiling and included 172 TB cases and 522 

controls. These four studies were reserved for creation of a validation cohort 26-29. 

Identification and clinical data characterization of TB endotypes  

In order to identify potential TB endotypes, unbiased clustering of the 717 patients with 

microarray gene expression data was implemented (Figure 1). To better evaluate the structure 

of the TB transcriptomes, Louvain network-based clustering was run using a range of 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 16, 2020. ; https://doi.org/10.1101/2020.05.13.20100776doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.13.20100776


 4 

resolutions spanning from R=0 to 

R=1.2, and a clustering tree was 

generated to identify the number of 

potential sub-clusters. Using 

resolution R=0 four clusters were 

identified, at R=0.1-0.6 five clusters 

were identified, whereas at R=1.2 

seven clusters were identified (Figure 

2A). To maximize the detection and 

characterization power, the resolution 

R=0 was selected for further 

analysis. At resolution 0, the largest 

endotypes included 333 (46.4% of all 

TB patients) and 313 individuals 

(43.6%), respectively (Figure 2B). 

The identified endotypes were 

evaluated by available epidemiologic 

data such as sex, age, HIV status 

and country of origin (Supplemental 

Figure 1).  There were no statistical 

differences in the sex of the different 

endotypes. In the discovery cohort, 

only three studies included 

individuals co-infected with HIV (GSE 

37250, GSE39939 and GSE58411; 

Supplemental Figure 1). All 

individuals co-infected with HIV 

clustered in endotype A (32.4% of endotype A). At resolution R=0.6, endotype A splits into 

endotype A1 and endotype A2 and, interestingly, all HIV patients clustered into endotype A1 

(49% of endotype A2). Deconvolution of whole-blood cell types was performed using 

CIBERSORT on the TB transcriptomes; endotype A had a relative increase in neutrophils 

compared to endotype B (Supplemental Figure 3). Only one study included children under 15 

years of age (GSE39939), with all children clustering into endotype A (Supplemental Figure 1).  

Characterizing TB endotypes 

We posited that while patients with pulmonary TB have a relatively similar clinical presentation, 

the host immune response would consist of potentially distinct and divergent endotypes. To 

test this hypothesis, differentially expressed genes from each cluster were used to determine 

pathway enrichment, assessed by Gene Set Enrichment Analysis (GSEA) using the Hallmark, 

REACTOME, GO Biological Process, and KEGG pathway compendia. Hierarchical clustering 

of GSEA Normalized Enrichment Scores (NES) results showed that endotypes A, C and D had 

Figure 1: Experimental design. Microarray data from TB patients (n = 717) was 
first normalized using RUV, then clustered using the Louvain network-based 
unbiased clustering algorithm as implemented in the Seurat package.  The gene 
expression profiles of distinct TB patient endotypes were compared to healthy 
controls (n = 527); pathway analysis identified divergent immune, metabolic and 
epigenetic pathway enrichment. Multiplex ELISA from an external validation 
cohort confirmed there is a sub-group of TB patients with decreased immune 
activation. An in silico screen of chemical compounds using the LINCS platform 
suggests that the two main divergent TB endotypes will respond differentially to 
candidate host-directed therapies.  Logistic regression classification was 
developed for the two major endotypes and further validated on a transcriptomics 
(RNA-Seq) datasets of TB patients (n = 172) and controls (n = 522). 
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similar gene expression 

responses defined by 

upregulation of type I 

and type II interferon, 

TNF, IL-2-STAT5 

signaling, glycolysis, 

oxidative 

phosphorylation, and 

Myc targets (Figure 

2C). In contrast, these 

biologic pathways were 

downregulated in 

endotype B. The TNF 

and IFN-γ signaling 

pathways are 

necessary, but not 

sufficient, components 

of the anti-

mycobacterial immune 

response 7. However 

both pathways have 

been shown to have 

narrow therapeutic 

windows, with either too 

little or too exuberant 

TNF and IFN-γ 

resulting in detrimental 

immunopathology 

6,10,11,13.  

Individuals in TB 

endotypes A, C and D 

had upregulation of the 

IFN-γ signal pathway, 

while this was 

downregulated in TB 

endotype B (Figure 

3A). IFN-γ itself was 

not differentially 

expressed between the 

clusters, however 

Figure 2: Unbiased clustering identifies unique TB endotypes. (A) Network-based unbiased 

clustering using the Louvain method identifies 4 endotypes of TB at resolution R=0 and increasingly 

up 7 endotypes at resolution R=1.2. (B) Principal Component Analysis (PCA) shows a robust 

separation between the four distinct clusters identified at resolution R=0. (C) TB endotypes A-D 

were compared to healthy controls, then pathway enrichment via Gene Set Enrichment Analysis 

(GSEA) was carried out against the Hallmark pathway compendium; hierarchical clustering based 

on the Normalized Enrichment Scores (NES) reveals striking differences between the endotypes. 

 

Figure 3: Interferon-gamma signaling pathway in TB patient endotypes. (A) Heatmap of 

differentially expressed genes in endotypes A and B compared to healthy controls (log2 fold 

change, FDR-adjusted p < 0.05).  (B) Mapping differential gene expression between endotypes A 

and B compared to healthy controls onto the interferon gamma signaling pathway (over expressed, 

red up arrows; under expressed, blue down arrows). 
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endotype B had 

decreased expression of 

the IFN-γ signaling 

pathway, akin to a 

downstream Mendelian 

susceptibility to 

mycobacterial diseases 

(MSMD) genetic defect 

(Figure 3B). Similar to 

IFN-γ, TNF is necessary, 

but not sufficient, and TB 

in patients taking TNF 

antagonists are at 

increased risk of disease 

progression 30. In 

contrast to TB patient 

endotype A, endotype B 

had both decreased 

expression of TNF as 

well as decreased TNF 

via NFKB signaling 

(Figure 4A,B).  

After activation, to 

increase metabolic 

demands for proliferation 

and effector functions, 

immune cells undergo 

metabolic shifts including 

increases in their metabolic activity via transitions towards glycolysis, termed the “Warburg 

effect” 31,32. Using pathway activity scores, TB patient endotype A had increased oxidative 

phosphorylation, glycolysis, TCA cycle activation and glucose metabolism, while in contrast 

these pathways were significantly downregulated in endotype B (Figure 5, Supplemental 

Figure 2). After brief or chronic antigenic stimulation, this shift in glycolysis induces activation 

of epigenetic enzymes, such as DNMT and EZH2, and long-lasting chromatin conformation 

changes 33-38. Therefore, to simultaneously evaluate metabolic, epigenetic and immune gene 

expression, we implemented trajectory analysis (pseudotime) using Monocle. Pseudotime 

demonstrated that endotype A expressed simultaneous upregulation of genes related to 

immunity (IL1B, IL12RB, GZMA, IRF1, STAT1), metabolism and epigenetics, while in contrast 

endotype B downregulated these same genes (Figure 6).   

Multiplex ELISA external cohort validation  

Figure 4: Tumor necrosis factor signaling pathway in TB patient endotypes. (A) Heatmap of 

differentially expressed genes in endotypes A and B compared to healthy controls (log2 fold 

change, FDR-adjusted p < 0.05).  (B) Mapping differential gene expression between endotypes A 

and B compared to healthy controls onto the interferon gamma signaling pathway (over 

expressed, red up arrows; under expressed, blue down arrows). 

 

Figure 5: Metabolic pathways show robust and distinct gene expression profiles in TB 

patient endotypes. Pathway enrichment scores for Hallmark oxidative phosphorylation (A), 

glycolysis (B), and mTOR signaling (C) in endotypes A and B compared to healthy controls. *** 

denotes p<0.001 in Mann-Whitney unpaired non-parametric two-tailed test. Whiskers denote 

minimum-maximum and dotted line represents the healthy control median.  
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To further evaluate the presence of different endotypes within TB patients, multiplex protein 

data was re-analyzed from an independent cohort of 40 TB patients and 39 healthy controls 

from Eswatini. Rank-sum analysis was implemented to divide the patients into immune hypo-

responsive versus responsive groups based on their production of cytokines and chemokines 

(IFN-γ, TNF, IL-1β, IL-6, CXCL9, and CXCL10) after whole blood stimulation to mitogen 

(phytohemagglutinin) (Figure 7A-B). The TB patient sub-groups (top 50% versus bottom 50%) 

were compared to healthy controls. The hypo-responsive group demonstrated statistically 

lower levels of IFN-γ, TNF, IL-1β, IL-6, CXCL9, and CXCL10 induction, while the immune-

responsive group was statistically similar to the healthy controls (Figure 7C; Mann-Whitney < 

0.007).  

Analysis of chemical compounds signatures for TB endotypes 

A strategy to determine potentially effective drugs against a transcriptome signature is the use 

of the Library of Integrated Network-based Cellular Signatures (LINCS).  Using the gene 

signatures against healthy controls for endotypes A and B, we searched LINCS ranked lists of 

Figure 6: Immune, metabolic, and epigenetic trajectories of different TB endotypes. Pseudotime representation of the trajectory of all 

12,468 commonly evaluated genes (A) in TB endotypes (B). C) Pseudotime heatmap of the differential expression of select immune, metabolic, 

and epigenetic genes based on TB endotype and healthy controls, ordered along the inferred pseudotime. 
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over 5,000 chemical 

compounds to see which 

were similar or dissimilar. 

Similar to the 

contradictory metabolic, 

epigenetic and immune 

signatures, exogenous 

cytokines IL-2 and IFN-γ 

demonstrated 

contradictory connectivity 

scores between 

endotypes A and B. 

Similarly, other previously 

identified candidates for 

host-directed therapy 

(HDT), Vitamin D, 

glucocorticoids, non-

steroidal anti-

inflammatory drugs 

(NSAIDS), 

cyclooxygenase 

inhibitors, retinoids and 

metformin, demonstrated 

contradictory connectivity 

scores between TB 

patient endotypes A and 

B (Figure 8). 

Validation of endotypes 

A and B in TB blood 

RNA-seq cohorts 

Given the importance of 

the IFN-γ pathway 

distinguishing endotype A 

from endotype B, we 

attempted to infer a 

classifier using the 200 

Hallmark IFN-γ pathway 

genes. We applied the endotype A vs B IFN-γ gene classifier on an RNA-Seq validation cohort 

comprised of 172 TB patients and 522 healthy controls (Table 1).  We employed the logistic 

regression method, and applying a 10-fold cross validation in the discovery cohort led to >99% 

Figure 7: Differential cytokine production by TB patient endotypes. Whole blood from TB 

patients (n = 40) and healthy controls (n = 39) was stimulated overnight with or without mitogen 

(PHA), followed by measurement of cytokines and chemokines. (A) Samples were ranked for 

expression of six cytokines to determine an overall rank sum (1 is lowest, with 40 highest). 

Using the rank sum value, TB patients were then split in half into “hypo-responsive” and 

“responsive” groups.  (B) Heatmap of cytokine expression as log2 fold change relative to 

controls. (C) Cytokine protein expression (log2 fold change) is graphed for each sub-group, with 

significance determined by Mann-Whitney non-parametric test. 
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accuracy. Given the 

discovery process of 

endotypes A and B, 

i.e. using the Louvain 

network community 

detection methods, 

such effective 

separations of the 

endotypes via 

machine learning are 

expected. Logistic 

regression classified 

152 TB samples as 

endotype A and 20 as 

endotype B. We 

computed pathway 

enrichment using 

GSEA between each 

of the predicted 

validation subgroups 

and control samples. 

Logistic Regression 

captured the 

significant divergent 

gene expression 

enrichments for 

immune related 

pathways 

(Supplemental Figure 

4). IL2/STAT5, 

IL6/JAK/STAT3, 

inflammatory 

response, IFN- 

signaling, IFN-γ 

signaling, and 

allograft rejection 

were positively 

enriched for endotype A, and they were negatively enriched in endotype B in the discovery 

cohort and in the validation cohort for both classifier methods.  

 

Figure 8. Heatmap of connectivity score for select chemical compounds within the TB endotypes A 

and B based on the Library of Integrated Network-based Cellular Signatures (LINCS). Positive 

connectivity scores represent chemical inducing gene expression profiles similar to the endotype, 

while negative connectivity scores represent chemical compounds inducing gene expression profiles 

antithetical to the endotype.  

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 16, 2020. ; https://doi.org/10.1101/2020.05.13.20100776doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.13.20100776


 10 

DISCUSSION  

In order to identify different distinct molecular sub-categories (endotypes) of host immune 

response against Mtb, we explored publicly available gene expression datasets to identify at 

least two distinct endotypes of host gene expression in TB with opposing immune, metabolic, 

and epigenetic characteristics. The two most predominant TB endotypes display contradictory 

responses to pathways previously thought to be required for mycobacterial immunity. 

Endotype A has upregulation of the IFN-γ and TNF, while both of these cytokine-signaling 

pathways are downregulated in endotype B.   

The most commonly evaluated candidates for correlates of protection against Mtb are IFN-γ 

and TNF and their corresponding signaling pathways. Therefore, it is significant that they are 

contradictory between the two most commonly observed endotypes. Deficiencies in IFN-γ and 

TNF increase the risk for TB progression. However, animal models have demonstrated that 

both IFN-γ and TNF have narrow therapeutic windows with exuberant responses resulting in 

immune-mediated pathology 5,6,10,11,13. Determining appropriateness of the host immune 

response identified in the two largest divergent endotypes is unclear with the limited available 

clinical information and lack of quantified bacillary burden. Theoretically, some individuals with 

endotype A TB have appropriate upregulation of IFN-γ and TNF targeting effector mechanisms 

against Mtb. In contrast, theoretically, some individuals with endotype A have detrimental, 

excessive IFN-γ and TNF inducing pathology. Combining gene expression analysis with 

functional immunology and quantitative measures of Mtb bacillary burden will clarify the 

appropriateness of the immune response between endotypes.  

The link between metabolism, particularly glycolysis, and immune function has been 

appreciated for at least 93 years 39-41. More recently, metabolism has been demonstrated as a 

mediator of the epigenetic mechanisms driving immune function 33-35,42. Therefore, it is of 

particular interest that endotype A displayed upregulation of genes related to metabolism, 

epigenetics and the IFN-γ and TNF signaling, while in contrast endotype B displayed 

downregulation of these pathways. Many candidates for host-directed therapies target these 

pathways. For example, metformin mediates the AKT-mTOR pathway, blunting cellular 

glycolysis leading to inhibition of chromatin conformational changes that ultimately drive 

antigen-induced immune function 33,34. These data suggest that drugs modulating metabolic 

and epigenetic mechanisms may need to be evaluated in an endotype-specific manner.  

Previously identified candidates for HDTs include exogenous IFN-γ, exogenous GM-CSF, 

exogenous TNF, TNF inhibitors,  NSAIDS, Vitamin D, glucocorticoids, mTOR modulators 

(rapamycin, metformin), retinoids, and statins 43. The divergent gene expression profiles 

identified between the two largest TB endotypes suggest a “one-size fits all” HDT approach 

may not be feasible. The in silico analysis demonstrated that previously identified HDTs will 

have contradictory predicted responses in endotype A versus endotype B. If functional studies 

validate one endotype to have decreased immune responsiveness, then vitamin D or 

exogenous recombinant IFN-γ would be appropriate HDT. In contrast, if future validation 
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studies demonstrate one endotype to have pathologic, exuberant immunity, then an NSAID, 

TNF inhibitor or glucocorticoid would be appropriate. Evaluation of candidate HDTs will likely 

need to be endotype-specific and animal and in vitro models are needed to recapitulate the 

clinically relevant endotypes to better evaluate the appropriateness of candidate HDTs. 

All included studies evaluated host gene expression at baseline, without antigenic or other 

stimulation. TB is a chronic infection and induces host immune suppression.  While many 

genes down-stream of IFN-γ are elevated in TB patients at baseline 22,25,44,45, the TB-induced 

immune exhaustion decreases antigen-induced immune upregulation 14,46-48. HIV suppresses 

host immunity. Therefore, the fact that all HIV participants clustered into endotype A1 

(resolution 0.2 and below; Supplemental Figure 1) highlights the trouble with over-inferring 

immune function based on baseline, non-stimulated gene expression measurements. 

Therefore, future studies will need to evaluate the functional capacity of each endotype upon 

antigenic stimulation.  

This study was predominantly derived from publicly deposited data and therefore has multiple 

inherent limitations. Progression to TB is related to the interaction between host, pathogen and 

environmental factors. The progression to a specific endotype of TB is also likely related to 

similar host, pathogen and environment interactions. However, few pathogen characteristics 

and very limited epidemiology are available in existing public data repositories. Epidemiologic 

predispositions likely to drive the divergent host gene expression endotypes include 

malnutrition, HIV, helminth, tobacco use and or indoor biomass fuel exposure. For example, 

despite successful deworming, previous schistosomiasis infection ablates mycobacterial 

immunity and leaves a long-lasting detrimental epigenetic-mediated immune exhaustion 49. 

Another limitation is the lack of cell-specific data. Endotype A had increased neutrophils 

compared to endotype B, one potential explanation why all HIV cases clustered into Endotype 

A1. The defining feature of HIV infection is decreased cell-mediated immunity50, particularly 

decreased IFN-γ production from lymphocytes. Considering previous evidence that neutrophils 

drive the gene expression signatures of TB patients 15, this suggests that cell-specific gene 

expression evaluations of endotype A1 would identify decreased lymphocyte IFN-γ signaling, 

but increased non-lymphocyte IFN-γ signaling. Based on the current data, it is unclear if the 

identified endotypes represent dichotomous groups or a continuous spectrum of host 

immunity. Similarly, the current data in unable to address if individuals are able to transition 

from one endotype to another during the disease process.  

In summary, unbiased in silico analysis of publicly available data on markers of host immunity 

in patients with TB provides detailed evidence about the heterogeneity of immune responses in 

TB patients. Specifically, host gene expression in TB consists of at least two major, distinct 

endotypes with opposing immune, metabolic and epigenetic transcriptomic signatures. These 

observations suggest that despite similar clinical phenotypes, different TB patient endotypes 

display contradictory responses that likely have clinical and pathologic relevance. These 

unique endotypes are likely to differentially benefit from stratified host-directed therapies.  
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 Supplemental Figure 1. Evaluation of HIV status (A), sex (B), age (C), geographic location 

(D) by endotype status at resolution 0. (E) HIV status is also shown at Resolution 0.6. 
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Supplemental Figure 2. Metabolic pathways show robust and distinct gene expression 
profiles in TB patient endotypes. Pathway enrichment scores for KEGG oxidative 
phosphorylation (A), Reactome glycolysis (B), Reactome glucose metabolism (C), and KEGG 
TCA cycle (D) in endotypes A and B compared to healthy controls. *** denotes p<0.001 in 
Mann-Whitney unpaired non-parametric two-tailed test. Whiskers denote minimum-maximum 
and dotted line represents the healthy control median. 
 

 
 

 

Supplemental Figure 3. Deconvolution of whole-blood cell types using CIBERSORT. 
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Supplemental Figure 4. Enrichment of Hallmark Immune Pathways in the validation RNA-Seq 

cohort as compared to the discovery microarray cohort.  
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