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Abstract 

The new coronavirus disease 2019 (COVID-19) has been emerged as a rapidly spreading pandemic. The disease is 
thought to spread mainly from person-to-person through respiratory droplets produced when an infected person coughs, 
sneezes, or talks. The pathogen of COVID-19 is the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It 
infects the cells binding to the angiotensin-converting enzyme 2 receptor (ACE2) which is expressed by cells throughout 
the airways as targets for cellular entry. Although the majority of persons infected with SARS-CoV-2 experience 
symptoms of mild upper respiratory tract infection, in some people infections of the peripheral airways result in severe, 
potentially fatal pneumonia. However, the induction of COVID-19 pneumonia requires that SARS-CoV-2 reaches the 
peripheral airways. While huge efforts have been made to understand the spread of the disease as well as the pathogenesis 
following cellular entry, much less attention is paid how SARS-CoV-2 from the environment reach the receptors of the 
target cells. The aim of the present study is to characterize the deposition distribution of SARS-CoV-2 in the airways 
upon exposure to cough-generated aerosol. For this purpose, the Stochastic Lung Deposition Model has been applied. 
Aerosol size distribution and breathing parameters were taken from the literature supposing normal breathing through the 
nose. We found that the probability of direct infection of the peripheral airways due to inhalation of aerosol generated by 
a bystander cough is very low. As the number of pathogens deposited in the extrathoracic airways is ~10 times higher 
than in the peripheral airways, we concluded that in most cases COVID-19 pneumonia must be preceded by SARS-CoV-
2 infection of the upper airways. Our results suggest that without the enhancement of viral load in the upper airways, 
COVID-19 would be much less dangerous. The period between the onset of initial symptoms and the potential clinical 
deterioration could provide an opportunity for prevention of pneumonia by blocking or significantly reducing the 
transport of viruses towards the peripheral airways. Coughing into a tissue or cloth even at home in order to absorb the 
emitted aerosol is highly recommended to avoid the continuous re-inhalation of own cough. 
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1 Introduction 

The new coronavirus disease 2019 (COVID 19) has been emerged as a rapidly spreading pandemic 
(1) originating from Wuhan, China (2). There are currently few studies that define the 
pathophysiological characteristics of COVID-19, and there is great uncertainty regarding its 
mechanism of spread (3). However, the disease is thought to spread i) mainly from person-to-person, 
who are in close contact with one another (within about 2 m) ii) through respiratory droplets 
produced when an infected person coughs, sneezes or talks iii) which can land in the mouths or noses 
of people who are nearby or possibly be inhaled into the lungs (4). Virological assessment of 
COVID-19 also suggests that the transmission is droplet-, rather than fomite-, based (5). 

The pathogen of COVID 19 is the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
(6), which infects the cells binding to the angiotensin-converting enzyme 2 receptor (ACE2) (7) 
primarily in the respiratory system. Cells expressing ACE2 can be found throughout the airways (8), 
and therefore, cellular entry of SARS-CoV-2 can also take place throughout the airways (9). 
Although the majority of persons infected with SARS-CoV-2 experience symptoms of mild upper 
respiratory tract infection, in some people infections of the peripheral airways result in severe 
pneumonia potentially leading to significant hypoxia with acute respiratory distress syndrome 
(ARDS) and death. However, the induction of COVID-19 pneumonia and ARDS requires that 
SARS-CoV-2 reaches the lower airways. 

While huge efforts have been made to understand the spread of the disease as well as the 
pathogenesis following cellular entry of SARS-CoV-2, much less attention is paid how viruses from 
the environment reach the receptors of the target cells in the respiratory system. The aim of the 
present study is to characterize the deposition distribution of pathogens in the airways upon exposure 
to cough-generated aerosol and discuss its consequences on the pathogenesis of the disease. 

2 Methods 

For this purpose, the most recent version of the Stochastic Lung Deposition Model has been applied 
(10). It was originally developed by Koblinger and Hofmann (11) and continuously extended during 
the last three decades (12,13). In this model, the geometry of the airways along the path of an inhaled 
particle is selected randomly based on statistical analysis of large anatomical databases (14,15), while 
deposition probabilities are computed by deterministic formulae considering inertial impaction, 
gravitational settling and Brownian diffusion. The deposition probability in the extrathoracic airways 
is determined by an empirical deposition formula (16). More details on the Stochastic Lung 
Deposition Model can be found here (10–13). The deposition model was previously validated against 
in vivo airway deposition measurements. 

The model computes the fraction of inhaled particles that deposit in each anatomical region of the 
lungs. In addition, it also yields the deposition fraction as a function of airway generation number1. 
The fraction of inhaled mass in different anatomical regions and airway generations can also be 
obtained, which is particularly useful if the pathogen concentration in the coughed material is 

                                                 
1 The first airway generation consists of the trachea and the first half the of the main bronchi. The 
second airway generation consists of the second half of the main bronchi and the first half of their 
daughters, and so on. 
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supposed to be independent on the particle size. These fractions are quantified for a full breathing 
cycle supposing normal breath through the nose. 

Functional residual capacity of 3300 cm3, tidal volume of 750 cm3, and breathing frequency of 
12 min-1 were taken from the Human Respiratory Tract Model of the International Commission on 
Radiological Protection corresponding to an adult man in sitting position  (17) and applicable for 
normal breath if the spine is in vertical position. It was supposed that the duration of inhalation is 1.9 
s followed by 0.1 s breath hold, and exhalation lasts for 2 s followed by a 1-second-long breath hold. 

Besides the geometry and the flow conditions in the airways, the lung deposition of the aerosol 
particles is determined by their aerodynamic properties which depends on many parameters (e.g. size, 
shape, morphology, density etc.). Lindsey at al. measured the number size distributions of cough-
generated aerosol particles by means of a combined wide range aerosol particle spectrometer (optical 
particle counter and scanning mobility particle sizer system), when patients with influenza cough 
(18). Although it is a different disease, the virus size as well as the mechanism of aerosol generation 
during dry cough is similar in case of COVID-19 and influenza, so we used these data. The mass size 
distribution was obtained from the concentration, number size distribution and density of cough-
generated particles. For the calculations we assumed, that the particles are spherical and their 
physical size is equal to their measured optical size. The mass size distribution is plotted in Figure 1. 

 

Figure 1. Mass size distribution of particles emitted by coughing of patients with influenza (18). This mass size 
distribution was used as input in the Monte-Carlo simulations. 

The cough-generated particles may travel great distance if the meteorological conditions (air velocity, 
temperature, humidity) are favorable (19). During the flight the particles may evaporate or fall down 
by gravitational settling. Therefore, the present simulations apply only to one of supposed major 
transmission routes, when a bystander subject (within a 1-m-distance) directly inhales the cough-
generated aerosol (4). If the inhalation takes place more distant from the source in space or time, then 
the size distribution has to be measured near to the subject inhaling the emitted particles. 

In a recent study, it was found that virus concentration varies highly in throat swab and sputum 
samples of SARS-CoV-2-infected patients with a maximum concentration exceeding 1011 RNA 
copies per cm3, while the median values are in the order of 105 - 106 copies per cm3 (20). Values 
along this wide range were used to obtain upper estimate for pathogen number in different lung 
regions and airway generations. Other studies provided similar range for viral loads (5,21). It is 
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important to note however that the number of viruses capable of infection is much lower than the 
number of RNA copies. In a recent study, viruses could not be isolated from samples that contained 
less than 106 RNA copies per cm3 (5). 

We supposed that the virus concentration is independent on the particle size. It means that the 
number of pathogens is directly proportional to the mass of the particles. It is an appropriate 
approximation in locations close to the source only, because evaporation increases the virus 
concentrations in aerosol particles, and evaporation rate strongly depends on the particle size. 

3 Results 

As the infection with SARS-CoV-2 causes very different symptoms depending on the infected 
region, first we focus on the regional deposition distribution. Figure 2 shows that while 61.8% of the 
inhaled mass is filtered out by the upper airways, significant fractions deposit in the bronchial 
(~5.5%) and acinar airways (~8.5%). Considering the average particle number concentration in the 
material coughed (29,600 dm-3), the tidal volume (0.75 dm3), and the mean particle mass (4.6 pg), it 
can be calculated that a single inhalation results in 63 ng material depositing in the extrathoracic 
airways, while 5.6 ng and 8.6 ng deposit in the bronchial and acinar airways, respectively. 

 

Figure 2. Mass deposition fraction of inhaled particles (left axis) and deposited mass from a single inhalation (right axis) 
in the extrathoracic, bronchial and acinar regions of the lungs. 

In a subtler subdivision of the intrathoracic airways, one can distinguish peripheral airways (all acinar 
airways except the first four generations, i.e. the bronchiolus respiratorius region), small airways 
(with a diameter smaller than 2 mm except the peripheral airways), and large airways (with a 
diameter larger than 2 mm). Figure 3 shows the mass deposition fractions and deposited mass from a 
single inhalation in these airways. While 2.7 ng and 5.7 ng material deposit in the large and small 
airways, respectively, 5.8 ng reach the peripheral airways, and deposit there. It may be also of interest 
that 2.9 ng material deposits in the bronchiolus respiratorius region. 
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Figure 3. Mass deposition fraction of inhaled particles (left axis) and deposited mass from a single inhalation (right axis) 
in the large, small, and peripheral airways. 

The Stochastic Lung Deposition Model is able to determine the deposition fraction and deposited 
mass as the function of airway generation number. Figure 4 shows that in terms of deposited mass the 
most affected part of the acinar airways is the 19th and 20th airway generations, which means that 
most of the pathogens penetrating the extrathoracic airways will pass 19 bifurcations before 
depositing. In the bronchial region, the highest amount deposit in the 12th airway generation. The 
acinar peak is more than three-fold higher than the bronchial one. However, the difference in 
deposition density is much smaller as the surface of the airways strongly increases with the 
generation number. 

 

Figure 4. Mass deposition fraction of inhaled particles (left axis) and deposited mass from a single inhalation (right axis) 
as the function of airway generation number. 

In order to estimate the amount of deposited pathogens in different parts of the airways, viral RNA 
concentrations measured by Pan et al. (20) was used. They found that the viral loads ranged from 641 
RNA copy per cm3 to 1.34 × 1011 RNA copy per cm3 with a median of 7.99 × 104 and 7.52 × 105 
RNA copy per cm3 in throat swab and sputum samples, respectively. In order to obtain an upper 
estimate for the pathogen concentration in the material emitted by dry coughing, the concentrations in 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 16, 2020. ; https://doi.org/10.1101/2020.05.13.20100057doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.13.20100057


  SARS-CoV-2 deposition in the airways 

 
6 

the throat have to be taken into account. Therefore, the former of the median values is considered. 
Using the density from Lindsey et al. (18), these data can be converted to virus concentrations in unit 
mass resulting in viral loads ranging from 376 RNA copy per g to 7.86 × 1010 RNA copy per g with a 
median of 4.69 × 104 RNA copy per g in throat swab samples. 

Combining the median value in sputum samples with the regional deposition distribution data, it can 
be found that about 4000 breathing cycles are required to result in one deposited copy of RNA in the 
peripheral airways accompanied by 12 copy depositing in the extrathoracic, and one RNA depositing 
in the bronchial airways. Taking into account the maximal measured concentration of 1.34 × 1011 
RNA copy per cm3, it can be obtained that from a single inhalation 4900 copy of RNA deposit in the 
extrathoracic airways, and 460 copy of RNA deposit in the peripheral airways. Considering that the 
concentration of viruses capable of infection is about one millionth of the RNA copy concentration 
(5), the probability of direct infection of the peripheral airways from inhalation of cough-generated 
aerosol is very low. 

4 Discussion 

It seems to be surprising that inhalation of aerosol generated by coughing of someone with viral loads 
of 4.69 × 104 RNA copy per g results in negligible amount of RNA copies, around 2.5 × 10-4 in the 
peripheral airways of a bystander person. The reason for this fact is that the mass of inhaled material 
is low, and therefore the absolute number of pathogens is also low. Figure 5 shows the average 
number of RNA copies per aerosol particle as well as the probability that a particle contains at least 
one RNA copy of the virus as the function of particle size.  

We assumed homogenous virus distribution in the initial throat swab sample, and that the number of 
viruses in a particle is proportional to its mass. The probability that a particle contains at least one 
RNA copy of the virus was calculated assuming Poisson distribution. The graph clearly shows that 
the probability that a particle contains a virus is relatively low in the submicrometer size range, even 
at very high virus concentrations in the throat. 

 

Figure 5. The average number of RNA copies of the virus in one particle (dash lines) and the probability that a particle 
contains at least one virus copy (solid lines) as the function of particle size in case of different initial virus concentrations 

in the throat (different colours). 
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Independently on the virus concentration in the inhaled air, it can be concluded that about 10 times 
more pathogens deposit in the extrathoracic airways than in the peripheral airways. It is in agreement 
with the clinical observation that the typical first respiratory symptom of COVID-19 is dry cough 
(22,23), which is often caused by upper respiratory infections. In addition, anosmia and ageusia have 
also been reported suggesting infection of cells in the upper airways (5,24,25).  

It was also found here that material emitted by coughing directly reaches the peripheral airways. 
Therefore, inhalation of air after a bystander cough can theoretically induce pneumonia without the 
need for preceding upper respiratory symptoms. Based on the present study, however, such direct 
induction of COVID-19 pneumonia requires either very large virus concentrations in the aerosol 
particles or very long exposures to coughing. The latter underlines that even at home it is very 
important to cough into a tissue or cloth in order to absorb the emitted aerosol, and avoid the re-
inhalation of own cough. Reducing the re-inhalation could then significantly prolong, or even block 
the onset of further, more severe phases of the COVID-19 disease.  

The results suggest that inhalation of cough-generated aerosol containing SARS-CoV-2 results in 
only an upper airway infection directly, which can later develop into pneumonia. It is in agreement 
with the clinical observation that some patients who have mild symptoms initially will subsequently 
have precipitous clinical deterioration that occurs approximately one week after symptom onset 
(22,23,26). It is also in agreement with a recent virological analysis of nine mild cases of COVID-19 
providing proof of active replication of the SARS-CoV-2 virus in tissues of the upper respiratory 
tract (5). They found very high concentration of viral RNA in and isolated the virus itself from early 
throat swabs. Our results suggest that without the enhancement of virus concentrations in the upper 
airways SARS-CoV-2 would be much less dangerous. In another study, nasal epithelial cells were 
found to show the highest expression of ACE2 among all investigated cell types in the respiratory 
system (9), which together with the deposition fraction synergistically increase the probability of 
upper respiratory infections. 

From the throat where high virus concentration can be found in patients with mild symptoms (5), 
pathogens can be transported either via the cardiovascular or the respiratory system. As SARS-CoV-
2 genome could not be detected in the blood of patients with mild symptoms (27), transport via the 
respiratory system can be the dominant route. Potential mechanisms of virus transport from the throat 
to the lower airways may include re-inhalation of own cough, aerosol generation in the throat during 
inhalation by resuspension, pathogen transport on the surface of the bronchial airways, or gradual 
infection of neighboring cells expressing ACE2 towards the periphery. Mucociliary clearance can 
inhibit the latter two processes suggesting that compromised mucus production or transport can be a 
risk factor for COVID-19 pneumonia. Understanding the processes leading from infections of the 
upper airways to pneumonia in COVID-19 patients may help to identify early treatment and 
prevention strategies, and provide further insights on the long incubation period. 

5 Conclusions 

In order to quantify the deposition distribution of cough-generated aerosol containing SARS-CoV-2 
viruses, we applied the Stochastic Lung Deposition Model. It was found here that the probability of 
direct infection of the peripheral airways due to inhalation of aerosol by a bystander cough is very 
low. As the number of pathogens deposited in the extrathoracic airways is 10 times higher than in the 
peripheral airways, we concluded that in most cases COVID-19 pneumonia must be preceded by 
SARS-CoV-2 infection of the upper airways. The one week difference observed in several patients 
between the onset of their initial mild symptoms and precipitous clinical deterioration (22,23,26) 
provides a precious window for prevention of pneumonia and ARDS by blocking or significantly 
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reducing the transport of the virus towards the peripheral airways. Therefore, coughing into a tissue 
or cloth even at home in order to absorb the emitted aerosol is highly recommended to avoid the 
continuous re-inhalation of own cough. Further research is required to understand the processes 
leading from infections of the upper airways to pneumonia in COVID-19 patients. 

6 Conflict of Interest 

The authors declare that the research was conducted in the absence of any commercial or financial 
relationships that could be construed as a potential conflict of interest. 

7 Funding 

The authors received no funding for this research. 

8 Acknowledgments 

The authors thank Tibor Kerényi, 2nd Department of Pathology, Semmelweis University, Budapest, 
Hungary, and Lajos Kovács and Dóra Krikovszky, 1st Department of Paediatrics, Semmelweis 
University, Budapest, Hungary for the helpful discussions. 

9 References 

1.  World Health Organization. WHO announces COVID-19 outbreak a pandemic. (2020) 
Available at: http://www.euro.who.int/en/health-topics/health-emergencies/coronavirus-covid-
19/news/news/2020/3/who-announces-covid-19-outbreak-a-pandemic [Accessed May 9, 2020] 

2.  Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y, et al. 
Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia 
in Wuhan, China: a descriptive study. The Lancet (2020) 395:507–513. doi:10.1016/S0140-
6736(20)30211-7 

3.  Sohrabi C, Alsafi Z, O’Neill N, Khan M, Kerwan A, Al-Jabir A, Iosifidis C, Agha R. World 
Health Organization declares global emergency: A review of the 2019 novel coronavirus 
(COVID-19). International Journal of Surgery (2020) 76:71–76. doi:10.1016/j.ijsu.2020.02.034 

4.  CDC. Coronavirus Disease 2019 (COVID-19) - Transmission. Centers for Disease Control and 
Prevention (2020) Available at: https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-
sick/how-covid-spreads.html [Accessed May 4, 2020] 

5.  Wölfel R, Corman VM, Guggemos W, Seilmaier M, Zange S, Müller MA, Niemeyer D, Jones 
TC, Vollmar P, Rothe C, et al. Virological assessment of hospitalized patients with COVID-
2019. Nature (2020)1–5. doi:10.1038/s41586-020-2196-x 

6.  Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, et al. A 
Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med (2020) 
382:727–733. doi:10.1056/NEJMoa2001017 

7.  Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, 
Herrler G, Wu N-H, Nitsche A, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and 
TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell (2020) 181:271-
280.e8. doi:10.1016/j.cell.2020.02.052 

8.  Hamming I, Timens W, Bulthuis M, Lely A, Navis G, van Goor H. Tissue distribution of ACE2 
protein, the functional receptor for SARS coronavirus. A first step in understanding SARS 
pathogenesis. J Pathol (2004) 203:631–637. doi:10.1002/path.1570 

9.  Sungnak W, Huang N, Bécavin C, Berg M, Queen R, Litvinukova M, Talavera-López C, Maatz 
H, Reichart D, Sampaziotis F, et al. SARS-CoV-2 entry factors are highly expressed in nasal 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 16, 2020. ; https://doi.org/10.1101/2020.05.13.20100057doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.13.20100057


   SARS-CoV-2 deposition in the airways 

 
9 

epithelial cells together with innate immune genes. Nat Med (2020) 26:681–687. 
doi:10.1038/s41591-020-0868-6 

10.  Füri P, Farkas Á, Madas BG, Hofmann W, Winkler-Heil R, Kudela G, Balásházy I. The degree 
of inhomogeneity of the absorbed cell nucleus doses in the bronchial region of the human 
respiratory tract. Radiat Environ Biophys (2020) 59:173–183. doi:10.1007/s00411-019-00814-0 

11.  Koblinger L, Hofmann W. Monte Carlo modeling of aerosol deposition in human lungs. Part I: 
Simulation of particle transport in a stochastic lung structure. Journal of Aerosol Science (1990) 
21:661–674. doi:10.1016/0021-8502(90)90121-D 

12.  Balashazy I, Alfoldy B, Molnar A, Hofmann W, Szoke I, Kis E. Aerosol Drug Delivery 
Optimization by Computational Methods for the Characterization of Total and Regional 
Deposition of Therapeutic Aerosols in the Respiratory System. CAD (2007) 3:13–32. 
doi:10.2174/157340907780058727 

13.  Füri P, Hofmann W, Jókay Á, Balásházy I, Moustafa M, Czitrovszky B, Kudela G, Farkas Á. 
Comparison of airway deposition distributions of particles in healthy and diseased workers in an 
Egyptian industrial site. Inhalation Toxicology (2017) 29:147–159. 
doi:10.1080/08958378.2017.1326990 

14.  Haefeli-Bleuer B, Weibel ER. Morphometry of the human pulmonary acinus. Anat Rec (1988) 
220:401–414. doi:10.1002/ar.1092200410 

15.  Raabe OG, Yeh HC, Schum GM, Phalen RF. Tracheobronchial geometry: human, dog, rat, 
hamster. Albuquerque, New Mexico: Lovelace Foundation (1976). 

16.  Cheng YS. Aerosol Deposition in the Extrathoracic Region. Aerosol Sci Technol (2003) 
37:659–671. doi:10.1080/02786820300906 

17.  International Commission on Radiological Protection (ICRP). Human respiratory tract model 
for radiological protection. ICRP Publication 66. Ann ICRP (1994) 24:1–482. 

18.  Lindsley WG, Pearce TA, Hudnall JB, Davis KA, Davis SM, Fisher MA, Khakoo R, Palmer JE, 
Clark KE, Celik I, et al. Quantity and Size Distribution of Cough-Generated Aerosol Particles 
Produced by Influenza Patients During and After Illness. Journal of Occupational and 
Environmental Hygiene (2012) 9:443–449. doi:10.1080/15459624.2012.684582 

19.  Fabian P, McDevitt JJ, DeHaan WH, Fung ROP, Cowling BJ, Chan KH, Leung GM, Milton 
DK. Influenza Virus in Human Exhaled Breath: An Observational Study. PLoS ONE (2008) 
3:e2691. doi:10.1371/journal.pone.0002691 

20.  Pan Y, Zhang D, Yang P, Poon LLM, Wang Q. Viral load of SARS-CoV-2 in clinical samples. 
The Lancet Infectious Diseases (2020) 20:411–412. doi:10.1016/S1473-3099(20)30113-4 

21.  Zou L, Ruan F, Huang M, Liang L, Huang H, Hong Z, Yu J, Kang M, Song Y, Xia J, et al. 
SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients. N Engl J Med 
(2020) 382:1177–1179. doi:10.1056/NEJMc2001737 

22.  Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, et al. Clinical 
features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet (2020) 
395:497–506. doi:10.1016/S0140-6736(20)30183-5 

23.  Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, Huang H, Zhang L, Zhou X, Du C, et al. Risk 
Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With 
Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern Med (2020) 
doi:10.1001/jamainternmed.2020.0994 

24.  American Academy of Otolaryngology-Head and Neck Surgery. AAO-HNS: Anosmia, 
Hyposmia, and Dysgeusia Symptoms of Coronavirus Disease. American Academy of 
Otolaryngology-Head and Neck Surgery (2020) Available at: 
https://www.entnet.org/content/aao-hns-anosmia-hyposmia-and-dysgeusia-symptoms-
coronavirus-disease [Accessed May 4, 2020] 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 16, 2020. ; https://doi.org/10.1101/2020.05.13.20100057doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.13.20100057


  SARS-CoV-2 deposition in the airways 

 
10 

25.  Giacomelli A, Pezzati L, Conti F, Bernacchia D, Siano M, Oreni L, Rusconi S, Gervasoni C, 
Ridolfo AL, Rizzardini G, et al. Self-reported Olfactory and Taste Disorders in Patients With 
Severe Acute Respiratory Coronavirus 2 Infection: A Cross-sectional Study. Clin Infect Dis 
doi:10.1093/cid/ciaa330 

26.  Gandhi RT, Lynch JB, del Rio C. Mild or Moderate Covid-19. N Engl J Med 
(2020)NEJMcp2009249. doi:10.1056/NEJMcp2009249 

27.  Corman VM, Rabenau HF, Adams O, Oberle D, Funk MB, Keller�Stanislawski B, Timm J, 
Drosten C, Ciesek S. SARS-CoV-2 asymptomatic and symptomatic patients and risk for 
transfusion transmission. Transfusion (2020) doi:10.1111/trf.15841 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 16, 2020. ; https://doi.org/10.1101/2020.05.13.20100057doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.13.20100057

