
When strong mitigation against a pandemic backfires

Pierre Chaigneau*

Queen’s University

May 12, 2020

Abstract

I introduce social feasibility constraints in a SIR epidemiological model: at any point

in time, the ability of a social planner to impose mitigation measures is limited, but it is

increasing in the proportion of infected individuals. When considering threshold policies

with constant levels of mitigation for a time period, the overall fatality rate in the popula-

tion is non-monotonic in the levels of mitigation: higher levels of mitigation can increase

the overall fatality rate. Intuitively, strong mitigation at a point in time can undermine

the social feasibility of future mitigation.

“When the economists talk the trade-off talk, lots of epidemiologists (and others) find it morally

reprehensible when people are dying.”

Noah Feldman, Bloomberg, April 2 2020.

1 Introduction

Lockdowns have enormous economic costs. Yet their widespread adoption in 2020 has been

justified on the basis that they will reduce contagion from the COVID-19 pandemic, as they

did during the 1918 influenza pandemic (Hatchett, Mecher, and Lipsitch (2007)). The optimal

lockdown policy1 can be derived in a SIR framework as the solution to an optimal control

problem in which a social planner can at any point in time reduce new infections at a cost

(Alvarez, Argente, and Lippi (2020), Piguillem and Shi (2020), Hall, Jones, and Klenow (2020),

Hansen and Troy (2011), Jones, Philippon, and Venkateswaran (2020)). It is well-known that

there is a tradeoff between the fatality rate in the population and the mitigation cost on the

*Email: pierre.chaigneau@queensu.ca. Tel: 613 533 2312.
1People do not fully internalize the effect of their decision on the spread of the virus, which suggests a role

for mandatory lockdowns to address externalities (Eichenbaum, Rebelo, and Trabandt (2020)).
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equilibrium path. On this equilibrium path, slightly more restrictive mitigation will reduce even

further the fatality rate. This notion has driven advocacy for more restrictive lockdowns.

Yet, especially in an unexpected and unprecedented crisis, there is usually a gap between the-

oretically optimal policies and actual policies, Since the beginning of the COVID-19 pandemic,

it has been obvious that many governments face obstacles when putting in place mitigation poli-

cies. This includes noncompliance among the population, especially at times when the perceived

risk of infection is low, and implementation constraints which prevent continuous adjustments

in the level of mitigation. Because of this gap between theoretically optimal and actual policies,

properties of the former do not necessarily apply to the latter.

In this paper, I consider an infectious disease whose evolution can be described by the stan-

dard SIR epidemiological model. In this framework, I study the effect of various threshold

mitigation policies in the presence of social feasibility constraints. The notion of social feasi-

bility encompasses the notions of social acceptance and individual compliance. It varies across

countries: many measures taken by China to suppress COVID-19 might not have been feasible

in other countries including the US.2 In many countries, lockdowns have faced opposition and

have been characterized with widespread noncompliance when the perceived risk of infection was

low.3 Thus, effective mitigation measures can only be put in place under some conditions. To

take this into account, I simply assume that there is an upper bound to the feasible level of miti-

gation which linearly depends on the proportion of infected individuals at a point in time: more

infected individuals imply a higher risk of infection for susceptible individuals, which increases

compliance and acceptance of mitigation measures, all else equal.

Within this framework, a hypothetical social planner can set the level of mitigation by

decreasing the effective contact rate, i.e., the rate at which infected people transmit the disease,

subject to social feasibility. To take into account the stepwise nature of actual mitigation policies,

I consider threshold mitigation policies, which involve a constant mitigation level for a period of

time. I consider “one-step”, “two-steps”, and “three-steps” threshold policies with one, two, and

three levels of mitigation. These policies are consistent with “lockdowns” that were adopted by

many countries in 2020 and followed by milder mitigation, and they can also generate “rolling

lockdowns”.

The main result is that, for a wide range of social feasibility parameters, the overall fatality

rate in the population is non-monotonic in the level(s) of mitigation. Very strong mitigation only

minimizes the fatality rate when social feasibility is very high, and when it is followed in a timely

manner by mild mitigation. Otherwise, reducing the effective contact rate beyond a certain level

increases the overall fatality rate. Whereas a permanent reduction in the effective contact rate

is unequivocally beneficial (“more infectious diseases are worse”), a temporary reduction in the

effective contact rate that will reduce the number of fatalities in the short-term may still increase

2Source: This is what China did to beat coronavirus. Experts say America couldn’t handle it, USA Today

April 1 2020.
3This is related to the notion of “reactive social distancing”, which postulates that individuals spontaneously

alter their behavior in response to increased infection risk (Reluga (2010), Perrings et al. (2014), Yu et al. (2017),

Baker (2020), Toxvaerd (2020)).
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the total number of fatalities. Simply put, “erring on the side of caution” by setting a high level

of mitigation can backfire. This has important implications for the design of mitigation policies

and for the assessment of the policy response to COVID-19.

This surprising result can be explained as follows. With social feasibility constraints, mit-

igation measures must be lifted once the infection rate is sufficiently low. Strong mitigation

measures bring down the infection rate rapidly without largely reducing the proportion of sus-

ceptible individuals. Unless strong mitigation is followed by well-calibrated mild mitigation,

this reduction in the number of infected individuals puts an end to mitigation, which gets the

effective reproduction number R of the disease above 1 and leads to a new spike in infections.

This can result in “stop and go” mitigation, and in a higher overall fatality rate than lower-level

mitigation. This emphasizes a so far overlooked cost of strong mitigation measures: by strongly

reducing the infection rate, they can undermine the social feasibility of future mitigation and

lead to a worse outcome overall.

In contrast to most of the epidemiology literature, which studies specific mitigation measures,

I do not specify the nature of mitigation measures, and instead I only focus on the level of

mitigation. There is a well-established literature on the prevention of influenza and pandemics.

A recent influential paper by Ferguson et al. (2020) analyzes strategies against COVID-19,

including “mitigation” which slows epidemic spread, and “suppression” which aims for very low

levels of infections. They argue that suppression will require strong measures to be put in place

until a vaccine is available, possibly on a “stop and go” basis.

This paper’s contribution to the burgeoning literature on the COVID-19 pandemic and to

the epidemiological economics literature (Perrings et al. (2014)) is to take into account social

feasibility and its consequences for the level and duration of mitigation. This perspective may

help explain why the response to the COVID-19 pandemic and health outcomes varied across

countries, and why a high level of mitigation may be effective in some social contexts but not in

others.

2 Model

The framework relies on the standard SIRD model used in epidemiological research. At any

time t ∈ [0, T ], a population normalized at N = 1 individuals is divided into those susceptible

S(t), infected I(t), recovered R(t), and dead D(t), with N = S(t) + I(t) + R(t) +D(t) ∀t. The

equations of motion for these components of the population are:

dS(t)

dt
= −βS(t)I(t), (1)

dI(t)

dt
= βS(t)I(t)− γI(t), (2)

dR(t)

dt
= γ(1− δ)I(t), (3)

dD(t)

dt
= γδI(t). (4)
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The three parameters are: the effective contact rate β; the removal rate γ; and the death rate

for those infected δ.

We assume that β is not time invariant and can be altered from its baseline level b at a cost.

Specifically, a social planner can take mitigation measures that reduce β by a factor u(t) ∈ [0, 1]

at time t, so that it is:

β(t) ≡ b× (1− u(t)) . (5)

We assume that R(0) = D(0) = 0, so that the fatality rate in the population at time T is:

D(T ) = D(0) +

∫ T

0

D′(t)dt = γδ

∫ T

0

I(t)dt. (6)

The model is calibrated for COVID-19. In the SIRD model, the basic reproduction number

R0, which is the average number of additional infections generated by an infected individual, is

equal to β times the duration of the infectious period. The CEBM at Oxford calculated from

16 studies a mean R0 of 2.65.4 The duration of the infectious period can be estimated to be 15

days on average, so that γ = 1/15 (Byrne et al. (2020)). Without any mitigation (u = 0), this

gives β = b = γR0 ≈ 0.18. Based on the death toll and serological tests in New York city which

indicated that 25 percent of the population had been infected with COVID-19, the fatality rate

for infected individuals is set at 0.5%.5 The level of this parameter is not crucial for the main

results (see section 4.1). Time is measured in days, and time 0 is when 0.1% of the population

is infected.

3 Mitigation policies

3.1 Preliminary analysis

Figure 1 depicts the case with no mitigation, when the effective contact rate is: β(t) = b ∀t.
Without any mitigation, the vast majority of the population gets infected, so that the death

rate in the population, D(T ) = 0.456%, is close to the death rate for infected people (δ = 0.5%).

Figure 1: On the left, I(t) (red), S(t) (blue), and b(t) (black) for u(t) = 0 ∀t and T = 1, 000.
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4“When will it be over?”: An introduction to viral reproduction numbers, R0 and Re, April 14 2020.
5Antibody tests support what’s been obvious: Covid-19 is much more lethal than the flu, Washington Post

April 28 2020.
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Figure 2 displays the case without social feasibility constraints when mitigation with constant

level (u(t) = u1 ∀t) starts when 1% of the population is infected and only ends when 0% of the

population is infected. In this case, unsurprisingly, the level of mitigation that minimizes the

overall fatality rate is u1 = 100%.

Figure 2: D(T ) as a function of mitigation level u(t) = u1 for u1 ∈ [0, 1] and T = 1, 000 when

mitigation starts when 1.0% of the population is infected and ends when 0.0% of the population

is infected. The minimum is reached at u∗1 = 100%, where D(T ) = 0.008%.
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3.2 Social feasibility

This section introduces social feasibility constraints.

China’s early suppression of COVID-19 relied on strong measures, which involved “forcibly

isolating every resident in makeshift hospitals and temporary quarantine shelters.” According

to Huiyao Wang, a senior adviser to China’s government, “You need to isolate people on an

enormous scale.” Chinese officials “cast doubt on whether Americans could do what the Chinese

did, for a mixture of reasons: political will and deep-rooted cultural inclinations among them.”6

According to Lawrence Gostin, a global health law scholar at Georgetown University, “China is

unique in that it has a political system that can gain public compliance with extreme measures.”7

Mitigation measures taken against a pandemic are constrained by social acceptance and by

the willingness of the population to comply. Indeed, “most measures for managing public health

emergencies rely on public compliance for effectiveness.” (O’Malley, Rainford, and Thompson

(2009)). Likewise, Besley and Velasco argue that “Because staying home and forgoing income or

queuing two metres apart all have costs, people will follow lockdown and social distancing orders

only if they view those orders, and the process that lead up to them, as legitimate.”8 In addition,

recent evidence about COVID-19 briefly reviewed in a Supplementary Online Appendix suggests

that the acceptance of strong measures as well as the willingness to comply at any point in time

seems high enough only when the number of infections and deaths is high enough at this time.

A large enough decrease in the level of infection in the population reduces the individual risk

involved in violating or gaming lockdown orders as well as the social stigma attached to such

6Source: This is what China did to beat coronavirus. Experts say America couldn’t handle it, USA Today

April 1 2020.
7Source: China’s aggressive measures have slowed the coronavirus. They may not work in other countries,

Science magazine March 2 2020.
8Source: Politicians can’t hide behind scientists forever – even in a pandemic, LSE blog, May 6 2020.
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actions. Consequently, public authorities face pressure to relax mitigation measures as well as

enforcement issues once the proportion of infected individuals is sufficiently low.

To incorporate these considerations in a simple and transparent manner, I simply assume that

the social planner faces two social feasibility constraints, which are parameterized by {αn, αc}.
First, putting in place a new mitigation policy (switching from u = 0 to u > 0) requires a

sufficiently high level of infection risk, and can only be achieved at time t when:

u(t) ≤ αn × I(t), (7)

where αn ≥ 0. Second, when u(t) > 0, continuing a mitigation policy at time t requires the level

of risk to be sufficiently high, but not as high as the level required to put in place a new policy:

u(t) ≤ αc × I(t), (8)

where αc > αn (see the Supplementary Online Appendix). The simple linear functional form

in equations (7) and (8) allows social feasibility to be described by a small number of easily

interpretable parameters. Both αn and αc are increasing in the acceptance and compliance with

command-and-control instruments in the population, and in the perceived health risk involved

in infection from a particular disease. αn = 0 means that no mitigation is ever possible (i.e.

u(t) = 0 ∀t), whereas infinite values for αn and αc means that there is no social feasibility

constraint.

3.3 One mitigation level

This section considers threshold mitigation policies with one mitigation level, i.e., u can take

two values: 0 and u1 > 0, such that mitigation is in place whenever socially feasible. Mitigation

starts (u = u1) when the proportion of infected individuals I(t) rises above the “mitigation

threshold” corresponding to I(t) = u1
αn

(see equation (7)), and ends (u = 0) when it falls below

the “opening threshold” corresponding to I(t) = u1
αc

(see equation (8)). The social planner

chooses the level of mitigation u1 ∈ [0, 1] to minimize the overall fatality rate in the population

D(T ). Note that the level of mitigation u1 chosen will affect the thresholds that determine

when the mitigation period(s) start and end – the main results also hold when thresholds are

exogeneously given, see the Supplementary Online Appendix.
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Figure 3: On the left, D(T ) as a function of u1 for u1 ∈ [0, 1] and T = 1, 000. On the right, I(t)

(red), S(t) (blue), and b(t) (black) for the level u∗1 of u1 that minimizes the overall fatality rate.

On the first row, αn = 20, αc = 20.1, which gives u∗1 = 39.1%, and D(T ) = 0.367%. On the

second row, αn = 20, αc = 40, which gives u∗1 = 40.5%, and D(T ) = 0.353%. On the third row,

αn = 5, αc = 10, which gives u∗1 = 38.5%, and D(T ) = 0.386%. On the fourth row, αn = 10,

αc = 20, which gives u∗1 = 39.9%, and D(T ) = 0.367%. On the fifth row, αn = 10, αc = 50,

which gives u∗1 = 41.7%, and D(T ) = 0.349%. On the sixth row, αn = 10, αc = 100, which

gives u∗1 = 42.3%, and D(T ) = 0.339%. On the seventh row, αn = 10, αc = 1000, which gives

u∗1 = 59.9%, and D(T ) = 0.316%.
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A well-known lesson of the SIR model and its variants is that new infections at a given

point in time will be less acute when either the number of infected individuals or the number of

susceptible individuals is low. Without mitigation measures, the number of infected individuals

rises sharply at a time when the number of susceptible individuals is still high, resulting in a

very high rate of infections, and ultimately fatalities. Thus, “flattening the curve” is beneficial.

The main finding from the simulations described and depicted in Figure 3 is that, for a variety

of social feasibility parameters {αn, αc}, setting the level of mitigation u1 substantially higher

than a cutoff around 40% does not substantially reduce the fatality rate. Unless mitigation is

highly sustainable over time (αc is very high), setting u1 at a high level will result in a high

fatality rate (see also the left panel in Figure 8 below). In the simulations depicted in Figure

3, the susceptibility curve decreases rather smoothly, and the infection rate remains low after

the mitigation period ends, except in the last case.9 In the last case depicted in Figure 3,

αc = 1000 allows for sustained mitigation. However, even then, at some point in time the

opening threshold is still reached with strong mitigation (u∗1 ≈ 60%). Since the proportion of

susceptible individuals at this point is still high due to the preceding strong mitigation, this

results in a spike in infections which triggers an additional mitigation period.

3.4 Two mitigation levels

This section considers policies with two mitigation levels, i.e., u can take three values: 0,

u1 > 0, and u2 > 0, with 0 ≤ u2 < u1 ≤ 1. Having an additional level of mitigation u2

allows mitigation to continue at a lower level without reaching the opening threshold implicitly

defined in equation (8). Accordingly, acute mitigation starts (u = u1) when the proportion of

infected individuals rises above the “acute mitigation threshold” corresponding to I(t) = u1
αn

(see equation (7)), mild mitigation starts (u = u2) when continuing with acute mitigation would

violate social feasibility in equation (8), i.e., when I(t) falls below u1
αn

(the “mild mitigation

threshold”), and mild mitigation ends (u = 0) when the proportion of infected individuals falls

below the “opening threshold” which is reached when I(t) falls below u2
αc

. The social planner

chooses the levels of mitigation u∗1 ∈ [0, 1] and u∗2 ∈ [0, 1] that minimize the overall fatality rate

in the population D(T ).

Results are in Table 1. As in the previous section, the fatality-minimizing levels of mitigation

are below 100%. In all cases, acute mitigation reduces the proportion I(t) of infected individuals

in the population, then mild mitigation ensures that this proportion remains approximately

constant at a low level until time T . In the first six cases in Table 1, the minimum for D(T )

is reached for u1 ≈ 45% and u2 ≈ 15%. When αc is higher, the social feasibility constraint

in equation (8) is weaker, i.e., mitigation is more sustainable. In the last case in Table 1, a

9According to equation (2), the proportion of infected individuals remains constant or declining over time

(R ≤ 1) if and only if: dI(t)
dt ≤ 0 ⇔ β(t) ≤ γ

S(t) . Using β(t) = b(1− u) from equation (5), the level of mitigation

u such that I(t) is constant or declining over time is: b(1 − u) ≤ γ
S(t) ⇔ u ≥ 1 − γ

bS(t) = 1 − 1
R0S(t)

, where

the last equality uses b = γR0 in a SIR model. Thus, for u = 0 to be consistent with a constant or declining

proportion of infected individuals over time, we must have S ≤ 1
R0

= 38% with R0 = 2.65.
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sufficiently weak social feasibility constraint (αc = 1000) allows a “suppression” strategy to be

successful. This is achieved by strong acute mitigation (u1 ≈ 93%) followed by long-lived mild

mitigation (u2 ≈ 53%), see the right panel in Figure 4. Even in this case, not switching to mild

mitigation would result in the opening threshold being reached at some point, i.e., strong acute

mitigation is not sustainable.

Indeed, in any case, setting the level of mild mitigation u2 too high would reduce the pro-

portion I(t) of infected individuals too quickly, so that it would fall below the opening threshold

prior to time T . As a result, mild mitigation would be lifted while the proportion of susceptible

individuals, and therefore the effective reproduction number R, are still high, which would lead

to a spike in infections. This would substantially increase the fatality rate, until acute mitigation

is once again activated when the acute mitigation threshold is reached.

αn, αc u∗1 u∗2 D(T )

20, 20.1 43.6% 16.2% 0.351%

20, 40 44.4% 13.9% 0.338%

5, 10 45.1% 19.0% 0.371%

10, 20 44.8% 16.6% 0.351%

10, 50 45.8% 13.3% 0.334%

10, 100 46.8% 12.1% 0.325%

10, 1000 92.5% 53.1% 0.117%

Table 1: Fatality-minimizing mitigation levels for several social feasibility parameters.

Figure 4: I(t) (red), S(t) (blue), and b(t) (black), with fatality-minimizing mitigation levels from

Table 1. On the left, αn = 20 and αc = 40. In the middle, αn = 10 and αc = 100. On the right,

αn = 10 and αc = 1000.
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3.5 Three mitigation levels

This section considers policies with three mitigation levels, i.e., u can take four values: 0,

u1, u2, and u3, with 0 ≤ u3 < u2 < u1 ≤ 1. Acute mitigation starts (u = u1) when I(t) rises

above u1
αn

(see equation (7)), mild mitigation starts (u = u2) when continuing with u = u1 would

violate social feasibility in equation (8), i.e., when I(t) falls below u1
αn

, milder mitigation starts
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(u = u3) when continuing with u = u2 would violate social feasibility in equation (8), i.e., when

I(t) falls below u2
αn

, and mitigation ends (u = 0) when I(t) falls below u3
αc

. The social planner

chooses the levels of mitigation u∗1 ∈ [0, 1], u∗2 ∈ [0, 1], and u∗3 ∈ [0, 1] that minimize the overall

fatality rate in the population D(T ).

Results are in Table 2. Again, we find non-monotonic relations between mitigation and the

fatality rate. Only with a very high social tolerance for mitigation policies (αc = 1000) is the

level of acute mitigation u∗1 close to 100%. Even then, such strong mitigation is temporary (see

the right panel in Figure 5), and it would have resulted in a higher fatality rate if it had not

been followed in a timely manner by mild mitigation.

αn, αc u∗1 u∗2 u∗3 D(T )

20, 20.1 45.6% 22.7% 9.6% 0.345%

20, 40 46.5% 19.8% 7.7% 0.332%

5, 10 48.5% 27.1% 12.3% 0.364%

10, 20 47.1% 23.2% 9.8% 0.345%

10, 50 48.6% 19.7% 7.6% 0.329%

10, 100 57.9% 33.2% 17.6% 0.308%

10, 1000 99.9% 55.8% 53.3% 0.104%

Table 2: Fatality-minimizing mitigation levels for several social feasibility parameters.

Figure 5: I(t) (red), S(t) (blue), and b(t) (black), with fatality-minimizing mitigation levels from

Table 2. On the left, αn = 20 and αc = 40. In the middle, αn = 10 and αc = 100. On the right,

αn = 10 and αc = 1000.
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4 Discussion

4.1 Robustness

Our main results are independent of the nature of mitigation measures, the mitigation cost,

and the postulated fatality rate for infected individuals. First, the analysis does not specify

which mitigation measures are taken to reduce the effective contact rate: we focus on the

level of mitigation rather than its specific nature. Second, the results are independent of the
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mitigation cost, which is not considered. The analysis shows that, even with a zero mitigation

cost, an excessive reduction in the effective contact rate could ultimately increase the overall

fatality rate. Third, the main results are independent of the postulated fatality rate for infected

individuals, δ. A higher δ would increase deaths proportionally in all cases (see equation (6)),

so that it would not change the ordering of various cases by fatality rate.

The rest of this section studies the robustness of the results to two important assumptions.

First, results depend on assumptions made in the SIR model, most notably the R0 of the

infectious disease. Figure 6 below is a robustness test in which we assume R0 = 4 and R0 = 5

(instead of R0 = 2.65 in the rest of the analysis), which results in b = 0.26 and b = 0.33 (instead

of b = 0.18), respectively. As shown in Figure 6, an increase in R0 leads to higher fatality-

minimizing mitigation levels, respectively 52.8% and 58.8% (instead of 39.9% with b = 0.18).

Thus, the results change quantitatively but not qualitatively: the overall fatality rate is still

non-monotonic in the mitigation level.

Figure 6: On the left, D(T ) as a function of u1 for u1 ∈ [0, 1] and T = 1, 000. On the right, I(t)

(red), S(t) (blue), and b(t) (black) for the level u∗1 of u1 that minimizes the overall fatality rate.

On both rows, αn = 10 and αc = 20. On the first row, R0 = 4, which gives u∗1 = 52.8%, and

D(T ) = 0.425%. On the second row, R0 = 5, which gives u∗1 = 58.8%, and D(T ) = 0.445%.
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Second, we address the robustness of results to the postulated exogenous ending time of the

pandemic, time T . To take into consideration the fact that time T is unknown and hard to

predict in advance, we now assume that T is uniformly distributed on [T , T ]. We are looking

for the mitigation level u1 that minimizes the expected fatality rate in the population given this

distribution. Formally, we consider the following function of u1:

V (u1) ≡
T∑

T=T

1

T − T
D(u1, T ), (9)
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where the fatality rate in the population at time T is denoted as D(u1, T ) to make clear that it

depends on u1. In Figure 7, we plot V (u1) as a function of u1 ∈ [0, 1]. The fatality-minimizing

mitigation level is very close to previous estimates when T is in-between 1 and 3 years (u∗1 =

39.9%), while it is higher when T could be only six months away at the beginning of the epidemic

(u∗1 = 50.4%). In any case, the fatality rate remains non-monotonic in u1.

Figure 7: V (u1) as a function of u1 for u1 ∈ [0, 1] in the model with αn = 10, αc = 20 and one

mitigation level u1. On the left, T ∼ U [180, 730], and the minimum is reached at u∗1 = 50.4%,

where the expected value of D(T ) is 0.358%. On the right, T ∼ U [365, 1095], and the minimum

is reached at u∗1 = 39.9%, where the expected value of D(T ) is 0.368%.
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4.2 Inefficient policies

For policy design and evaluation purposes, it is instructive to compare the fatality-minimizing

mitigation policies described above with alternative mitigation policies.

On the left panel of Figure 8, the postulated mitigation policy involves excessive mitigation,

which results in a substantially higher overall fatality rate. By excessively slowing the spread of

the pandemic, strong mitigation (u1 = 65%) brings down the proportion of infected individuals

to a level such that the opening threshold is reached. Even though the proportion of infected

individuals is low at this point, the proportion of susceptible individuals is still quite high because

of the preceding strong mitigation. Thus, relaxing mitigation results in additional spikes in

infections which trigger additional periods of mitigation (“stop and go” mitigation or “rolling

lockdowns”).

On the right panel of Figure 8, the mitigation policy which is fatality-minimizing for αn = 10

and αc = 1000 is here inefficiently adopted when αn = 10 and αc = 100. Mitigation is too strong

given the lower social feasibility. This results in a second spike in infections, a second mitigation

period, and a relatively high overall fatality rate.
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Figure 8: I(t) (red), S(t) (blue), b(t) (black), and 100 ×D(t) (purple), for T = 1, 000. On the

left, αn = 20 and αc = 40; u1 is set at 65.0%, which gives D(T ) = 0.399%. On the right, αn = 10

and αc = 100; u1 = 99.9%, u2 = 55.8%, and u3 = 53.3%, which gives D(T ) = 0.376%.
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5 Conclusion

Cricitism of mitigation policies taken in response to the COVID-19 pandemic have mostly

focused on their economic cost. This paper highlights another aspect. If social acceptance of

mitigation policies and individual compliance are only ensured when the infection rate is high

enough, then excessive mitigation can backfire by excessively decreasing the infection rate and

consequently undermining the social feasibility of future mitigation. That is, even without any

explicit mitigation cost, increasing the level of mitigation beyond a certain point can still be

detrimental.

This new effect, presented here in a simple and transparent SIR model, could be incorporated

into more complex models that take into account additional factors as well as local conditions.

The social feasibility constraints could be extended to take a more general form, for example

with time-varying social feasibility parameters, a nonlinear specification, or with additional state

variables besides the rate of infection in the population. The set of feasible policies could also

be extended beyond threshold policies. Finally, it is an open question whether the limited

scope and duration of mitigation policies are in practice primarily dictated by economic costs,

by constraints on the social feasibility of mitigation policies, or by a combination of these two

considerations.
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Social feasibility and COVID-19

In France, it is only after the number of deaths from COVID-19 increased substantially that

citizens started socially distancing, even though the situation in precursor countries such as

China and Italy had been widely reported in the news. In France, “the first day of the national

lockdown [March 17] did not go according to plan. In some big cities (notably Paris), large

crowds could be seen wandering in the streets. Shoppers bustled through the streets; few wore

masks or kept the one-metre distance.” Only after the situation “dramatically worsened” did

compliance increase.10 This was short-lived: a few weeks after the peak in COVID-19 cases

which in France was on March 31, compliance had noticeably decreased, especially in relatively

spared rural areas, and almost two-thirds of French people were ready to resume normal life.11

In California, which was relatively spared from COVID-19 infections and deaths, compliance

with instructions to socially distance was low: “shortly after [Governor] Newsom issued his

directive, crowds packed beaches stretching along California’s coastline (. . . ) Parks were jammed

with visitors and farmers markets bustled with shoppers.”12 By contrast, New York state suffered

a high number of COVID-19 infections and fatalities. Its population was largely compliant with

mitigation measures, especially in the epicenter of the outbreak, New York city.13 Yet, only a few

weeks after mitigation measures started, and after the number of COVID-19 cases and deaths

started declining, the state started facing growing social pressure to lift mitigation measures:

“local leaders [are] anxious to reopen schools and businesses. [New York state Governor Andrew]

Cuomo said he knows local officials are under pressure to act.”14

In several countries, including the US, the UK, France, Spain, and Italy, compliance with

lockdown orders diminished as lockdowns stayed in place and COVID-19 related cases and deaths

declined, a phenomenon referred to as “lockdown fatigue”.15 In the US, where COVID-19 cases

rapidly increased at the end of March and have been on a downward trend since the beginning

of April, cell phone data shows that the level of social distancing at the end of April reverted

to its March 20th level in many states.16 In the UK, a few weeks after the peak on April 8 but

10Source: The French are finally observing lockdown advice – but is it too late? The Guardian March 19 2020.
11Source: À l’approche du déconfinement, il y a de plus en plus de monde dehors, Le Figaro May 2 2020.
12Source: Public Health Officials To Newsom: Lockdown Won’t Work Without Enforcement, Kaiser Health

News, March 26 2020.
13Source: Desolate New York: eerie photos of a ghost metropolis, The Guardian, April 4 2020.
14Source: Cuomo on reopening: Can’t be stupid, more people will die if we’re not smart, Syracuse.com
15Sources: London pedestrian traffic jumps as UK coronavirus lockdown fatigue sets in, City AM, April 28

2020., French public feels lied to as lockdown fatigue grows, Financial Times April 16 2020., Lockdown fatigue

hits as Europe enforces coronavirus restrictions, Financial Times April 1 2020.
16Source: Is quarantine fatigue here? Americans are leaving their homes more and more, cell data shows, USA

Today April 27 2020.
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while the lockdown was still in place, numbers of vehicles on the road increased and visits to

parks “almost returned to normal levels”.17

Social feasibility parameters

We discuss the assumption αc > αn. First, this condition is realistic: all else equal, social

feasibility is usually a greater concern when a new policy is put in place than when it is continued.

Second, this condition is without loss of generality. Indeed, with αc ≤ αn, mitigation could not

start when equation (7) is binding: if it did, when I(t) reaches the point when mitigation can

start with a given positive value for u(t), it is also at a level such that mitigation must end

because of equation (8), a contradiction. Mitigation u can only start and last when I(t) is above

both u
αn

and u
αc

(see equations (7) and (8)), so that there is no loss of generality in setting

αc ≥ αn. Moreover, with αc = αn: either mitigation starts when equation (7) is binding, but

then it would end at the same time as it would start, i.e., there is no mitigation; or mitigation

could start when equation (7) is not binding, but this is equivalent to having αc > αn.

Exogenous thresholds

We study what happens when the mitigation threshold and the opening threshold are inde-

pendent of the mitigation level u1, for example because they are set in advance or because the

social planner has a “window of opportunity” to engage in mitigation. In Figure 9, we simply

use the thresholds that would correspond to αc = 10 and αn = 20 with u1 = 40%, and hold

these thresholds constant. That is, the mitigation level only has an effect on the intensity of

mitigation, but not on the mitigation period(s). The simulation depicted in Figure 9 shows that

the overall fatality rate is still non-monotonic in the level of mitigation u1, and is minimized at

u∗1 = 40.8%.

Figure 9: The mitigation threshold is 4% and the opening threshold is 2%. On the left, D(T )

as a function of u1 for u1 ∈ [0, 1] and T = 1, 000. On the right, I(t) (red), S(t) (blue), and b(t)

(black) for u∗1 = 40.8%, which gives D(T ) = 0.367%.
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17Coronavirus: Eight ways the lockdown has changed the UK, BBC News, May 1 2020.
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Two mitigation levels: additional analysis

Figure 10: On the left, D(T ) as a function of u1 ∈ [0, 1] (horizontal axis) and u2 ∈ [0, 1]

(vertical axis), and T = 1, 000. On middle left, D(T ) as a function of u1 ∈ [0, 1] for u2 ∈
{0.1, 0.2, 0.3, 0.4, 0.5, 0.53} and T = 1, 000. On middle right, D(T ) as a function of u2 ∈ [0, 1] for

u1 ∈ {0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, and T = 1, 000. On the right, I(t) (red), S(t) (blue), and b(t)

(black) for the levels u∗1 and u∗2 of u1 and u2 that minimize the overall fatality rate – see Table

1. On the first row, αn = 10 and αc = 20. On the second row, αn = 20 and αc = 40. On the

third row, αn = 10 and αc = 100. On the fourth row, αn = 10 and αc = 1000.
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End time T : additional analysis

In Figure 11 below, we calculate the value u∗1 of u1 that minimizes the overall fatality rate

in the population D(t) in 1,000 simulations where T is uniformly distributed on [180, 1460] and

is known ex-ante. We find that u∗1 is close to 40% in around 80% of cases, and the highest value

of u∗1 is 59.1%.

Figure 11: Below are the ordered values of u1 that minimize D(T ) in the model with αn = 10,

αc = 20 and one mitigation level u1, with 1,000 simulations involving different values of T when

T is uniformly distributed on [180, 1460] and the realized value of T is known at the time of

setting u1.
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