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Abstract 

In February 2020, Italy became the epicentre for COVID-19 in Europe and at the beginning of 

March, in response to the growing epidemic, the Italian Government put in place emergency 

measures to restrict the movement of the population. Human mobility represents a crucial 

element to be considered in modelling human infectious diseases. 

In this paper, we examined the mechanisms underlying COVID-19 propagation using a Susceptible-

Infected stochastic model (SI) driven mainly by commuting network in Italy. We modelled a 

municipality-specific contact rate to capture the disease permeability of each municipality, 

considering the population at different times of the day and describing the characteristic of the 

municipalities as attractors of commuters or places that make their workforce available 

elsewhere. 

The purpose of our analysis is to provide a better understanding of the epidemiological context of 

COVID-19 in Italy and to characterize the territory in terms of vulnerability at local or national 

level. The use of data at such a high spatial resolution allows highlighting particular situations on 

which the health authorities can promptly intervene to control the disease spread. 

Our approach  provides decision-makers with useful geographically detailed metrics to evaluate 

those areas at major risk for infection spreading and for which restrictions of human mobility 

would give the greatest benefits, not only in the beginning of the epidemic but also in the last 

phase, when the risks deriving from the gradual lockdown exit strategies must be carefully 

evaluated.  
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Introduction 

On 31 December 2019, the Chinese Country Office of the World Health Organization (WHO) was 

informed about cases of pneumonia of unknown etiology in residents of Wuhan City, Hubei 

Province of China [1]. Later defined as a new disease (COVID-19) caused by a novel coronavirus 

(SARS-CoV-2), the epidemic was declared by WHO a public health emergency of international 

concern on 30 January and a “pandemic” on 11 March. In February 2020, Italy became the 

epicentre for COVID-19 in Europe and on the 22 February the Italian Government imposed a 

lockdown in hotspot areas in Lombardy and Veneto region [2,3]. On 9 March 2020, in response to 

the growing epidemic, emergency measures restricting the movement of the population (except 

for essential work categories and health reasons), were extended to the entire country. 

Human mobility represents a crucial element to be considered in modelling human infectious 

diseases and the main factors influencing mobility patterns and magnitude depend on the 

considered scale (global, national, local). At global level, the study of air traffic connections may 

provide good indications for predicting the worldwide spread of a human infectious disease [4,5]. 

At a local scale other types of movement must be taken into account. Recently, various studies 

have been carried out to evaluate how different human mobility data, such as mobility data by 

Google or data collected through mobile phone, can guide government and public health 

authorities to evaluate the effectiveness of measures to control the COVID-19 spread [6,7]. 

However, commuting, defined as the daily movements from residence to work or school, is 

certainly the most relevant and widely studied factor to describe spatial mobility in local models 

[8–10].  

In this paper, we analyse the commuting flows in Italy, using census data (ISTAT 2011) [11], in 

order to assess its contribution in spreading the COVID-19 at the beginning of the epidemic. 

We first calculated Social Network Analysis (SNA) centrality measures at province level, and then 

we examined the underlying mechanisms of propagation using a stochastic Susceptible-Infected 

(SI) model mainly driven by commuting network and applied to a revised conceptualization of the 

contact rate parameter. We modeled a municipality-specific contact rate to capture the 

vulnerability to the disease of each municipality, considering the population in different times of 

the day and considering the characteristic of municipalities as attractor of commuters or displacing 

their workforce elsewhere.  
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The aim of our analysis is to provide a better understanding of the epidemiological context of 

COVID-19 in Italy, and to characterize the territory in terms of vulnerability either at local or 

national level. The objective is not to precisely estimate the exact number of cases or the 

magnitude of the epidemic in absolute manner, but to understand how the disease can spatially 

and temporally spread countrywide. In particular, we illustrated three scenarios: in the first 

scenario, the model estimates the disease transmission by calculating the expected number of 

cases and municipalities affected by the virus between 26 February and 6 March. We focused on 

the first ten days of the epidemic because most of the impact that commuting may have had is 

before the application of the lockdown measures. In the second scenario we explore and compare 

the spread patterns in three different regions (Lombardy, Abruzzi and Basilicata), which were 

differently affected by the COVID-19 spread. In scenario 3, the local spread in the Abruzzi region is 

simulated to define the vulnerability of each municipality to a resurgence of the COVID-19 

epidemic during future partial or total easing of the lockdown measures. 

This approach could help Health Authorities and policy makers to implement and direct the right 

interventions to contain the rapid expansion of the emergency. This contribution, although based 

on the current epidemic, will provide useful elements for other influenza-like epidemics that might 

happen in the future.  

 

Material and methods 

Demography and commuting Network 

To analyse the Italian commuting network we used census data collected in 2011 [11]. All data is 

obtained at municipality level. About half of the 60 million people living in Italy declared a daily 

movement to their usual place of study or work. 

After adjusting the geographical dataset of the Italian municipalities according to the 

modifications occurred after 2011, the matched commuting dataset contains 7,915 municipalities, 

a resident population of 60,340,328 and 28,805,440 commuters – within (17,497,742) and 

between (11,307,698) municipalities.   

Commuting flows directed to or coming from abroad are not considered in the analysis. Figure 1 

shows the distributions of the Italian population (a) and commuters (b). 
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Figure 1. Distribution of the Italian population (a) and of daily commuters (b) at municipality level. Source ISTAT.  

A commuting network is generated by creating a direct weighted edge between two nodes, 

represented by the municipalities of origin and destination. The weight indicates the number of 

commuters traveling on that connection in a typical working day (Figure 2a). The resulting network 

is composed by 7,915 nodes and 539,223 edges.  

Then, the commuting network is rescaled at province level (the lowest NUTS level - Nomenclature 

of Territorial Units for Statistics, NUTS 3)  in order to compare the results of the network analysis 

with the COVID-19 cases as recorded at province level by the Dipartimento della Protezione Civile 

and archived on GitHub [12]. The rescaled network has a size of 107 nodes and 3,310 edges 

(Figure 2b). 
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Figure 2. Commuting network structure. (a) All categories of commuters and non-commuters that characterize each node of the 
network on a typical working day are represented: commuters inside the node (Cr), incoming and outgoing commuters (Ci and Co 
respectively) and residents who are not commuters (R). The edge between two nodes, from a source to a destination, is represented 
by an arrow (direction) and its size is proportional to the number of commuters moving daily. (b) Graph representation of the 
commuting network at province level (undirected for displaying purpose). The scale colour from green to red is based on the node 
degree value. 

The rescaled commuting network is analysed by calculating the centrality measures commonly 

used in epidemic modelling [13–15]: degree (in-out), strength (in-out), betweenness - both for the 

global network and for sub-networks (incoming and outgoing commuters greater than 50, 100 and 

1000). 

SI model to evaluate the COVID-19 spread dynamics 

Theoretical geo-demography framework 

The model is based on commuting network at municipality level. In a municipality we have the 

resident population divided in: in non-commuting (R), commuting within the municipality (Cr) and 

commuting outgoing the municipality (Co). Commuting affects the number of people present in a 

municipality during the different times of the day, significantly modifying the registered resident 

population. If we define Ci as the non- resident population commuting into a municipality, we have 

that the real population in a specific time of the day is given by R+Cr-Co+Ci (Figure 2a). 

In the right side of Figure 3 three municipalities (A, B, C) with their registered residents are shown; 

the left side shows the actual population present in the municipalities, following in and out 

commuting during the day. In municipality C, the resident population equal to 10, becomes 4 
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during the day, due to a prevalent component of Co. Conversely, the population in B significantly 

increases during the day compared to the resident population, due to the higher Ci component 

(from 10 to 13). Municipality A has a balanced population during the entire day, having an 

equivalent Co and Ci components. 

     

 

Figure 3. A typical working day description considering three different municipalities and populations. Population changes due to 
commuting in two different times of the day (high activity and low activity). The municipalities, A, B, C are displayed by circles in 
black, yellow, and green; the icons, coloured according to the circles, represent the resident populations in the 3 municipalities; 
squared icons represent non-commuters resident (R) and Cr component; the arrows represent commuters moving daily from a 
source to a destination (Co and Ci) and the arrow’s size is proportional to the number of moving commuters. The municipality C, with 
a population of 10, decreases to 4 during the day, due to a prevalent component of outgoing commuters (Co=7). Conversely, the 
population in B increases significantly during the day, due to the higher incoming commuters (Ci =7).  Municipality A has a balanced 
population during the entire day, having an equivalent Co and Ci components. 
 
The typical working day is divided in two parts based on people's daily contact dynamics: 'high 

activity' time during which contacts are facilitated by the social common activities (e.g. work, 

school, sports and similar) and 'low activity' time in which the activities are reduced or stopped 

(e.g. during night or sleep time). 

The 'high activity' and 'low activity' times of the day, in combination with the resident and 

commuters populations, determine different levels of contact (and therefore of infection) 

between municipalities and between individuals within the municipality.  

Model implementation 
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A Susceptible-Infectious (SI) compartmental model is implemented to simulate disease spread due 

to the commuting between municipalities, taking into account not only the absolute commuters 

values, but including the influence of the typical structure of a day (high and low activity) as 

described in the previous paragraph. It is an agent-based model where a subject susceptible can 

became infectious if living or working within an infected population. The following ODEs system 

describes the model: 

�
𝑆𝑖𝑚(t + 1) = 𝑆𝑖𝑚(𝑡)− 𝛽𝑖

𝑚 𝐼𝑖
𝑚(𝑡)𝑆𝑗

𝑚

𝑁𝑖
𝑚                                  

𝐼𝑖𝑚(t + 1) = 𝐼𝑖𝑚(𝑡) + 𝛽𝑖
𝑚 𝐼𝑖

𝑚(𝑡)𝑆𝑗
𝑚

𝑁𝑖
𝑚                                  

  

where S = susceptible population, I = Infected population, N population size, β is the infection 

contact rate,  i indicates the municipality, m indicates the time of the day (high active or low active 

time) and t is a specific day; the equation describing the transition state of each individual, from 

susceptible (s) to infected (i), follows a Bernoulli distribution: 

𝑃(𝑠 (𝑡) → 𝑖(𝑡 + 1)) = 𝐵𝐵𝐵𝐵(𝛽𝑖𝑚
𝐼𝑖𝑚(𝑡)
𝑁𝑖𝑚

) 

Therefore, we assume a homogeneous mixing of the population adopting two infection contact 

rates to take into account the time of the day (high active or low active time). The effective 

contact rate (β0 = 0.244) is estimated from the temporal evolution of the cases observed between 

26 February and 6 March, assuming an exponential infection growth [16] and considering a basic 

reproductive number (R0) ranging from 2.24 to 5.71 [17].  

Contact rate parameter modelling 

We illustrate the approach used to calculate different β values for each municipality in different 

times of the day (low and high activity times). 

The effective contact rate (β0 = 0.244) is estimated from the temporal evolution of the cases 

observed between 26 February and 6 March, assuming an exponential infection growth.  

We use the following equation to scale the daily value of the infection contact rate:  

𝛽𝑚 =  �1 + 𝛽0�
𝐻𝑚
𝐻 − 1 

where H is the number of hours in which the hourly β is greater than zero (we assume the hourly β 

= 0 during sleeping time – 10 hours per day) and Hm is the number of hours relative to ‘high’ and 
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‘low’ activity times (H = 14  and Hm = 11 (during ‘high activity’ time), 3 (during ‘low activity’ time)). 

Thus, being β0=0.244, βm= {0.1871; 0.0479}. 

However, in our model we define the contact rate for each municipality as depending on the 

population present in different times of the day:  

𝛽𝑖𝑚 =  𝑓�𝛽𝑚,𝐷𝑖𝑚� 

where D is the population density according to commuting flows in municipality i and time m.  

However, assuming the same β for the whole country implies the disease spreads with the same 

strength everywhere, even inside those areas highly different spatially, demographically and in 

terms of commuting systems. So our approach takes into account different factors modulating the 

β value: 

•  β value differs during the day: in Figure 5, municipality C has a higher β during ‘low activity’ 

time in comparison to the ‘high activity’ one, whilst for B is the opposite. Municipalities like B 

can be considered as “attractors of commuters” having a high rate of incoming commuters. 

Municipalities like C, having a high rate of outgoing commuters are usually emptied during the 

working time.  

• β value depends on the density of people staying in a municipality in a specific time of the day. 

However, we correct the population density so to be increased when the number of 

commuters is higher than the number of non-commuters and vice-versa. In Figure 3, 

municipality C has a daily β lower than B and A due to its extension (that reduces the density 

population). But its population density is higher during the ‘low activity’ time (due to 

commuters coming back) in comparison to the ‘high activity’ time. Therefore, the population 

density of C is raising due to the number of commuters coming back during the “low activity” 

time, whilst its population density remains unchanged during the ‘high activity’ time since its 

commuting components are equal to its non-commuters population.  

The calculation of β for each municipality and time of the day is described in detail in 

Supplementary Information. 

Model Simulation Scenarios 

In order to highlight the different perspectives of the developed model and the potential of its 

application, three scenarios are considered: 
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Scenario 1. COVID-19 spreading at municipality level for the entire Italian territory between 26 

February and 6 March. This scenario is used to validate our model in relation to the current 

epidemic during the first 10 days of spread. The model assumes that no restrictions of human 

mobility are put in place at the beginning of the epidemic. Inside each province with confirmed 

COVID-19 cases at the starting time (26 February), the infected people are assumed to be 

randomly distributed. Results are then compared at province level with the official data on 

confirmed cases. 

Scenario 2: Local spreading (during the first 21 days of the epidemic). This scenario is implemented 

to explore and compare the spread patterns in different regions (rather than validate the 

predictive capacity), to better understand how the human mobility as spread driver can affect the 

epidemic. Lombardy, Abruzzi and Basilicata regions are chosen based on the level of infection 

(high, medium and low) observed during the epidemic. In this scenario we assume that the 

infection starts at municipality level (the first infected municipality notified in the region is 

considered as seed); no restrictions of human mobility are put in place at the beginning of the 

epidemic; the regional network is closed to external commuting exchanges. A longer timeframe is 

chosen to better explore and compare the different spread patterns.  

Scenario 3: Local spread in the Abruzzi region is simulated (during the first 14 days of the 

epidemic) considering each municipality as a seed for each simulation. This scenario aims at 

defining the vulnerability of each municipality to a new epidemic. The choice of the Abruzzi region 

has only an illustrative purpose. We assume that the infection starts in turn in each municipality so 

to assess the weak points of the whole region. 

All simulations use the infection contact rate β described in the previous paragraph, assuming the 

number of plausible active cases (K) is ten times the number of officially detected active cases, as 

reported by the Italian Institute for International Political Studies [18]. In Table 1 all the simulation 

parameters used in the three scenarios are listed. 

Table 1. Simulation parameters for each scenario. 

Scenario Num. of 
Simulation 

Num. of 
simulation 
runs 

Deep in 
day Region Scale 

resolution Seed (t0) I(t0) 

Scenario 1 1 500 10 Italy municipality 

Randomly 
distributed inside 
the initial 29 
infected 
provinces 

Observed 
cases at 26 
February = 
625 

Scenario 2 1 500 21 Lombardy municipality Codogno 1 
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  Abruzzi 

  
  

Roseto Degli 
Abruzzi 

  
  

Basilicata Trecchina 

Scenario 3 305 500 14 Abruzzi municipality All municipalities 
(305) 1 

 

During the first five days of the week, as working days, the β is calculated considering the “high 

activity” time for the commuters adjusted population (R+Cr-Co+Ci), whereas the “low activity” time 

is applied to the resident population (R+Cr+Co). The opposite occurs during the weekend (the last 

two days), to take into account that the resident population becomes more active than that 

determined by commuter flows. 

The model is run at municipality level. For each node (municipality), for each individual of the 

node, and for each temporal step t of a day, the model recalculates the state (in terms of S and I) 

of the source and destination nodes for the next temporal step by following the equations above 

described.  

The pseudo model algorithm is coded as follows: 

#constants shared between scenarios 
K=10  
𝛽𝑖𝑚 
#constants within scenario 
SIM (number of simulation) 
Deep (number of days to be simulated) 
NTW (Commuting network: weighted links among municipalities of the corresponding scenario) 
I (number of officially infected) 
 
For each simulation 

Sample infected according to scenario 
For each day  

If during weekend, switch the correspondence between active period and population 
For each sub-day period 

 For each infected municipality 
   find new infected according to ODE equations 
End 
 

The model is stochastically implemented in R-software (Version 3.6, R-Foundation for Statistical 

Computing, Vienna, Austria); “doparallel” R package is used for parallelizing the simulations [19]. 
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Figures are created in R using “sp” and “ggplot2” libraries [20,21], in ArcMap 10.5 ESRI and 

Cytoscape (Version 3.2.1) programs. 

 

Results 

Analysis of the commuting network 

A Pearson’s correlation matrix was calculated among the SNA metrics of the commuting network 

(and sub-networks) and COVID-19 cases (at different times of the epidemic), (Figure 3a). 

Degree measures and COVID-19 cases showed a significant correlation (p< 0.05). In particular, the 

degree calculated for the sub-network built on the basis of incoming and outgoing commuters 

greater than 50 (Deg50) and COVID-19 cases (on the 26 March 2020) have the highest correlation 

value equal to 0.72 (black bordered square in Figure 4a). Figure 4b represents a scatter plot 

between Deg50 and COVID-19 cases in logarithmic scale. To capture the commuting behaviour of 

each province (node) the scale colour from green to red is used to characterize the in-strength 

(incoming commuters from lower to higher) and the symbol size characterizes the node in terms 

of out-strength (outgoing commuters from smaller to bigger). It is evident that the northern 

provinces, most affected by the disease, are also those characterized by a high degree (flow of 

commuters among multiple provinces) and high strength (incoming and outgoing commuters 

exchanged) while the provinces of central and southern Italy, with a lower number of cases, are 

mainly characterized by lower degree and in-strength values.  
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Figure 4. Correlation analysis. (a) The heatmap of Pearson’s correlation coefficients among all the variables: SNA metrics for the 
rescaled commuting network and sub-networks (with in and out commuters greater than 50, 100 and 1000), and COVID-19 cases 
(at different times). The X symbol indicates a non-significant correlation. The red scale colour indicates a positive Pearson’s 
coefficient value. In the x-axis legend, the symbol colour  represents the variable groups: COVID-19 cases (green), betweenness (red), 
degree (light blue), and strength (purple); the symbols: circle, square and triangle represent the directions in terms of in (circle), out 
(square), and none (triangle); the symbol size from smaller to bigger represents the networks variables (sub-networks -with in and 
out commuters greater than 50, 100 and 1000 and the whole network).(b) A scatter plot graph between Deg50 and  COVID-19 cases 
(on the 26th of March 2020) in logarithmic scale. The scale colour from green to red is used to characterize the in-strength (from 
lower to higher number of incoming commuters) of the node and the symbol size (from smaller to bigger) characterizes the node in 
terms of out-strength (lower to higher number of outgoing commuters).  

 

Contact rate parameter estimation  

The contact rate β values are calculated on the basis of commuting data and population size in 

each municipality. Figure 5a shows the β values per municipality (quantile aggregation), while 

Figure 5b shows the statistically significant hot spots, cold spots, and spatial outliers of β values 

using the Anselin Local Moran's I statistic [22]. Although the map of contact rates mainly reflects 

the resident population density, the municipality-specific contact rate captures the disease 

permeability of each municipality, considering the population in different moment of the day and 

depicting the characteristic of municipalities as attractor of commuters or as diplacer of its 

workforce elsewhere. The clusterization of geographical areas with similar characteristics in terms 

of vulnerability to the introduction and spread of the disease is highlighted by Moran's analysis 

(Figure 5b). It is evident that there are large areas characterized by the homogeneous presence of 

high β values (pink areas). In these areas, the introduction of the disease inevitably leads to a 

spread more difficult to control due to the simultaneous presence of connections between 
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municipalities and the high population density. On the contrary, the large areas with low β levels 

(light blue) represent areas in which the disease spreads slowly (e.g. Alpine and Apennine areas, 

Basilicata, Sardinia, the southern part of Tuscany and Molise). The red areas constitute potential 

outliers which, despite a high β value, would hardly expand rapidly the disease in the surrounding 

areas which have instead low β values. In this way Figure 5b, grouping similar municipalities’ 

values, gives an immediate and overall picture of the Italian territory in terms of higher or lower 

susceptibility to an epidemic. 

 

 

Figure 5.  (a) β values per municipality (in legend quantile classification);  (b) statistically significant hot spots in pink (municipalities 
with high βvalues in significant clusters), cold spots in light blue (clustered municipalities with low β values); in red municipalities 
with high βvalues and surrounded by municipalities with low β values; in blue municipalities with a low β value surrounded by 
municipalities  with high values. Municipalities with not significant clustering or outliers are shown in white. 

 

Three scenarios are evaluated as listed in Table 1: COVID-19 spreading at municipality level for the 

entire Italian territory between 26 February and 6 March (scenario 1);  local spreading (during the 

first 21 days of the epidemic) in Lombardy, Abruzzi, and Basilicata regions (scenario 2); local 
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spread in the Abruzzi region (during the first 14 days of the epidemic) considering each 

municipality as a possible origin of the infection (scenario 3).  

Scenario 1.  

The number of infected provinces during the studied period increased from 29 to 92 and only 15 

were still free from COVID-19 on 6 March. The number of infected people increased from 625 to 

5699. Considering the results at national level, the model was able to model the number of cases 

as observed (Figure 6a), while the observed increase of infected provinces was more rapid than 

the estimated one (Figure 6b). 

The Pearson’s correlation coefficient between observed and estimated infected people (median 

value) at province level, at the end of the period was equal to 0.92. 

 

Figure 6. (a) Observed (red line) and estimated (blue line and 0.95, 080 and 0.50 CI) infected people in Italy. (b) Observed (red line) 
and estimated (blue line and 0.95, 080 and 0.50 CI) number of infected provinces. 

 

Figure 7 shows the agreement between observed and estimated infected province on 6 March. 

Provinces’ color represents the estimated probability of being infected, red points indicates the 

observed infected province at the end of the period, green points represent the non-infected 

provinces at the end of the period, dashed  provinces are the seeds at the beginning of the period. 
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Figure 7. Results of the model. Provinces are colored based on the estimated probability of being infected; red points show the 
observed infected provinces at the end of the period (26 Feb-6 Mar); the green points represent the non-infected provinces at the 
end of the period; dashed  provinces represent the seeds at the beginning of the period (26 Feb).   

 

A threshold of p=5% on the percentage of simulations having at least one infected individual per 

province was chosen to evaluate the model performance in predicting the infection status of each 

province at the end of the period. The comparison with observed official status as of 6 March 

resulted in a number of True Positive (TP) = 85, True Negative = 6, False Positive (FP)= 9 and False 

Negative = 7. This leads to a Sensitivity = 92.4% and a Specificity = 40%, for a total Accuracy of 

85%. 
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Figure 8 shows the comparison between observed (a) and estimated (b) infected people (upper 

95% confidence interval when a province is turned into infected in the simulations) excluding the 

seeds. 

 

 

Figure 8. Results of the model. Comparison between observed (a) and estimated (b) infected people. The upper 95% confidence 
interval of the estimated infected people is used (when a province is turned into infected during the simulations the value of infected 
people is considered). Dashed provinces are the initial seeds. 

As far as the seeding sites concern, Figure 9 shows the comparison between observed and 

estimated infected people in each seed province. For most of the cases the observed values fall 

into the 95% confidence interval of the estimates. Results are grouped in four panels depending 

on the magnitude of the observed COVID-19 epidemic. 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 16, 2020. ; https://doi.org/10.1101/2020.05.12.20100040doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.12.20100040
http://creativecommons.org/licenses/by-nd/4.0/


 

Figure 9. Infected people  in seeding provinces on 6 March. Black squares represent median values, lines the 95%CI , green and red 

diamonds represent observed data within (green) and outside(red) the CI, whilst white dots represent the observed cases on 26 

February. The panels order (from low to severe level of infected people) is used for displaying purpose.  

Scenario 2. 

The differences observed among the spread patterns in high (Lombardy), medium (Abruzzi) and 

low (Basilicata) affected areas might be explained by different contact rate patterns and different 

commuting systems.  

Figure 10 compares β values (a), degree measure (b) and estimated probability of being infected 

(c) for each municipality. Starting from one seed in each region (the first municipality notified as 

infected), for a time window of 21 days, the disease seems to follow different patterns: in 

Lombardy, where β values are more homogeneous, the disease extends in wideness; in Abruzzi 

region the disease spreads along the Adriatic coast, driven by the β parameter higher in this 

corridor; in Basilicata, the disease remains confined to the point of origin because the region has 

neither high β values or high connections. 
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Figure 10. β values (a), degree measure (b) and estimated probability (c) of being infected for each municipality of high (Lombardy), 
medium (Abruzzi) and Low (Basilicata) affected areas.   
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Moreover, the differences among the three regions have been evaluated through the number of 

estimated infected people and infected municipalities (Figure 11a and b). The pattern of infected 

people is similar for Abruzzi and Lombardy (red and green line respectively), but different from 

Basilicata (green line). However, the differences are more evident between the three regions if we 

consider the number of infected municipalities that grows more rapidly in the case of Lombardy 

(Figure 11b). The speed with which the municipalities in Lombardy become infected is higher than 

in Basilicata and Abruzzi due to the connections underlying the commuting network (Figure 11c). It 

is noteworthy that Lombardy has 28% of municipalities with a degree greater than 140, while in 

Abruzzi and Basilicata regions 95% and 99% of municipalities respectively are below a degree of 

60. 

 

Figure 11. (a) Number of estimated infected people (median values and 95%CI) and (b) estimated infected municipalities (median 
values and 95% CI) when the epidemic starts in one seed and lasts 21 days. (c). Blue line represents Lombardy, red line is Abruzzi 
region and green line, Basilicata region.  Degree distribution in the three region L=Lombardy, A=Abruzzi, B=Basilicata. Bars are in 
class percentage descending order.   
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Scenario 3.  

In this scenario, each municipality is considered in turn as seed. The vulnerability of Abruzzi region 

is calculated as the number of infected individuals (95th percentile) and infected municipalities 

that each municipality (seed) causes in the region (excluding itself) (Figure 12a and b). Figure 12c 

shows the ratio between the number of cases caused outside the municipality and the number of 

cases caused inside the municipality (x 100) that may be interpreted as the tendency of each 

municipality to act as a destination or origin of infection for the other territories. 

 

 
Figure 12. (a) Number of infected people  (95th percentile) that each municipality causes in the region (excluding itself). (b) number 
of infected municipalities caused by each seed (95th percentile). (c) ratio between the number of cases caused outside the 
municipality (95th percentile) and the number of cases caused inside the municipality (95th percentile).  
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Discussion and conclusions 

Human mobility data have been largely used for modelling the spread of infectious diseases both 

at global [2,5,8,9,23,24] and national level [25–27]. A recent use of these data for modelling 

COVID-19 epidemic in Italy has been published by Gatto et al. [10] and Vollmer, et al. [6].  

Data on commuting, defined as the daily local movements from home to work location or schools, 

have been used in the study of epidemiology of infectious disease at lesser extent.  

In Italy the currently available data on commuting are census data, with the advantage of being 

structured, open source, and representative of the entire Italian population. Its update every 10 

years does not seem to affect the spatial patterns of human mobility [10], thanks also to the 

stability of the production systems and persistence of attractive poles (schools, offices etc.) in the 

same places. 

The use of data at a higher spatial resolution (municipality level) allows to highlight peculiar 

situations on which public health authorities may promptly intervene to control the spread of a 

disease. For this reason, we have introduced within a metapopulation model, driven by the 

commuting network, a municipality-based contact rate able to capture the variability between 

municipalities in terms of population density and commuting system. 

We used a simple Susceptible-Infected model in which more importance was given to model the 

contact rate, neglecting the Exposed, Recovered and Dead compartments. This approach can be 

suitable in the first phase of an new epidemic (when population is fully susceptible). Although we 

have reduced the number of parameters of the epidemiological model from one side, we have 

introduced other variables to model the socio-demographic and commuting aspects, as detailed in 

Supplementary Information. 

The revised calculation of the infection contact rate β, based mainly on the resident population 

density, also incorporates the commuting component in each municipality, highlighting its 

characteristic of being an attractor of commuters or a displacer of workforces toward elsewhere. 

When areas with a high β values are contiguous and significantly clustered, disease permeability 

tends to be greater. Lombardy, Veneto and Emilia Romagna (situated in the northern Italy), which 

together made up 52% of all Italian cases (as of May 7, 2020), are effectively clustered with similar 

and high β values (Figure 5b). 

The revised municipality-based β can be generalized to any other epidemic that responds to the 

assumptions made for its calculation. 
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The simulation model was applied considering three different scenarios. The first scenario 

(scenario 1), considering COVID-19 spreading at municipality level for the entire Italian territory 

between 26 February and 6 March, was used to assess the model accuracy.  

At national level, the model estimates the trend of infected people similarly to the observed trend 

of cases (Figure 6a), despite the introduction of the β variability. As far as the number of provinces 

involved concerns, the estimates are more variable.  

In particular, the model estimates a growth rate of the infected provinces lower than the observed 

one (Figure 6b). This might be due to the uncertainty about the real number of provinces already 

infected at the beginning of the period. If a higher number of infected provinces at the beginning 

had been considered, the outcomes of the model would have been more similar to the observed 

ones. 

Considering the capacity of the model to correctly classify a province as infected at the end of the 

observation period, despite a global accuracy of 85%, the model failed in classifying 16 provinces. 

However, the misclassification is due not only to the model capacity, but also to the influence of 

uncontrolled factors such as errors in the observed data, timing in notification of cases, ability to 

identify the disease, containment local measures, long distance displacement of people from 

infected areas to non-infected areas. 

As for the false negative (FN) provinces, the model failed in identifying as infected, provinces in 

which the number of observed cases at the end of the study period was actually very low (from 1 

to 3); only one province out of 7 never turned out infected in any simulation. Furthermore, most 

of the FN provinces are located in southern Italy, an area which was affected by the massive 

return of university students from the North, after all schools were closed. The 9 false positive (FP) 

provinces, were officially detected as positive a few days after the considered period.  
The outcomes of the model were compared with the observed number of COVID-19 cases for the 

initially infected provinces, grouped by different virus circulation level (from low to high). For 

some Provinces, such as Palermo (PA), Savona (SV), Padua (PD), Milan (MI) and Lodi (LO) the 

model overestimates the cases, whereas in few others, like Pesaro-Urbino (PU) and Parma (PR) the 

number of cases was underestimated (Figure 9). One of the possible explanations for this 

disagreement may be found in the application of control measures by local authorities, which 

anticipated the measures of the central government. On the other hand, the model was able to 

estimate quite precisely the number of cases in several provinces (either at low or high virus 

circulation level). Among these, Bergamo (BG) province was one of the Italian provinces that 
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suffered more for the COVID-19, with more than 10,000 cases and almost 3,000 deaths. This 

would lead to think that in that province the control measures were not strictly applied at the very 

beginning of the epidemic. It is important to note that the limitation of the model in correctly 

estimating the magnitude or the extent of the epidemic also depends on the difficulty of including 

in the model the establishment of community (hospitals, health care settings, working) or 

household clusters of infection.  

The second scenario (scenario 2) was developed to explore and compare the spread pattern in 

three different regions. The chosen regions (Lombardy, Abruzzi and Basilicata) are characterised 

by different epidemiological conditions. When the outcomes for the three regions are compared, 

the population density and level of industrialization must be taken into account. The mobility of 

workforces in Lombardy, which is one of the major economic driving areas in Europe, is much 

greater than in the other two regions. The differences among these regions are more evident 

when the increase of the number of infected municipalities is considered (Figure 11b), being the 

infection spreading across municipalities directly linked to the connections underlying the 

commuting network. Indeed, in case of Lombardy about the 50% of the municipalities are 

connected to more than 100 municipalities (against a 3% in Abruzzi and Basilicata regions – Figure 

11c). 

In the last scenario (scenario 3) the local spread in the Abruzzi region is estimated (during the first 

14 days of the epidemic) considering each municipality as a seed for simulation. This scenario has 

the purpose of identifying those municipalities more vulnerable to the virus introduction and 

those playing a major role in spreading the infection. The vulnerability of Abruzzi region is 

calculated as the number of individuals that each municipality (seed) causes in the region and the 

number of infected municipalities (Figure 12a and b). In addition, the ratio between the number of 

cases caused outside the municipality and the number of cases caused inside the municipality may 

provide a useful hint about the risk category (capability to infect rather than become infected, 

shown in Figure 12c) of each municipality. The obtained maps, at municipality level, provide the 

decision makers with useful information on where mobility restriction measures should be 

focussed to have the strongest effects on transmission reduction. The highest vulnerability values 

can be observed in areas with commercial hubs, close to the highest populated city of the region, 

Pescara (Figure 12b, the darker blue area on mid-coastal line) and the most industrial area of the 

region, in the Sangro Valley (Figure 12b, in the southern of Abruzzi region), where many medium 

and big factories are present. 
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Our approach, therefore, provides decision-makers with useful geographically detailed metrics to 

evaluate those areas at major risk for infection spreading and for which restrictions of human 

mobility would give the greatest benefits, especially in the first phase of the epidemic. It can 

provide risk maps on which health administration can modulate the application of strong 

lockdown measures, evaluating in advance the effects on reducing the spread of the infection. 

This approach is particularly useful not only in the beginning of the epidemic but also in the last 

phase, when the risks deriving from the gradual lockdown exit strategies must be carefully 

evaluated. In fact, the major risk in this latter phase is the re-insurgence of infection transmission 

through a progressive re-opening of the productive systems. The analysis of daily human mobility 

patterns for working reasons is clearly providing a well detailed picture of the areas and 

productive systems more at risk of sustaining a restart of the epidemic. 
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