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Abstract

The decline of active COVID-19 cases in many countries in the world has proved that
lockdown policies are indeed a very effective measure to stop the exponential spread of the
virus. Still, the danger of a second wave of infections is omnipresent and it is clear, that
every policy of the lockdown has to be carefully evaluated and possibly replaced by a dif-
ferent, less restrictive policy, before it can be lifted. Tracing of contacts and consequential
tracing and breaking of infection-chains is a promising and comparably straightforward
strategy to help containing the disease, although its precise impact on the epidemic is
unknown. In order to quantify the benefits of tracing and similar policies we developed
an agent-based model that not only validly depicts the spread of the disease, but allows
for exploratory analysis of containment policies. We will describe our model and perform
case studies in which we use the model to quantify impact of contact tracing in different
characteristics and draw valuable conclusions about contact tracing policies in general.

1 Introduction

The outbreak of COVID-19 presents a great challenge for governments and decision makers
of the affected countries. To keep the number of infected people at a level the national
health system can handle, a variety of different policies can be applied.

Most of these measures, such as closing schools, shops and restaurants proved to be
effective in stopping the initial growth of the pandemic and lead to a decrease in the new
infections per day. However, due to socioeconomic reasons lockdown policies can not be
upheld long enough to eradicate the disease completely. After a certain time most of them
have to be lifted again, while other measures have to be enforced to prevent a new upswing
of the disease.
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Contact tracing seems to be a viable method to keep the epidemic at bay. It allows to
detect and isolate potentially infected contact partners even before they become infectious,
leading to many successfully broken infection-chains. Yet, besides many successfully de-
tected and isolated new infections, also a lot entirely unharmed contact partners would be
put into preventive quarantine this way. The latter can be interpreted as the socioeconomic
costs of tracing and should be minimised if possible.

Although stigmatised as a violation of personal freedom, tracing is not always related
to personal-data-tracking devices like mobile apps. Successful tracing of contacts starts by
isolation of household members or by temporarily closing workplaces of confirmed COVID-
19 patients. Clearly, a lot of potentially infectious contacts can be traced by a simple
patient-interviews as well.

Anyway, finding evidence that proves or quantifies the success of different tracing strate-
gies is still difficult due to the novelty of the situation. In particular in Austria, as one of
the first countries worldwide to overcome the peak of the disease [6], simulation models
are basically the only opportunity to estimate the future impact of strategic changes. In
this process, the TU Wien and the dwh GmbH closely collaborate with the Austrian Min-
istry of Health and the Federal Chancellery to provide at least a rough evidence for future
policies via simulation models.

We developed an agent-based model (ABM) to reproduce the current outbreak of
COVID-19 in Austria that allows for exploratory analysis of tracing in different char-
acteristics. Aim of this work is to present this model and use it to evaluate and compare
different tracing policies. We ask, whether containment of the disease can be achieved by
successful tracing alone or if we need additional policies, and how we can quantify the
benefits of tracing in general.

2 Methods

There is a large variety of simulation methods that allows for simulation of epidemics
like SARS CoV-2, such as the classic differential equation based SIR model by Kermack
and McKendrick [24]. Yet, as we are not only interested in the spread of the disease
alone, but the evaluation of tracing policies, models that depict individuals are necessary.
Consequently, an agent-based strategy was chosen. The model is comparable with similar
models from Australia [15] and UK [16], but stands out by the following features:

• It is based a very accurate spatial and demographic image of the Austrian population.

• It utilises a contact network based on different locations, such as households, work-
places and schools.

• It allows for tracing of agent-agent contacts and, consequently, for analysis of related
tracing policies.

We explain our agent-based COVID-19 model based on the ODD (Overview, Design
Concepts, Details) protocol by Volker Grimm et.al. [19, 20]. The paper itself contains the
Overview and the Design Concepts section, the Details section as well as a full list of
parameter values and sources are found in the Appendix.

2.1 Overview

The dynamics of the agent-based COVID-19 model origins from the interaction of four
modules.

1. Population Module. Altogether, the model is based on the Generic Population Con-
cept (GEPOC, see [13]), a generic stochastic agent-based population model of Aus-
tria. It validly depicts the current demographic as well as the regional structure of
the population on a microscopic level. The flexibility of this population model makes
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it possible to modify and extend it by almost arbitrary modules for simulation of
population-focused research problems.

2. Contact Module. In order to develop a basis for infectious contacts, we modified
and adapted a contact model previously used for simulation of influenza spread.
This model uses a distinction of contacts in different locations (households, schools,
workplaces) and is based on the POLYMOD study [30], a large survey for tracking
social contact behaviour relevant to the spread of infectious diseases.

3. Disease Module. We implemented a module for the course of the disease that depicts
the current disease-pathway of COVID-19 patients starting from infection to recovery
and linked it with the prior two modules.

4. Policies Module. A module for implementation of interventions, ranging from contact-
reduction policies, hygienic measures and, in particular, contact tracing. This module
can be imagined as a timeline of events at which certain policies are introduced or
lifted.

2.1.1 Purpose

The agent-based COVID-19 model aims to give an idea about the potential impact of
certain policies and their combination on the spread of the disease, thus helping decision
makers to correctly choose between possible policies by comparing the model outcomes
with other important factors such as socioeconomic ones. In order to fulfil this purpose,
it is crucial that the agent-based COVID-19 model validly depicts the current and near
future distribution and state of disease progression of infected people and their forecasts.

2.1.2 Entities and State Variables

The model essentially contains only one class of agents, which we also call person-agents.
Each person-agent models one inhabitant of the observed country/region. We describe
state variables of a person-agent sorted by the corresponding module.

Population Module. Each person-agent contains the population specific state variables
sex, date of birth (∼= age) and location. The latter defines the person-agent’s residence in
form of latitude and longitude and uniquely maps to the agent’s municipality, district and
federal state.

Contact Module. The person-agent features a couple of contact network specific proper-
ties. These include a household and might include a workplace or a school. We summarise
these as so-called locations which represent network nodes via which the person-agent has
contacts with other agents. Assignment of person-agents to locations is based on distance of
the agent’s residence to the position of the location. Each day, an agent has a certain num-
ber of contacts within each of its assigned locations, which leads to spread of the disease.
To model contacts apart from these places, every person-agent has an additional amount
of leisure time contacts, which are sampled randomly based on a spatially-dependent dis-
tribution. The contact network is schematically displayed in Figure 1.
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Figure 1: Contact network of agents in the agent-based COVID-19 model. Regular contacts
between agents occur via locations (schools, workplaces and households), while random leisure
time contacts extend the standard contact network.

Disease Module. To model the progression of the disease, each person-agent has a
couple of states that display the current disease/health status of the agent. They are in-
fected, infectious, symptoms, hospitalised, critical, confirmed, severe, asymptomatic, home-
quarantined and recovered. These states can either be true or false, multiple of them can
be true at a time and they enable or disable certain person-agent actions. The influence
of these state variables and how they change is described in Section 2.1.4.

Policies Module. Policies either affect locations or person-agent-behaviour directly and
require additional agent properties. All locations except for households are defined open or
closed which marks whether this place is available for having contacts. For person-agents
the state preventive quarantine is introduced which marks agents isolated due to tracing.

We address mentioned parameters as attributes for the corresponding agents, i.e. an
agent whose infectious state is true is termed as “infectious agent”.

2.1.3 Scales

Unlike other ABMs the model cannot be run with a scaled-down number of agents, e.g. one
agent representing 10 or 100 persons in reality. This is due to the problem that an agent’s
contact-network cannot be scaled this way. Consequently, one simulation run always uses
agents according to the size and structure of the actual population in the country/region.

2.1.4 Process Overview and Scheduling

Like the underlying population model, the agent-based COVID-19 model can be inter-
preted as hybrid between a time-discrete and a time-continuous (i.e. event-updated) ABM:

The overall simulation updates itself in daily time steps, wherein each step is split into
three phases. In the first phase, the planning phase, each agent is called once to plan what
it aims to do in the course of this time step. In the second phase, each agent is, again,
called once to execute all planned actions for this time step in the defined order. In the
third step, a recorder-agent keeps track of all aggregated state variables.

On the microscopic scope each person-agent is equipped with its own small discrete
event simulator. In the mentioned planning phase, each agent schedules certain events for

4

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 8, 2020. ; https://doi.org/10.1101/2020.05.12.20098970doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.12.20098970
http://creativecommons.org/licenses/by-nc-nd/4.0/


the future which may, but not necessarily must, be scheduled within the current global
time step. In the second phase, the agent executes all events that are scheduled for the
currently observed time interval, but leaves all events that exceed this scope untouched.

This strategy comes with a couple of benefits. First of all, in contrast to solely event-
based ABMs, the event queue is distributed among all agents which massively increases
the speed for sorting (a solely event-based ABM with millions of complex agents would
not be executable in feasible time). Moreover, in contrast to solely event-based ABMs,
usage of daily transition probabilities/rates instead of transition times is possible as well.
Finally, in contrast to solely time-discrete ABMs, agents can operate beyond the scope of
time steps and sample continuous time-intervals for their state-transitions.

We shortly describe all actions that are scheduled and executed by one person-agent
within one time step sorted by the specified module.

Population Module. As briefly described in [13], agents trigger birth and death events
always via time- and age-dependent probabilities that apply for the observed time step (i.e.
the observed day). Note that in contrast to the basic population model, immigration and
emigration events are disabled in the agent-based COVID-19 model due to closed borders
in reality.

Contact Module. Also contact specific events are scheduled and executed within the
scope of only one time step: First of all, the agent schedules a contact event with every
other member of its household. Moreover, if such a location is present in the contact
network, a certain number of workplace or school contacts, respectively, are scheduled
and corresponding partners drawn randomly from the assigned location. Finally, a certain
number of leisure time contacts are sampled and partners are drawn based on a region-
specific distribution: a leisure time contact partner is drawn uniformly from the same
municipality with probability pm, from a different municipality within the same district
with probability pd, from a different district in the same federal state with probability pf ,
and finally, from a different federal state with probability pa.

As mentioned, some states limit the agents’ capabilities of interaction. Quarantined
or preventive quarantined agents have no random leisure time contacts and no contacts
at work or school. Furthermore, hospitalised agents do not even contact their household
members. The impact of potentially infectious contacts to hospital personal is neglected
as it lies outside the scope of the model.

Disease Module. First of all, it is important to mention that the model is not para-
metrised by a reproduction number R0 or Reff , but by a contact specific probability.
Nevertheless, the ABM provides the opportunity to carry out estimates for R0 and Reff

as model output. This is done using the original definition of these epidemic parameters:
the average number of secondary infections of an infected agent.

Anyway, in case of an aforementioned contact, infectious agents spread the disease to
susceptible agents with a certain infection probability which triggers the start of the newly-
infected agent’s disease-pathway. This pathway describes the different states and stations
an agent lives through while suffering from the COVID-19 disease and can be interpreted
as a sequence of events of which each triggers the next one after a certain sampled duration.

We show this infection strategy in a state chart in Figure 2 and describe how to inter-
pret this figure by explaining the initial steps in the pathway in more detail: As soon as
the “Infection” event is executed for a person-agent, its infected state is set to true and a
latency period is sampled according to a specific distribution. The corresponding “Infec-
tious” event is scheduled for the sampled period in the future. As soon as this “Infectious”
event is executed, the infectious parameter is set to true and a random process decides
whether the person will develop symptoms or not. This point marks the first branch in
the patient’s pathway and whether the “Symptoms Onset” event or the “Asymptomatic”
Event is scheduled. The prior would be planned after a sampled time span correspond-
ing to the difference between latency and incubation time, the latter would be triggered
instantaneously. All other elements of the pathway follow analogously.

5

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 8, 2020. ; https://doi.org/10.1101/2020.05.12.20098970doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.12.20098970
http://creativecommons.org/licenses/by-nc-nd/4.0/


Finally, it is important to clarify that the model does not specifically consider deceased
agents as this is not within the scope of the model (see Section 4.3). Consequently, any
recovered agent can be considered as either immunised or deceased.

Policies Module. Policies are timed events that can be fed into the model as a timeline.
Every policy input is then interpreted and scheduled as a global timed-event and executed
in the course of the corresponding simulation time-step. The elements of this timeline may
include the following policies:

• Close/Open Location. The model classifies a fraction of locations of a certain type
as closed (except household) and makes them unavailable for contacts.

• Reduce Contacts. Agents reduce the daily number of contacts within a certain loca-
tion or in leisure time by a scaling factor. This policy can be parametrised to reduce
leisure time contacts for all or only for agents within a certain age-class.

• Increase Awareness. Person-agents start to react more quickly to their symptoms
and reduce their reaction time, i.e. the time between symptom onset and becoming
confirmed and isolated.

• Hygienic Measures. At specific locations the infection probability is reduced.

• Location Tracing. Locations are closed precautionarily, if one of its assigned person-
agents becomes confirmed.

• Individual Tracing. A certain fraction of agents record their contacts. If the agent
becomes confirmed, the traced contacts become isolated precautionarily.
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Figure 2: State chart of the patient pathway of a person-agent in the agent-based COVID-19
model. Only those state variables that are changed by the corresponding event are labelled, all
others remain at the current value. The initial state of all infection-specific state variables is
false.
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2.2 Design Concept

2.2.1 Basic Principles

In order to fulfil the modelling purpose, the ABM is designed as simple as possible yet
depicting the most important features for evaluation of policies. Consequently, lots of
details within the pathway of an infected person and, in particular, lots of details within
the personal daily routine are simplified to avoid indeterminable model parameters and
unpredictable model dynamics.

2.2.2 Emergence

In addition to the classic emergence of nonlinear epidemiological effects it is one of the key
objectives of the model to analyse the effects of interplay of different measures. Hereby,
seemingly unconnected policies like school closure and contact reduction for the elderly
might lead to surprising effects when applied simultaneously. More generally speaking, the
model displays that the individual effects of applied policies do not add up linearly.

2.2.3 Sensing

Agents’ perception is one of the key problems of modelling COVID-19. In the agent-based
COVID-19 model, three levels of perception are distinguished:

Perception of the individual. First of all, no agent is actually aware of its own
disease and, more importantly, infectiousness before symptoms occur. Therefore,
agent parameters can be distinguished into two sets: the ones the agent is aware of
(e.g. symptoms, hospitalised), and the ones it is not (e.g. infected, infectious).

Perception of the general public. Within the reaction time period agents already
know about their illness (they have symptoms), yet, the COVID-19 case is not yet
confirmed and the case does not appear into the national statistics. So, the general
public is not aware of this case.

Perception of the omniscient observer. Finally, an omniscent observer is able to
track, but not influence, anything that happens within the model (see Section 2.2.6).

Consequently, the levels of perception can be sorted with regards to their amount of knowl-
edge:

omniscient observer > person-agent > general public.

These three levels seem insignificant, but make it possible to validly parametrise the model
via data with reporting delay.

2.2.4 Interaction

Interaction between agents only occurs in form of contacts at locations or during leisure
time. The features provided by the underlying population model make it possible to
investigate contacts on a very local level. As described before, leisure time contacts are
weighted by their regionality. Also school and workplace contacts are biased locally as the
corresponding locations are assigned person-agents via distance-dependent probabilities
(see Section 6.1.1). Consequently, interactions between agents follow a spatially-continuous
locally-biased contact network.

2.2.5 Stochasticity

Basically all model processes, including the initialisation, contain sampling of random
numbers. Therefore, Monte Carlo simulation is applied, results of runs are averaged and
their variability is assessed (see Section 6.2).
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2.2.6 Observation

As mentioned, a “recorder agent” takes care of tracking and aggregating the current status
of the simulation. At the end of each global time step, all person-agents report to the
recorder agent which furthermore keeps track of all necessary aggregated model outputs.
This includes for example confirmed cumulative cases, hospitalised agents, asymptomatic
agents, pre-symptomatic agents, recovered agents, agents in a certain hospital, or average-
number of contacts per infectious agent. For the specified tracing scenarios the confirmed
active cases and preventive quarantined agents are the key observables of the model.

2.3 Details

We only give a rough overview of the model initialisation and calibration process. For
more specific model details (third pillar of the ODD protocol), we refer to the appendix,
in specific, Section 6.1.

2.3.1 Initialisation.

In order to start the simulation at the specified time t0, publicly available data, i.e. the
reported total number of positive tests and current data for hospitalisations, are not suffi-
cient, especially, as the majority of the new infections are caused not by the detected but
the undetected persons.

Consequently, an initialisation phase validly simulates the progress of the disease from
a fictional 40 newly infected agents in February until t0. For a more technical information
about this initial phase, we refer to the Appendix (Section 6.1.2).

Anyway, the initialisation phase is calibrated to depict the correct doubling rates of
the confirmed cases before introduction of policies as well as the positive impact of the
lockdown.

2.3.2 Calibration.

To successfully calibrate the model to the real timelines, a bisection method is used that
allows us to adjust one parameter at a time.

In particular this refers to the infection probability which is fitted to the time before
lockdown. The lockdown-policies and their parametrisations are partially calibrated to fit
the observed flattening of the curve and partially abstracted from real policies made in
Austria. For example, nationwide closure of schools is modelled as such: the location type
school becomes unavailable for contacts.

For more information on the calibration process, the reader is referred to Section 6.1.4.

2.4 Model Implementation

The simulation of ABMs like the specified agent-based COVID-19 model is a huge challenge
with respect to computational performance. As the model cannot be scaled down, almost
9 million interacting agents need to be included into the model in order to simulate the
spread of the disease in Austria.

These high demands exclude most of the available libraries and software for agent-
based modelling including AnyLogic [18], NetLogo [34], MESA [27], JADE [11] or Repast
Simphony [31]. Most of these simulators cannot be used as their generic features for
creating live visual output generates too much overheads.

Consequently, we decided to use our own agent-based simulation environment ABT
(Agent-Based Template, see [3]), developed in 2019 by dwh GmbH in cooperation with TU
Wien. The environment is implemented in JAVA and specifically designed for supporting
reproducible simulation of large-scale agent-based systems. Technical details are found in
the appendix, Section 6.2.
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2.5 Scenario Definitions

In this section, we briefly describe the simulation scenarios, we used to analyse the impact
of tracing policies. For detailled parameter-tables of the scenarios, we will partially refer
to the Appendix.

First of all, we chose April 9th 2020, 08:00 AM as our initial time of the simulation –
we will henceforth denote this time by t0. By this time, countrywide lockdown in Austria
had already managed to reduce Reff , the effective transmission rate of the disease, below
1 causing the number of newly infected people per day to decrease. About 12900 positive
virus tests had been reported until this date1.

2.5.1 Scenario: Initialisation Phase until t0

The country realised nationwide closure of schools and workplaces on March 16th, yet our
calibration process revealed that this lockdown should rather be modelled as a process
with several steps, which are briefly listed in the appendix in Table 7. It is clear that
the modelled policy events and, in particular, their parametrisation cannot be taken into
account separately – some of them might have a larger, some a smaller impact in reality
than the model – yet the summary of all policies allowed us to calibrate the current curve
of the disease by feasible and causally-founded assumptions.

2.5.2 Scenario: Baseline

To create a reference, we established three fictional baseline scenarios, a high, a medium
and a low compliance scenario, that simulate the further course of the epidemic. They start
from t0 (April 9th 2020) under the ongoing lockdown policies and consider the subsequent
lifting of the implemented measures. In all three fictional baseline scenarios, the lockdown
policies are almost fully lifted on May 1st. Contacts in schools, workplaces and households
are back on the basis level and only the leisure time contacts are slightly reduced. Hereby,
the compliance is varied by different assumptions of the population to maintain leisure
time hygiene standards (distancing) and quantity of leisure time contacts:

• high compliance: Leisure time infection probability is reduced by 50%, contact num-
bers are reduced by 75%.

• medium compliance: Leisure time infection probability is reduced by 50%, contact
numbers are reduced by 50%.

• low compliance: Leisure time infection probability is reduced by 50%, contact num-
bers are not reduced at all.

A detailed specification of the three scenarios can be found in the appendix in Table 8.
We want to emphasise that all baseline scenarios defined here are entirely fictional

and they do not and are not designed to represent the current and future situation in
reality. For example, they do not include school closings during the summer or other
holidays, and weekends are not considered either. Furthermore, we assume an unlimited
testing capacity such that, even at the height of the epidemic, all symptomatic persons
can be tested without increasing the reaction time between symptom onset and becoming
a confirmed case. Yet, the scenarios allow to solely focus on the specific impact of tracing
related policies without any other disturbances. In particular, they are chosen so that
none of the tracing policy scenarios instantaneously pushes Reff below the critical point
1. Having such a bifurcation within the parameter study would make it impossible to
compare any two scenarios quantitatively.

1This number corresponds to the actual state of the confirmed cases on the specified date at the specified
time. Due to a reporting bias, this number is subject to constant changes and will probably increase in the
future.
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2.5.3 Scenario: Location Tracing

The first measure to be evaluated by the simulation model are location tracing policies. We
define this policy as the reaction of a person’s direct surrounding in response to a positive
COVID-19 virus test result. While isolation of the affected person is done as usual, now
also all persons in the direct surrounding of the infected person will become isolated as
well, independent of their current disease state. In this process, the surrounding is defined
as the group of persons that commonly visit the same locations as the infected person.
By this measure we expect to find and isolate a high percentage of infected persons before
they even become visible to the system.

In the model, we studied the effects of location tracing regarding two location types:
household and workplace. The policy household tracing means that as soon as an agent
enters the confirmed status, all other members of the agent’s household are isolated as
well. In workplace tracing, the workplace of a confirmed COVID-19 patient is temporarily
closed and all the coworkers are put into preventive quarantine.

In isolation, agents only have contacts with the other members of their household.
They do not attend school or work and do not have leisure time contacts. After a fixed
number of days - we chose 14 days for our scenarios - agents are released from isolation
and can resume their normal behaviour, if they turn out to be unaffected by the virus.
Clearly, the availability of a precise test could reduce the required quarantine length, yet
this feature is not included in the model thus providing conservative estimates.

We evaluated the impact of the location tracing for households and for workplaces
separately as well as in combination, henceforth denoted as combined tracing scenario. In
the simulation, the policies have been implemented on May 15th, a time at which the
new upswing of the epidemic can already be observed by an increasing number of new
infections.

2.5.4 Scenario: Individual Tracing

Extending the ideas of location tracing we studied the effects of individual tracing of
contacts. For this tracing policy, we assume that a certain amount of people record their
contacts outside of their household, for instance by using a tracing app on their smartphone
or on a similar device. In this process, a contact is recorded if both involved persons use the
tracing device. We assume that the tracing is completely accurate. In this way, all contacts
between persons using the tracing device are recorded and, most importantly, there is no
infection between two tracing people that goes undetected. These contacts are saved for a
specific recording period. If a person using the tracing device becomes a confirmed case of
COVID-19, the recorded contacts are informed and placed under preventive quarantine.
The implications of the preventive quarantine are the same as in Section 2.5.3.

The effectiveness of this policy has been evaluated on top of the location tracing policies
for households and workplace contacts, i.e. the combined tracing scenario. We considered
rates of 50% and 75% of people using the tracing device and a recording period of 7 days.
The length of the preventive quarantine is fixed at 14 days and the implementation date
is May 15th, the same as the policies from Section 2.5.3.

3 Results

3.1 Initialisation Phase until t0
Although not directly related with tracing policies, we first want to give an image of the
results of the initialisation phase defined in Section 2.5.1.

On the average, by March 16th, the modelled total contacts per day were reduced by
about 78%, with additionally reduced infectivity of contacts at workplace and in leisure
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time by 50%. As mentioned in the model description, the calibrated model provides the op-
portunity to carry out estimates for the reproduction numbers Reff and, most importantly,
R0. The fitted model results indicate R0 ≈ 4.5.

Figure 3 depicts the results of the initialisation phase. It nicely displays that the
confirmed cases are only one part of the total infected population and that it is necessary
to consider all of them to generate a feasible initial population at t0: the asymptomatic,
that never feel any or only mild symptoms and remain undetected, the pre-symptomatic,
that are still within the incubation period, and the unconfirmed symptomatic, that have
not yet reacted on their symptoms or wait for being tested.
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Figure 3: Comparison of the initial phase and reported data from Austria. Upper plot shows
active cases while the lower plot displays cumulative.

3.2 Baseline Scenarios

In the three baseline scenarios high, a medium and low compliance, defined in Section
2.5.2, a new upswing of the disease occurs around 14 days after the lifting of the lockdown
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policies. In the scenario with the low compliance, the epidemic reaches a peak of around
2.47 million confirmed cases (28% of the population) approximately 9 weeks after the end
of the lockdown. In total, the model contained 4.25 million confirmed agents (47% of
the population) and 8.5 million infected agents (95% of the population), which includes
asymptomatic and pre-symptomatic agents as well.

In the scenario with the medium compliance, the peak of the confirmed cases is reached
around 11 weeks after the lifting of the lockdown policies with a value of 1.86 million agents
(21% of the population). At the end of the pandemic, there has been a total of 3.87 million
confirmed cases (43% of the population) and 7.74 million infected agents, which accounts
for 86% of the population. The reduction of the leisure time contacts in the scenario with
the high compliance lead to a 26% reduction for the peak of the epidemic compared to the
scenario with low compliance.

In the scenario with the high compliance, the epidemic reaches a peak of 1.43 million
confirmed agents (16% of the population) 12 weeks after the lifting of the lockdown policies.
Around 3.44 million agents (38% of the population) were confirmed in total, 6.88 million
agents were infected (77% of the population). The further reduction of the leisure time
contacts managed to reduce the peak of the epidemic by 42% compared to the scenario
with low compliance.

The simulated timelines for the confirmed agents of the baseline runs are displayed in
Figure 4.
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Figure 4: Simulation of the baseline scenarios high, medium and low compliance. The plot is
split into two parts to allow a detailed image of the different scales without logarithmic scaling.

3.3 Location Tracing

The results of the three location tracing scenarios household workplace and combined trac-
ing, defined in 2.5.3, can be seen in Figures 5, 6 and 7, and Table 1, respectively.

To evaluate the policies, we considered the reduction of the peak of the active confirmed
cases as well as the peak of the agents currently placed in preventive quarantine. As a
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measure for the effectiveness of the policy, we defined the cost c by

c =
pq
rc
, (1)

where pq denotes the peak of the people in preventive quarantine and rc denotes the
reduction of the peak of the confirmed cases. The higher this number, the more people
have to be placed in preventive quarantine to achieve the same reduction of peak of the
disease wave.

Table 1: Simulation results for location tracing policies.
scenario peak

height
peak

reduction
(%)

peak pre-
ventive

quaran-
tined

people

preventive
quaran-

tined
people
(% of

popula-
tion)

cost c

Low Compliance
baseline 2 474 780 0 0 0 -
household
tracing

2 120 453 14 3 308 672 37 9.34

workplace
tracing

1 753 131 29 3 740 886 42 5.18

combined
tracing

1 400 530 43 4 763 894 53 4.43

Medium Compliance
baseline 1 860 333 0 0 0 -
household
tracing

1 426 499 23 2 268 916 25 5.23

workplace
tracing

1 276 335 31 3 354 799 37 5.74

combined
tracing

929 435 50 3 886 732 43 4.18

High Compliance
baseline 1 430 386 0 0 0 -
household
tracing

996 102 30 1 618 899 18 3.73

workplace
tracing

1 005 572 30 3 059 831 34 4.43

combined
tracing

688 991 52 3 287 777 37 4.43

It can be seen that the location tracing based on shared workplaces achieves a peak
reduction by about 30% regardless of the compliance level, whereas the household tracing
performs better with an increasing compliance. Moreover, household tracing leads to a
slight delay of the epidemic peak. For all three compliance levels, combined tracing for
households and workplaces achieves the greatest peak reduction, performing better with a
higher level of compliance.
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3.4 Individual Tracing

The results of the individual tracing scenario, defined in Section 2.5.4 are shown in Figures
5, 6, and 7 and Table 2, respectively.

For all levels of compliance, individual tracing manages to further decrease the epi-
demic peak without increasing the peak of the people placed under preventive quarantine.
Interestingly, the reduction of the epidemic peak achieved by a tracing rate of 75% does not
vary much based on the compliance level. However, since the height of the epidemic peak
decreases with an increasing compliance level, fewer people have to be placed under pre-
ventive quarantine to achieve this reduction. Thus, with an increasing level of compliance
tracing becomes more effective.

Table 2: Simulation results for individual-tracing policies.
scenario peak

height
peak

reduction
(%)

peak pre-
ventive

quaran-
tined

people

preventive
quaran-

tined
people
(% of

popula-
tion)

cost c

Low Compliance
baseline 2 474 780 0 0 0 -
combined loc.
tracing

1 400 530 43 4 763 894 53 4.43

50% individ-
ual tracing

863 579 65 4 771 632 53 2.96

75% individ-
ual tracing

509 933 79 4 577 331 51 2.33

Medium Compliance
baseline 1 860 333 0 0 0 -
combined loc.
tracing

929 435 50 3 886 732 43 4.18

50% individ-
ual tracing

589 310 68 3 710 089 41 2.92

75% individ-
ual tracing

362 623 81 3 382 952 38 2.26

High Compliance
baseline 1 430 386 0 0 0 -
combined loc.
tracing

688 991 52 3 287 777 37 4.43

50% individ-
ual tracing

437 857 69 2 912 325 32 2.93

75% individ-
ual tracing

271 086 81 2 471 908 28 2.13
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Figure 5: Comparison of different tracing policies for the low compliance baseline.
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Figure 6: Comparison of different tracing policies for the medium compliance baseline.
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Figure 7: Comparison of different tracing policies for the high compliance baseline.

4 Discussion

4.1 Evaluation of Tracing Policies

First of all, the model results indicate that tracing, in any characteristic, is a suitable
policy to contain the disease and can supplement lockdown policies with high contact
reduction. Yet, isolating persons due to a preventive quarantine measure is always related
to economic and social problems – in particular, if the isolation turns out to be unnecessary.
Consequently, any tracing measure should focus on keeping the total number of isolated
persons as small as possible to reduce socioeconomic damage.

Hereby, highly interesting dynamics occur due to the interplay of two feedback loops
which are depicted in Figure 8. As long as the feedback loop of the infectious and infected
persons dominates the system, a lot of new infections will increase the number of persons
in preventive isolation and therefore the economic costs. Increasing the strictness of the
tracing measure, i.e. trace more rigorously, will contribute to make the right feedback loop
dominant and contain the disease. Yet, it directly increases the number of quarantined
people at first. Combined with compliance among the population, both, the infected and
the preventive isolated people can be held on a low level.
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Figure 8: Causal Loop Diagram of relevant system components with respect to tracing mea-
sures. The more dominant the feed-back loop on the left-hand side, the more potentially
infectious contact partners need to be isolated to contain the disease.

The defined cost function c is used to quantify the efforts of a specific tracing strategy
and relates with the direct benefit of the policy regarding the flattening of the curve. As a
result of the high baseline runs, also the quarantine measures come at a comparably high
price. Hereby, it directly correlates with the accuracy of the measure, i.e. the probability
that a preventive isolated person is actually infected. Temporary closing of workplaces is
clearly the least “precise” of the modelled policies as it affects the highest number of per-
sons. Isolating household members is more “accurate”, but leaves many infections outside
of households untraced. Our model suggests that the better the disease is contained, the
higher the percentage of infections within households, and consequently, the more effective
isolation of household members of infectious persons turns out to be.

Figure 9 shows a comparison between the height of the peak of the disease and the
maximum number of agents in preventive isolation for all baselines and tracing policies.
It reveals a highly interesting interplay between the number of isolated persons and the
maximum peak height of the disease wave: On the one hand, a lower peak height implies
stricter quarantine policies and more persons affected by them. On the other hand, a lower
peak height leads to fewer persons requiring isolation. As the latter impact is nonlinear,
the negative correlating impact dominates the positive one: if the disease is contained
well, strict tracing policies are less costly than loose ones. For example, the number of
preventive quarantined persons in the high compliance scenario increased to about 37%
of the population with the combined tracing and decreased again to 28% with the 75%
individual tracing although the policy is more restrictive. Compared to the low compliance
scenario in which the corresponding numbers were 53% and 51% the same effect is visible,
but less marked.

Clearly, the defined cost function can not remain the only one that should be consid-
ered in order to evaluate and compare measures. We must consider costs with respect
to implementation and control of the policy and, in particular, heavy losses of personal
freedom that can hardly be quantified at all. Unfortunately, the model indicates that the
least efficient policies are the ones which could be implemented the easiest and vice versa.
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Figure 9: Impact of all location and individual tracing policies on both the epidemic peak
and the number of persons isolated at home. Although tightening the policies leads to higher
number of quarantined people at first, the number of isolated persons tends to decrease with
the epidemic peak size if the policies are effective.

In summary, the model indicates that all tracing measures contribute to reduction of
the maximum peak-height. Hereby the effect of the policy can be set in relation with
an alternative policy that focuses on reduction of leisure time contacts. As displayed in
Table 2, the baseline peak of high compliance scenario is very similar as the combined
location tracing peak of the low compliance scenario. Consequently, according to the
definition of the baseline scenarios in Section 3.2, the model indicates that well performed
location tracing could supplement a reduction of the number of leisure time contacts by
75%. Additional individual tracing would supplement for an even higher reduction. If
only household or workplace tracing is applied, the benefits vary with the compliance – the
higher the compliance, the more effective tracing of households becomes in comparison to
workplace tracing.

In general, the findings of this work match the experience of countries that already
implemented large-scale contact tracing like Singapore, provinces of China or South Korea
[29, 33, 35]. Yet, in particular the chosen strategy in South Korea underlines, that pure
contact tracing alone might not be sufficient to fully contain the disease. With respect
to quantity, the reduction of the peak under tracing measures tops with 80% for the
75% individual tracing scenario, which matches with the highest estimate in [32] – in this
summary of 29 COVID-19 studies (10 modelling studies) the reduction of incident cases
under quarantine measures ranges from 44% to 81%.
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4.2 Estimate of R0 and General Consequences for Disease
Containment

Although not directly related with tracing, the calibration process revealed a modelled
basic reproduction number R0 of COVID-19 in Austria of about 4.5, which is consider-
ably high compared to most other estimates in literature. We assume that this is mainly
due to two reasons: First of all, the number originates from the calibration data which
is not cleaned with respect to a reporting bias. It is legitimate to assume that the slope
of the actual curve at the beginning of the disease-wave is smaller than reported (see
report for “nowcasting” attempts by the Robert Koch Institute(RKI, [21]) in Germany.
Yet, the second, more important reason for our comparably high R0 is that typical es-
timates for this number, gained by fitting a Susceptible-Infectious-Recovered (SIR) or
an exponential model, are usually lower than analogous R0 estimates based on fitting
a Susceptible-Exposed-Infectious-Recovered (SEIR) model – or generally any model that
includes a latency/incubation phase (see [26]).

Anyway, the modelled R0 indicates that the infection rate needs to be reduced below
1/R0 ≈ 22% of its original value in order to reach a fully contained behaviour of the
disease, either by reduction of contacts and/or strict distancing and hygiene measures. As
a matter of fact, this number is almost impossible to interpret in real life, mainly because
there are lots of processes for which infectivity can hardly be reduced properly. The most
important of these are definitely contacts within households which hardly be reduced by
any measurement or policy.

Our model considers this problem and makes it possible to implement policies much
more realistically: Considering that household contacts cannot be target of any policy,
our model indicates that all other contacts would have to be reduced below approximately
12%, instead of 22%, of their original value to achieve full containment. Only considering
policies for reduction of leisure time contacts, but not school or workplace contacts, this
point cannot be reached at all. Consequently, it is not surprising that the chosen baseline
scenarios do not lead to a properly contained disease in the model.

4.3 Model Features and Limitations

Due to the highly flexible policy timeline, the model is capable of testing and combining
lots of different policies in different characteristics and at different times. Hence, it can
easily depict almost any specified policy announced in reality, if estimates for the policy
parameters are available.

The latter statement particularly refers to combination of policies: although the model
correctly depicts the epidemiological impact of the combination of policies, the social im-
pact needs to be parametrised manually. For instance, the causal relation between closed
schools and intensified grandparents-children contacts needs to be parametrised and is not
given by the model dynamics.

As the model cannot be scaled down, a huge number of agents leads to long computation
times, and the necessity of Monte Carlo simulation for flattening of stochastic results
increases the time required to get simulation output even more. As a consequence, the
simulation’s capabilities of dealing with multi-variate calibration problems are limited and
the model is unhandy to generate short-time prognoses.

Finally, the model disregards “death” as a final disease state as the model does not
distinguish between deceased and recovered agents. Though this feature could easily be
added to the model, we made this simplification as a conscious decision at the beginning
of the modelling process. First, this feature is irrelevant for our modelling purpose and
secondly, we did not intend to contribute to the rising panic among the population due to
death-count prognoses.
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5 Conclusion

We presented am agent-based simulation model that is capable of evaluating different
tracing policies. By doing so we showed the limits of classical macroscopic cohort models,
as comparable scenarios would not be feasible with aggregated modelling approaches: By
aggregating individual contacts into global contact rates, individual contact-chains are lost
and tracing cannot be modelled.

In the simulation case studies, we investigated three baseline scenarios for a second
outbreak of COVID-19. The chosen scenarios allowed us to simulate and quantify the
impact of different tracing policies and draw conclusions about tracing in general.

The results show that tracing of potentially infectious contacts and subsequent isolation
of affected persons is a very useful measure to slow the spread of COVID-19 and that there
are many different ways to do so. In particular, if the compliance for hygiene and contact
reduction among the population is high, tracing policies are not only successful, but also
cheap with respect to the number of isolated persons.

The features for evaluating the effectiveness of tracing policies is only one of many
features of this advanced ABM. Although the model has limitations it is a well-founded
basis for COVID-19 related decision support as it is capable of including complicated
model-logic and diverse and high-resolution data.
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6 Appendix

6.1 Model Details

Clearly, Section 2.1 could only outline the basic concepts of the model and left a lot of
technical and modelling details open that are necessary for a reproducible model defini-
tion. In particular, this refers to the highly non-trivial initialisation process of the model.
Hereby, two problems occur that require completely different approaches. The first prob-
lem considers the generation of the person-agents, locations and hospitals in the first place.
The second problem deals with the initialisation of the status quo of the distribution of
the disease states of the agents for the specified initial date.

6.1.1 Initialisation of Person-agents, Locations and Hospitals.

A lot of problems that deal with the sampling of the initial population have already
been solved in the original GEPOC model [13]. In particular this refers to the delaunay-
triangulation-based sampling method for locations. We apply this method to merge infor-
mation from the national statistics institute and the global human settlement layer [17].
Consequently, besides initialisation of the disease states which is described in the next
section, only new methods for location- and hospital-generation had to be implemented.

Schools are initialised based on known distributions w.r.t. average school size and
number of pupils in total. A school-sampler iteratively generates schools with a random
size/capacity (truncated normal distribution) until the sum of all capacities matches the
known number of pupils in reality. Each school is furthermore sampled a position (latitude
and longitude) analogous to the sampling for person-locations (see [13]). In a second step,
schools are “filled” with person agents. In this process, model agents with age between 6
and 18 are assigned to a school via a region-specific distribution analogous to the sampling
of leisure-time contacts (see 2.1.4). Clearly, the number of model agents in this age group
is larger than the number of known pupils. Consequently, we force distribution of all 6
to 14 year old agents, and distribute as many 15 to 18 year old agents as possible. All
remaining 15 to 18 year old agents are considered to be working.
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Workplaces2 are initialised analogously to schools. A workplace-sampler iteratively
generates workplaces with size/capacity according to a discrete distribution (see Table 4).
The sampler stops generating if the sum of all capacities matches (a+ b)(1 − α), whereas
a denotes all model agents between 19 and 64, b denotes all agents between 15 and 18
that have not yet been assigned a school, and α denotes the current unemployment rate.
Location sampling and “filling” works analogously to the school-sampler.

Hospitals are generated based on publicly available data. This includes capacities (beds,
intensive-care units) as well as their location (latitude and longitude).

6.1.2 Initialisation of the Disease State

The spread of SARS-CoV-2 displays probably better than any other system, that the most
dangerous enemy is the invisible one. While confirmed infected persons are detected and
well known, they hardly contribute to the spread of the disease – they are already isolated
properly, and most infections occur even before the onset of symptoms.

Consequently, it is not possible to simply “start” the simulation with a certain number
of confirmed cases, acquired for example from official internet sources. Valid values for
pre-symptomatic (e.g. persons within latency and incubation period) and asymptomatic
persons need to be acquired as well – yet, this number is hardly measurable in reality.

In order to solve this problem, a three stage concept, henceforth denoted as initialisation
phase, was designed to generate a feasible initial state for a certain time t0:

1. Initialise-Simulation. The agent-based COVID-19 model is set up with a small
number of initially infected agents. This number corresponds to an estimated count of
initial infection clusters in the country, but actually hardly influences the outcome.
Furthermore, the agent-based simulation is run and interrupted by a state event,
namely if the cumulative number of confirmed agents in the model is greater or equal
to a specific value C(t−1), where t−1 refers to a self chosen point in time and C(t−1)
to the reported number of positive tests in reality until t−1. For this process, t−1

must be chosen properly so that the reported number of positive tests is large enough
to be representative yet before implementation of any policies.

As soon as the simulation is interrupted by the state-event, the timelines of simulation
and reality are synced: t−1 in reality becomes t−1 in the simulation.

The initialise-simulation is continued, considering all policies that have been imple-
mented in reality, until, finally, t0 is reached. Properly calibrated by a calibration
routine (see Section 6.1.4), the initialise-simulation contains approximately the same
cumulative number of confirmed agents as the corresponding reported number in the
real system.

The initialise-simulation is finished by exporting parts of the final state of the simu-
lation. This refers to all households that contain either infected or recovered agents
which are finally written into a file. With this strategy, an initial population is gen-
erated that contains not only a valid approximation of the confirmed cases, but also
a valid estimate for the unknown pre-symptomatic and asymptomatic persons, a cor-
rect distribution of their future planned events and a correct household distribution
as well.

2. Fine Tuning. Even with best calibration routines (see Section 6.1.4) it is not possi-
ble to perfectly match the model output with the status quo in reality, in particular
w.r.t. regional distribution. Therefore, a bootstrapping algorithm was implemented
that corrects the small differences between the initialise-simulation output and the
real data (confirmed cases, hospitalisation, intensive-care units and recoveries per re-
gion) to make sure, that the initial state of the actual simulation matches the current

2Workplaces should not be confused with total companies. They rather represent the different teams where
the members are in regular contact with each other.
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state precisely. This step can be omitted, if matching the current state precisely is
not required.

3. Load Households. Finally, the actual simulation is initialised with the previously
recorded and fine-tuned agents from the initialise-simulation. To be precise, this
process does not only include agents themselves, but also the households these agents
live in. With this approach, at least, the fundamental network structure from the
initialise-simulation can be maintained.

6.1.3 Parametrisation

We finally state a list of used parameters and parameter-values including corresponding
sources and/or justifications. They are found in Tables 3, 4, and 6.

Table 3: List of population specific parameters
parameter description value source
birthrates,
deathrates,
initial popula-
tion, regional
distribution

parameters used by the
underlying population
model

see source rates and population
tables from Austrian
National Statistics In-
stitute [7]. Maps from
the Global Human
Settlement Project [5,
17] and [4].

6.1.4 Calibration

Clearly, there is no valid data available for direct parametrisation of the infection probability
in case of a direct contact. First of all, this parameter is hardly measurable in reality and
moreover strongly depends on the definition of “contact”. Consequently, this parameter
needs to be fitted in the course of a calibration loop.

The calibration experiment is set up as follows:

• We vary the parameter infection probability using a bisection algorithm.

• For each parameter value, the simulation, parametrised without any policies, is exe-
cuted ten times (Monte Carlo simulation) and the results are averaged.

• The average time-series for the cumulative confirmed cases is observed and cropped
to the beginning upswing of the epidemic curve, to be specific, all values between 200
and 3200. In this interval the growth of the curve can be considered as exponential.

• The cropped time-series is compared with the corresponding time-series of real mea-
sured data in Austria, specifically the confirmed numbers between March 10th and
20th 2020 (source EMS system, [2]).

• Both time-series are compared w.r.t. the average doubling time of the confirmed
cases. The difference between the doubling times is taken as the calibration error for
the bisection algorithm.

Note: As the sample standard deviation of each observable of the runs has been observed
to be at most a fifth of the sample mean, the iteration number of nine for the Monte Carlo
simulation has been considered to be sufficient for calibration purposes w.r.t. the ideas
in [14,23].
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6.2 Technical Implementation Details

The implementation of the agent-based COVID-19 model uses JAVA 11 and applies the
UniformRandomProvider random number generator (RNG) by Apache Commons [1]. This
RNG implements a 64 bit version of the Mersenne Twister [28] and exceeds the standard
RNG of JAVA, a simple Linear Congruential Generator, in both performance and quality.

The simulation itself is always executed in a Monte Carlo setting and several runs with
different RNG seeds are averaged. Due to the huge number of agents, a Law-of-Large-
Numbers-effect can be observed (similar to [12] Chapter 5.2), and the standard deviation
of the model output is always comparably small. Consequently, Monte Carlo replication
numbers of 10 to 20 are usually enough to estimate the mean sufficiently well (we apply
the algorithms from [14,23]).

6.3 Detailed Scenario Definition

In order to give a reproducible definition of scenarios, we explain the used policy-timelines
in detail in tables 7 and 8. The prior shows the calibrated timeline of initialisation phase,
the latter displays the timeline of the baseline scenarios.

27

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 8, 2020. ; https://doi.org/10.1101/2020.05.12.20098970doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.12.20098970
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 4: List of contact specific parameters. Note that all parameter values are specified for
the standard model without policies. The Γ-distribution is given as Γ(k, θ).

parameter description value source
leisure time
contacts per
day

number of leisure time
transmission-relevant con-
tacts of an agent per day

X ∼
Γ(6.11, 1.0)

based on the re-
sults of the POLY-
MOD study [30]

workplace
contacts per
day

number of transmission-
relevant contacts at work
(if assigned) of an agent
per day

X ∼
Γ(5.28, 1.0)

based on the re-
sults of the POLY-
MOD study [30]

school con-
tacts per
day

number of transmission-
relevant contacts at school
(if assigned) of an agent
per day

X ∼
Γ(4.64, 1.0)

based on the re-
sults of the POLY-
MOD study [30]

household
sizes and
structure

distribution of household
sizes and structure

see source distribution and
structure from
freely accessible
tables for house-
hold statistics
from the Austrian
National Statistics
Institute [7]

school sizes The actual number of
schools and pupils were
gathered to calculate the
average size of schools for
the model. Based on this
average, sizes for the sim-
ulation are sampled trun-
cated normally.

X ∼
N(µ,

√
µ),

with
µ = pupils

schools
and X > µ/4
a.s.

counts gathered
from a publication
of the Austrian
National Statistics
Institute [9]

workplace
sizes

discrete distribution of
workplace sizes

see source gathered from a
survey [10] by the
Austrian National
Statistics Institute

unemploy-
ment rate

fraction of adults who are
not assigned a workplace

10.4% according to Aus-
trian definition
(AMS) gathered
from the web-page
of the city of
Vienna [8]

regional dis-
tribution of
leisure time
contacts

leisure time contact part-
ners are sampled based
on locally biased distribu-
tion according to the re-
gional structure: munici-
pality, district and federal
state

[pm, pd,
pf , pa] =
[0.7, 0.2,
0.05, 0.05]
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Table 5: List of disease specific parameters (1/2).
parameter description value source
infection
probability

probability that a con-
tact between a sus-
ceptible and an in-
fected agent leads to
a transmission. De-
pending on the type
of contact (household,
school, work, leisure
time) this parameter is
scaled by a factor α

α · 0.077 calibrated based
on the doubling
rates in Austria
before introduc-
tion of policies (see
Section 6.1.4)

incubation
time

time between infection
and symptom on-set

scaled β dis-
tribution with
min(X) = 2[d],
max(X) = 14[d],
E(X) = 5.1[d]

based on [25]

latency time time between infection
and infectivity

always incubation
time minus 2[d]

estimated based on
expert opinions

reaction
time

time between symp-
tom on-set and re-
action/testing of the
agent which further-
more leads to its con-
firmation and isolation

X ∼
Weibull(4.29, 1.65)

based on [22]
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Table 6: List of disease specific parameters (2/2).
parameter description value source
recovery
time symp-
tomatic

time between symptom
on-set and recovery for
symptomatic persons

X ∼
Tri(11, 18, 25)

based on expert
opinions and cali-
brated w.r.t. offi-
cial recovery data
(as the model sce-
narios are not fo-
cused on progno-
sis of hospitalisa-
tions we do not dif-
fer between recov-
ery time in home-
quarantine, hospi-
tal or ICU)

recovery
time asymp-
tomatic

time between symptom
on-set and recovery for
asymptomatic persons

Tri(1, 5, 7) estimated based on
expert opinions

hospitalisation
probability

age-dependent probability
that a symptomatic pa-
tient requires hospitalisa-
tion

[6.2, 1.0, 2.6,
2.7, 7.1, 10.3,
26.7, 48.3,
61.8, 53.3]%
for 10-year
age classes

Calculated from
reported cases
via Elektronis-
ches Meldesys-
tem (EMS) by
AGES [2] by com-
parison with the
age-pyramid in
Austria

icu probabil-
ity

probability that a hospi-
talised agent becomes crit-
ical (needs an intensive
care unit)

25.4% calibrated for data
in Austria

initialisation
data

current epidemiological
numbers for Austria for
initialisation (see Section
6.1.2)

see source initial data dumps
updated on regular
basis via Elektro-
nisches Meldesys-
tem (EMS) by
AGES [2]

probability
asymp-
tomatic

probability of an asymp-
tomatic disease progres-
sion

50%
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Table 7: Model policies introduced to fit the current lockdown time-series in Austria
date policy event interpretation parameters
Mar.10 reduction of leisure

time contacts
Due to the raising anxiety and aware-
ness among the population resulting
from the medial coverage, we assume
that many Austrians have already
minimised their contact behaviour be-
fore introduction of the policies.

A simulated leisure
time contact is re-
fused by an agent
with probability
0.16.

Mar.10 increased hygiene
and distancing in
leisure time

Increasing awareness leads to in-
creased hygiene among the popula-
tion.

Leisure time trans-
mission probability
is reduced by 50%.

Mar.14 closing of schools
and workplaces

Although closure of schools and work-
places was announced for March 16th,
a Monday, the policy is actually active
already two days earlier, as all schools
and most workplaces are closed during
the weekend anyway.

All schools and
50% of the work-
places are disabled
for contacts.

Mar.14 increased hygiene
and distancing at
workplaces

Due to increasing hygiene and distanc-
ing at work, contacts are less infec-
tious.

Workplace trans-
mission probability
is reduced by 50%.

Mar.14 reduced contact
frequency at
workplaces

Due to increased use of home-office,
also the total number of contacts at
work per day is reduced.

The average num-
ber of workplace
contacts per day is
reduced by 50%.

Mar.16 reduction of leisure
time contacts

Due to massive restriction of mobil-
ity, leisure time contacts of people are
heavily reduced.

A simulated leisure
time contact is re-
fused by an agent
with probability
0.7.
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Table 8: Baseline Scenarios high, medium and low compliance: Lift of the lockdown measures
on May 1st 2020.

date policy event interpretation parameters
before
May
01

lockdown All shutdown policies are ac-
tive.

all policies introduced in Ta-
ble 7 are active.

May
01

open schools and
workplaces

All policies introduced on
Mar.14 are lifted.

All school and workplace lo-
cations are open for con-
tacts as normal. Transmis-
sion probabilities and con-
tact numbers are reset to the
original value.

May.01 increase of leisure
time contacts

Due to massive lift of poli-
cies, leisure time contacts
are increasing.

In the high compliance
scenario, the leisure time
contact reduction is set
to 75% and the leisure
time transmission proba-
bility remains at 50% of
its original value.
In the medium compli-
ance scenario, the leisure
time contact reduction
is set to 50% and the
leisure time transmis-
sion probability remains
at 50% of its original
value.
In the medium compli-
ance scenario, the leisure
time contact reduction is
set to 0% and the leisure
time transmission proba-
bility remains at 50% of
its original value.
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