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Abstract 
The Covid-19 first occurs in Wuhan, China in December 2019. 
After that the virus spread all around the world and at the time 
of writing this paper the total number of confirmed cases are 
above 4 million with over 297000 deaths. Machine learning 
algorithms built on radiography images can be used as a 
decision support mechanism to aid radiologists to speed up the 
diagnostic process. The aim of this work is twofold. First, a 
quantitative analysis where we evaluate 12 off-the-shelf 
convolutional neural networks (CNNs) and proposed a simple 
CNN architecture with less parameters and computational 
power that can perform as good as Xception and DenseNet 
architectures if trained on small dataset of chest X-ray images. 
Secondly, a qualitative investigation to inspect the decisions 
made by CNNs using a technique known as class activation 
maps (CAM). Using CAMs, one can map the activations 
contributed most to the decision of CNNs back to the original 
image to visualize the most discriminating regions in the input 
image. Chest X-ray images used in this work are coming from 
multiple sources which comprises of 154 confirmed COVID-
19 images and over 5000 X-rays of normal, bacterial and other 
viral (non-COVID-19) infections. We conclude that CNN 
decisions should not be taken into consideration until 
radiologist/clinicians can visually inspect the region(s) of the 
input image used by CNNs that lead to its prediction. This 
work also reports the necessity of segmenting the region of 
interest (ROI) to prevent CNNs building their decision from 
features outside ROI. 

Index Terms— Coronavirus; Convolutional Neural 
Network; Deep Learning, Class Activation maps, COVID-19. 

I. INTRODUCTION 
The severe acute respiratory syndrome coronavirus 2 

(SARS-CoV-2), the virus causing COVID-19, has become a 
pandemic since its emergence in Wuhan, China in Dec 2019 
[1]. The death toll from the infection is escalating at a worrying 
rate and many health systems around the world are struggling 
to cope. Social distancing is among some approaches proposed 
by the World Health Organization (WHO) to control the 
spread of this viral infection. A critical step in this direction is 
an effective and accurate screening of the COVID-19 patients 
so positive cases receive timely treatment and get 
appropriately isolated from the public; a measure deemed 
crucial in curbing the spread of the infection. Reverse-

transcription polymerase chain reaction (RT-PCR) testing, 
which can detect SARS CoV-2 RNA from respiratory 
specimens (such as nasopharyngeal or oropharyngeal swabs), 
is the golden screening method for detecting COVID-19 cases. 
The high sensitivity of RT-PCR testing is overshadowed by 
the limited availability of test kits and the amount of time 
required for the result to be available (few hours to a day or 
two) [2]. Therefore, there is a growing need to use faster and 
reliable screening techniques that could be further confirmed 
by the RT-PCR testing. Some studies have suggested the use 
of imaging techniques such as X-rays or Computed 
Tomography (CT) scans of the chest to look for visual 
indicators associated with SARS-CoV-2 viral infection.  It was 
found in early studies that patients display abnormalities in 
chest radiographs that are characteristic of COVID-19 
infection, with some suggesting that radiography examination 
could be used as a primary tool for COVID-19 screening in 
epidemic areas [3]. Facilities for chest imaging is readily 
available in modern healthcare systems making radiography 
examination a good complement to RT-PCR testing and, in 
some cases, showing even a higher sensitivity index. Given X-
ray visual indicators could be subtle; radiologist will face a 
great challenge in being able to detect those subtle changes and 
interpreting them accurately. As such, it becomes highly 
desired and required to have computer-aided diagnostic 
systems that can aid radiologists in making a more time-
efficient and accurate interpretation of X-ray changes that are 
characteristic of COVID-19 [4].   

II. Related Works (Survey)   
Since the start of COVID-19, researchers quickly divided 

their effort on combating it by focusing on developing a 
vaccine in one hand [5] and detecting COVID-19 using PCR 
and imaging systems on the other hand [3]. Here, we review 
studies devoted to the use of radiography images to aid and 
complement PCR in diagnosing COVID-19 cases. Ali et al. [3] 
built a deep convolutional neural network (CNN) based on 
ResNet50, InceptionV3 and Inception-ResNetV2 models for 
the classification of COVID-19 Chest X-ray images to normal 
and COVID-19 classes. They reported a good correlation 
between CT image results and PCR approach. Chest X-ray 
images of 50 COVID-19 patients have been obtained from the 
open source GitHub repository shared by (Dr. Joseph Cohen 
[6]). Prabira et al. [7], proposed a method to detect COVID-19 
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using X-ray images based on deep feature and support vector 
machines (SVM). They collected X-ray images from GitHub, 
Kaggle and Open-I repository. They extracted the deep feature 
maps of a number of CNN models and conclude that ResNet50 
is performing better despite the small number of images used 
in their investigation. Maghdid et al. [8] proposed a simple 
CNN of 16 layers only to detect COVID-19 using both X-ray 
and CT scans and reported good performance but the dataset 
used is small. The work of Fei et al. [9] focused on segmenting 
COVID-19 CT scans using a deep learning approach known 
as VB-Net and reported dice similarity of 91%±10%.   

Xiaowei et al. [10], obtained an early prediction model to 
classify COVID-19 pneumonia from Influenza-A viral 
pneumonia and healthy cases using pulmonary CT images 
using Resnet18 model by feeding image patches focused on 
regions of interest.  The highest accuracy for the CNN model 
was 86.7 % CT images.  In Shuai et al. [11], authors use CT 
images to predict COVID-19 cases where they deployed 
Inception transfer-learning model to establish an accuracy of 
89.5% with specificity of 88.0% and sensitivity of 87.0%. In 
[4] a number of CNN architectures that are already used for 
other medical image classifications, evaluated over a dataset 
of X-ray images to distinguish the coronavirus cases from 
pneumonia and normal cases. CNN’s adopted on a dataset of 
224 images of COVID-19, 700 of non- COVID19 pneumonia, 
and 504 normal where they report overall accuracy of 97.82.       

Wang and Wong [2] investigated a dataset that they called 
COVIDx and a neural network architecture called COVID-Net 
designed for the detection of COVID- 19 cases from an open 
source chest X-ray radiography images. The dataset consists 
of chest radiography images belonging to 4 classes including 
Normal X-rays comprising cases without any infections, 
Bacterial, Viral pertaining to non-COVID-19 pneumonia and 
COVID-19 X-rays. They reported an overall accuracy of 
83.5% for these four classes. Their lowest reported positive 
predictive value was for non-COVID-19 class (67.0%) and 
highest was for Normal class (95.1%). As required to improve 
the previous studies Muhammad and Hafeez [12] deals with 
this need by presenting another CNN with fewer parameters 
but better performance. Authors used the same dataset as in [2] 
to build an open source and accurate COVID-ResNet for 
differentiating COVID-19 cases from the other four 
pneumonia cases and outperform COVID-Net. In [13], Narin 
et al. experimented several CNN architectures classify normal 
X-ray images with COVID-19 X-rays and they report 
excellent classification accuracy, sensitivity and specificity. 
But the authors failed to discuss the clinical importance of their 
approach as it may not be difficult to distinguish severe 
COVID-19 cases from normal chest X-rays , as we show in 
table 1, and this is not the situation radiologists face in a 
regular basis or it may not be importance in this current 
pandemic. Finally, they trained their CNNs based on 50 
images from each of the normal and COVID-19 classes which 
is a very small set to train CNN models on. 

In all the works discussed here, to the best of our 
knowledge, we did not encounter an explicit description of 

preprocessing, segmentation nor noise reduction performed 
and whether such operations will affect the final decision by 
proposed CNNs or not. We address this problem by assessing 
the quality of the decision made by 12 CNN models using class 
activation mapping introduced in [14]. Also, there is no 
justification why researchers favored a particular CNN model 
over others and did not compare their final results if one opt to 
choose another CNN architecture. This paper benchmarks 12 
popular CNN models and deploy them in a transfer learning 
mode on a public dataset popularized for the detection of 
COVID-19 infection.  

III. CNN Architectures- Brief overview 
In recent years, the use of deep learning algorithms in 

general and convolutional neural networks (CNNs) led to 
many breakthroughs in a variety of computer vision 
applications like segmentation, recognition and object 
detection [15]. Deep learning methods have been shown to be 
successful in automating the task of feature-representation 
learning and gradually attempts to eliminate the tedious task 
of handcrafted feature engineering. Deep learning, and 
convolutional neural networks (CNNs), attempts to mimic the 
human visual cortex system in terms of structure and operation 
by adopting a hierarchical layer of feature representation. This 
approach of multi-layer feature representation made it possible 
to learn different image features automatically and hence 
enabled CNNs to outperform handcrafted-feature methods 
[16].  

Hubel and Wiesel [17] studied monkey’s visual cortex 
system and found cells which are responsible for constructing 
image and detecting light signal in receptive filed. In the same 
vein, Hubel and Wiesel also showed that monkey’s visual field 
can be represented using a topographic mapping. In 1980s, 
Neocognitron proposed by Fukushima and Miyake [18] which 
is a self-organizing neural network and regarded as a 
predecessor of CNN. In [19], Yan LeCun et al.’s 
groundbreaking work introduced modern CNN models for the 
purpose of handwritten digit recognition in which the 
architecture later popularized and known as LeNet. After 
LeNet architecture, convolutional layers and backpropagation 
algorithm for training popularized and became a fundamental 
building block of most of the modern CNN architectures. In 
2012, AlexNet architecture, proposed by Krizhevsky et al [20], 
won ImageNet Large Scale Visual Recognition Challenge 
(ILSVRC) [21] by outperformed other methods and reducing 
the top-5 error from 26% to 15.3%. This was a turning point 
so that CNNs became an exceptionally popular tool to be 
deployed in many computer visions tasks. Roughly speaking, 
AlexNet is a similar version of LeNet but deeper structure and 
trained on 1.2 million high resolution images. Complex 
architectures that has millions of parameters, and 
hyperparameters, to train and fine tune need a substantial 
amount of computational time and power but again AlexNet 
popularized the use of powerful computational resources such 
as graphical processing units (GPUs) to compensate the 
increase in trainable parameters. 
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AlexNet opened the door for researchers around the world 
to design novel CNN models which are deep but efficient at 
the same time especially after ILSVRC became an annual 
venue for the recognition of new CNN models. The 
participation of technology giants such as Google, Microsoft 
and Facebook also helped in pushing research in this direction 
especially the depth of CNN architectures increased 
dramatically from 8 layers in 2012 to 152 layers in 2015 which 
helped the recognition error rate to drop to 3.5%. Pre-trained 
CNN architectures on ImageNet have been open-sourced and 
immediately used by researcher to transfer the knowledge to 
other application domains and promising results achieved 
[22]. One of the many useful features of transfer learning (TL) 
is that in other domains, such as medical image analysis, 
millions of labeled medical images are not available therefore 
it is natural to consider the use of fine-tuned weights and biases 
of CNN architectures trained on ImageNet, and other large 
databases, to be used for medical image analysis. Hence, we 
opt to use 12 deep learning architectures in a TL mode and 
modify their final layers to adapt to the number of classes in 
our investigation. The deep learning architectures that we used 
for the purpose of COVID19 detection from X-ray images are 
AlexNet, VGG16, VGG19, ResNet18, ResNet50, ResNet101, 
GoogleNet, InceptionV3, SqueezeNet, Inception-ReseNet-v2, 
Xception and DenseNet201.  

In what follows we are going to briefly describe each of the 
12 CNN architectures used here and highlight their distinct 
properties. It is out of the scope of this work to give details of 
all of these 12 CNN models, hence we direct interested reader 
to consult many survey articles on deep learning and CNN 
architectures such as [23] [24].  

AlexNet architecture is the winner of ILSVRC 2012, 
proposed by Krizhevsky et al. [20] outperformed the 
handcrafted features significantly. AlexNet constitutes of 5 
convolutional layers and 2 fully connected layers together with 
rectified linear unit (ReLU) activation function which is used 
for the first time.  It can be regarded as a scaled version of 
LeNet except that it is a deeper architecture trained on a larger 
dataset of images (ImageNet) and benefitted from the GPU 
computational power. Hyperparameters of AlexNet fine-tuned 
and won 2013 ILSVRC [25] (later named ZF-Net).  We use 
AlexNet in a transfer learning mode and modify the last layer 
of AlexNet according to the number of X-ray image classes, 
i.e. instead of 1000 classes that AlexNet trained on we change 
this to 4 classes because 4 X-ray classes used here which are 
COVID19, Bacteria, Viral and Normal. The same approach of 
TL is used for the rest of CNN models. 

VGG architectures proposed by Oxford university’s visual 
geometry group [26], hence the acronym VGG, whereby they 
demonstrated that using small filters of size 3-by-3 in all of the 
convolutional layers throughout the network leads to a better 
performance. The main intuition behind VGG architectures is 
that multiple small filters in a sequence can imitate the effect 
of larger filters. Due to its simplicity in design and 
generalization power, VGG architectures are widely used. We 
use VGG16 and VGG19 that constitute of 16 and 19 

convolutional layers, respectively. 
GoogleNet architecture is the winner of ILSVRC 2014 

which is proposed by Szegedy et al [27] from Google in 2014. 
Novelty of GoogleNet is the innovation of inception module, 
which is a small network inside a bigger network. 
Furthermore, 1-by-1 convolutional layers/blocks used as a 
dimensionality reduction and feature aggregation. In total, 
GoogleNet is 22 layers deep with 9 inception modules. 
Inception V1 (GoogleNet), is later improved in terms of batch 
normalization, representational bottleneck and computational 
complexity and resulted in Inception V2 and V3. Here we opt 
to use GoogleNet and InceptionV3 [28] in a transfer learning 
mode. In the same vein, we use Xception [29], which is 
another architecture proposed by F. Chollet from Google 
which uses the idea of extreme inception module whereby 
depthwise convolutional layers used first then followed by 
pointwise convolutional layers. In other words, they replaced 
inception modules by depthwise separable convolutions in 
such a way that the total number of parameters is the same as 
inceptionV3 but the performance on large datasets (350 
million images of 17000 classes) are significantly higher. 

ResNet architectures are proposed by He et al. [30] from 
Microsoft and won 2015 ILSVRC. Main innovation in ResNet 
architectures are the use of residual layers and skip 
connections to solve the problem of vanishing gradient that 
may result in stopping the weights in the network to further 
update/change. This is particularly a problem in deep networks 
because the value of gradient can vanish, i.e. shrink to zero, 
when several chain rules applied consecutively. Skipping 
connections will help gradians to flow backwards directly 
from end layers to initial layer filters enabling CNN models to 
deepen with 152 layers.  

DenseNet can be regarded as a logical extension of ResNet 
which was first proposed in 2016 by Huang et al. from 
Facebook [31]. In DenseNet, each layer of CNN connected to 
every other layer in the network in a feed-forward manner 
which helps in reducing the risk of gradient-vanishing, fewer 
parameters to train, feature-map reuse and each layer takes all 
preceding layer features as inputs. The authors also point out 
that when datasets used without augmentation, DenseNet is 
less prone to overfitting. There are a number of DenseNet 
architectures, but we opt to use DenseNet201 for our analysis 
of COVID19 detection from X-ray images by using the 
weights trained on ImageNet dataset in TL mode.  

SqueezeNet is a small architecture proposed by Landola et 
al. [32] in 2016 that uses the idea of fire module which contain 
3 filters of size 1-by-1 feed into an expanded layer (4 filters of 
size 1-by-1 and 4 filters of size 3-by-3). Even though the 
number of parameters of SqueezeNet is by 50x less than 
AlexNet but achieves the same accuracy of AlexNet on 
ImageNet.  

Inception-ResNetV2 is a combined architecture proposed 
by Szegedy et al [27] in 2016 that uses the idea of inception 
blocks and residual layers together. The aim of using residual 
connections is to avoid the problem of degradation causes by 
deep networks and reduce the training time. The inception-
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resnetV2 architecture used here contains 20 inception-resnet 
blocks that empower the network to become 164 layers deep, 
and we use the pre-trained weights in these layers to assist our 
mission of detecting COVID19 in X-Ray images.    

IV. Proposed CNN 
In this study, we designed a CNN model for COVID-19 

detection from chest radiography images guided by the fact 
that in order to properly classify and detect COVID-19, 
radiologists need to discriminate COVID-19 X-rays from 
normal chest X-ray first, and then from other viral and 
bacterial infections in order to isolate and treat the patient 
properly. Therefore, we opt to choose the design of CNN to 
make one of the following predictions: a) Normal (i.e. no 
infection) b) COVID-19, c) Viral infection (none-COVID-19) 
and d) Bacterial infection. The rationale behind using these 4 
cases is to aid radiologists to prioritize COVID-19 patients for 
PCR testing and employ treatments according to infection-
specific causes. Having these requirements in mind, we 
designed our simple CNN architecture, named CNN-X, that 
constitutes of 4 parallel layers where we have 16 filters in each 
layer in 3 different sizes (3-by-3, 5-by-5 and 9-by-9). Batch 
normalization and rectified linear unit (ReLU) is then applied 
to the convolved images and two different types of pooling 
operation applied next which are average pooling and 
maximum pooling. The rationale behind using different filter 
sizes is to detect local-features using filters of size 3-by-3 and 
rather global features by filters of size 9-by-9 while 5-by-5 
filter size is to detect what is missed by the other two filters.  

Different pooling operations utilized to further reduce the 
dimensionality of feature maps. A stride of size 3 is adopted 
here, with pooling operations, to further reduce the dimension 
of the resulting feature maps taking into consideration the fact 
that there is redundant information in images and neglecting a 
row and a column after each pooling window is not causing a 
massive information loss. See Fig. 1 where we visually depict 
the difference between pooling of size 3-by-3 with stride 2 
versus pooling of size 2-by-2 with stride 3 and conclude that 
we are not losing much information while reducing the size of 
the image/feature map further. Proposed architecture design is 
not deep, hence the feature map (i.e. convolved image) is not 
a very abstract representation of the input image yet and as 
such there are still redundant information. 

 
 
Fig. 1. Effect of stride and pooling on image resolution. 
 
Feature maps from the four parallel layers are then 

concatenated before fully connected layer. Weights are 
generated using Glorot method [33] with Adam optimizer [34] 
and 0.0003 initial learning rate. Training conducted using 20 

epochs and 15 mini batch size. We visualize the structure of 
proposed CNN model in Fig. 2. 

 
Fig. 2. Proposed CNN Architecture design. 

V. Dataset Description 
To investigate and test the CNN architectures explained in 

section III and IV, we used X-ray images collected and 
combined from two different resources. The two resources of 
datasets are available publicly for the researchers. First dataset 
is called COVIDx dataset [2] with 4 different X-ray classes 
namely Normal, Bacteria, Viral (Non COVID-19), and 
COVID-19 confirmed images. The dataset contains 5951 chest 
X-ray radiography images divided in to four classes; the total 
number of normal cases are 1575 cases, for Bacteria the total 
cases are 2771, while viral (Non-COVID-19) are 1494 cases 
and for COVID-19, the dataset includes only 111 confirmed 
cases. The second dataset contains 43 confirmed COVID-19 
cases, which is collected by us from the British Society of 
Thoracic Imaging (BSTI) [35]. In Fig. 3 examples of all four 
radiographic X-ray classes are shown. 

 
 
 
 

 

 
 
 
 

 

 
 
 
 

 

 
 
 
 

 
(a) Normal (b) Bacteria (c) Viral (d)  COVID-19 

Fig. 3. Sample of the X-Ray images used in experiments 
 
Details of distributing the images to train set, validation set, 

and test set will be discussed and explained in the next section. 

VI. Experimental Setup and Results  
We adopted transfer learning (TL) approach to investigate 

the performance of the CNN architectures discussed here and 
compare it with proposed CNN-X architecture. TL is the 
process of utilizing gained knowledge (learned weights) from 
solving one problem to a different but related problem. 
Weights optimized from training the 12 CNN models on 

MaxPooling, Size(3,3) , Stride: 2
MaxPooling, Size(2,2) , Stride: 3

Original Image
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ImageNet dataset used in TL mode whereby weights in all 
layers are retrained on X-ray images. All images from training 
and testing sets are resized to the suitable dimensions that each 
of the architectures designed for. No preprocessing applied to 
input images because none of the methods in literature work 
mentioned it and hence, we followed the same norm.  Training 
parameters in TL for all 12 CNN architectures are as follows: 
number of epochs = 20, mini-batch size = 15, initial learning 
rate =0.0003. Three different scenarios deployed to test the 
performance of 12 off-the-shelf CNN architectures as well as 
our proposed CNN-X model which will be discussed next.  
• Scenario 1: Normal vs COVID-19 classification (All 

Data). 
In this scheme, CNN architectures trained on 1341 normal 

X-ray images with 111 COVID-19 cases while 234 cases of 
normal with 43 cases of COVID-19 are used for testing. Table 
1 below shows obtained results from all the 13 CNN 
architectures. The aim of testing this hypothesis is to see the 
effect of differentiating COVID-19 from normal chest X-rays. 

TABLE 1.  
TESTING RESULT FOR ALL ARCHITECTURES USED IN SCENARIO 1. 

CNN Architectures Sensitivity Specificity 
AlexNet 100 88.03 

GoogleNet 100 96.15 
Vgg16 100 97.86 
Vgg19 0 100 

ResNet18 100 98.72 
ResNet50 100 97.01 
ResNet101 100 97.86 

InceptionV3 100 92.74 
InceptionResNetv2 100 99.57 

SqueezeNet 100 99.57 
Densenet201 100 100 

Xception 100 100 
CNN-X (Ours) 100 97.86 

It can be seen from the table above that all of the CNN 
(except Vgg19), can be deployed successfully to detect 
COVID-19 X-rays, i.e. 100% sensitivity, However, the 
specificity of some of the techniques are below 90% in which 
we can avoid using it in practice. In this vein, one can opt to 
rely on the highest performing architectures such as Xception, 
Desnsenet201, Resnet18, SqueezeNet and inceptionresnetv2 
as their specificity is >99%. It should be noted that our 
proposed CNN architecture is performing 100% sensitivity 
and specificity of 97%, which is better than AlexNet, 
GoogleNet, VGG19, InceptionV3 and the same as ResNet50 
and ResNet101. Albeit excellent results in table 1, this is not a 
realistic scenario to build machine learning algorithms for the 
purpose of COVID-19 detection in the present time because 
there is no guarantee that the system is not classifying other 
pneumonia infections as COVID-19 and vice versa. 
Furthermore, it may not be of a clinical significance to 
differentiate extreme COVID-19 cases from normal chest X-
rays but it’s the diagnostics of COVID-19 from other 

pneumonia is of a particular interest. Hence, we designed the 
second scenario to address the task of discriminating COVID-
19 cases from other viral cases and bacterial and normal X-
rays. 
• Scenario 2: Normal vs COVID-19 vs Viral (non-

COVID-19) vs Bacteria  
In this scenario we aim to classify X-ray images into the 4 

respective classes of normal, COVID-19, Bacteria and Viral 
(non-COVID-19). This scenario addresses the limitation in the 
first scenario whereby any machine learning algorithm needs 
to, ultimately, discriminate not only COVID-19 chest X-ray 
from normal X-ray but it also needs to discriminate COVID-
19 chest X-rays from other viral and bacterial infections. This 
is a necessary condition to stop the spread of the virus and 
prepare COVID-19 patients for special treatments.   

A total of 1575 normal X-rays, 2771 Bacteria cases, 1494 
Viral X-rays and 111 COVID-19 X-rays used for training. For 
testing, 234, 242, 148 and 43 X-rays of normal, Bacteria, Viral 
and COVID-19 respectively used. It is worth to notice that we 
train the model on 111 COVID chest X-rays from COVIDx 
dataset but we test the CNN models on 43 chest X-rays from a 
different source which is BSTI. This is critical to examine the 
effectiveness of feature maps learnt by CNN.   Table 2 below 
demonstrates classification performance obtained by adopting 
this scenario.  
• Scenario 3: Normal vs COVID-19 vs Viral vs Bacteria 

(Training on part of the data) 
 In this scenario we used part of the dataset to train CNN 

models to see the effect of each architecture with the smaller 
number of image samples. The rationale behind this scenario 
is the fact that most of the time the challenge in medical image 
analysis is limitation of available data for investigation and to 
reduce bias in having unbalanced number of images in training 
phase. Hence, the design of this scenario is to get more insight 
of how these CNN models perform in the case of limited 
availability of image samples.    

In this scenario, four classes used with 350 X-ray images of 
normal, Bacteria, viral and 111 X-rays of COVID-19 for 
training whereas the same number of testing images used for 
the four classes are as scenario 2.  

Table 2 shows experimental results obtained from scenario 
2 and scenario 3, where Sn and Sp stand for sensitivity and 
specificity respectively in Table 2. It clearly depicts that none 
of the CNN architectures perform well on differentiating X-
rays to all four classes effectively. Perhaps the only exception 
is Inception-ResnetV2 that performs better in comparison with 
the rest of the architectures especially on normal X-rays with 
sensitivity of >76% using all image samples. The good 
performance of Inception-ResnetV2 is due to the idea of 
combining residual learning with inception blocks which 
makes the performance to be better than all ResNet and 
Google/Inception architectures. CNN models work well on 
detecting two of the classes, namely Bacteria and COVID-19, 
but not performing well on classifying normal and viral X-rays 
to their respective classes which suggests that deployed CNN 
models learns features of bacterial and COVID-19 better than  
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TABLE 2 
 TESTING RESULT FOR SCENARIO 2 AND SCENARIO 3 FOR ALL MODELS. 

  Scenario 2 Scenario 3 
 Class Sn Sp Sn Sp 

A
le

xN
et

 Bacteria 92.98 95.10 73.55 82.80 
Covid-19 95.35 99.68 86.05 99.04 
Normal 42.74 76.24 34.19 73.63 
Viral 69.59 90.38 43.24 79.90 

G
oo

gl
e-

N
et

 

Bacteria 90.50 94.42 89.26 91.69 
Covid-19 90.70 99.36 86.05 99.04 
Normal 44.44 76.91 59.40 81.26 
Viral 83.11 93.72 8.78 75.68 

V
gg

16
 Bacteria 95.45 96.65 80.58 85.17 

Covid-19 93.02 99.52 86.05 99.03 
Normal 37.61 74.65 49.15 77.96 
Viral 77.03 92.80 12.16 75.14 

V
gg

19
 Bacteria 92.15 94.26 80.58 86.76 

Covid-19 39.53 95.98 97.67 99.84 
Normal 43.16 76.42 74.79 86.86 
Viral 69.59 90.20 12.84 77.53 

R
es

N
et

-
18

 

Bacteria 94.63 96.14 75.62 82.23 
Covid-19 97.67 99.84 100 100 
Normal 59.40 81.97 44.02 76.65 
Viral 58.78 88.20 20.27 75.62 

R
es

N
et

-
50

 

Bacteria 92.56 95.07 82.23 89.41 
Covid-19 97.67 99.84 100 100 
Normal 46.15 77.46 71.37 86.10 
Viral 75.00 91.81 59.46 87.88 

R
es

N
et

-
10

1 

Bacteria 95.87 96.95 88.84 92.24 
Covid-19 1000 100 97.67 99.83 
Normal 44.44 76.91 29.91 72.44 
Viral 65.54 89.57 44.59 82.02 

In
ce

pt
io

n 
V

3 

Bacteria 96.69 97.85 90.50 92.92 
Covid-19 97.67 99.84 100 100 
Normal 59.83 82.13 65.38 84.15 
Viral 76.35 92.68 29.05 80.59 

In
ce

pt
io

nR
es

N
et

v2
 Bacteria 81.40 89.96 93.39 95.02 

Covid-19 100 100 97.67 99.84 
Normal 76.07 88.19 64.53 83.85 
Viral 82.43 94.30 37.84 83.30 

Sq
ue

ez
e 

N
et

 

Bacteria 98.35 98.59 54.55 75.39 
Covid-19 95.35 99.68 100 100 
Normal 38.03 74.87 51.71 78.88 
Viral 51.35 86.02 43.24 79.31 

D
en

se
-

N
et

 2
01

 Bacteria 94.21 96.15 72.31 79.06 
Covid-19 93.02 99.52 100 100 
Normal 52.56 79.52 39.74 75.35 
Viral 64.86 88.89 15.54 79.03 

X
ce

pt
io

n Bacteria 97.11 98.22 95.87 96.92 
Covid-19 100 100 100 100 
Normal 66.67 84.68 24.79 71.10 
Viral 82.43 94.53 39.19 79.73 

C
N

N
- X

 
(O

ur
) 

Bacteria 94.21 95.32 83.47 88.30 
Covid-19 90.70 99.36 100 100 
Normal 33.33 73.33 44.44 76.62 
Viral 58.11 87.35 39.86 81.98 

 
normal and non-COVID19 viral infections. The second-best 
performing architecture, using all image samples, is Xception 
architecture where with sensitivity of 97%, 100%, 66% and 
82% for bacteria, COVID-19, normal and viral chest infections 
respectively. 
  When it comes to scenario 3, where only 350 images used 
from normal, bacterial and viral chest X-rays, again Inception-
ResnetV2 outperform all other CNN architectures including 
CNN-X. This confirms the effectiveness of Inception-
ResnetV2 in terms of design and learning power. Nonetheless, 
we want to remind the reader that input images have not been 
segmented and they contain artefact that may contribute to 
CNN prediction but has no relation to COVID-19 infection. 
We confirm this point in the next section, see Fig. 4, where we 
demonstrate the region(s) in the image used by CNNs and 
some, if not all, of these regions are were artifacts.  

Comparing the results obtained here, which is by Inception-
ResnetV2, is not possible with other works in the literature 
because the COVID-19 images used for testing here is 
different and more importantly the number of testing images 
is 43 which is higher than the number of test images used in 
[2] and [12] whereby they tested their CNNs based on 8 
COVID-19 images only. Nonetheless, our results are 
outperforming COVID-Net in terms of sensitivity for viral and 
normal X-ray classification. The sensitivity of Inception-
ResNet-V2 is again outperforms COVID-Net for bacterial, 
COVID-19, and viral infection classification.  

Proposed CNN-X architecture is performing similar to 
Squeeze-Net, which is an architecture with 1.2 million 
parameters and our architecture has about 1.4 million 
parameters. Furthermore, CNN-X’s performance is 
comparable to VGG16 and AlexNet architecture.  

Next, we analyse qualitatively the performance of all CNN 
models used here to visually inspect the most discriminating 
regions they utilized on classifying input chest X-rays into a 
specific category. This step is critical so that radiologists can 
visualize the regions used by CNNs to predict pneumonia 
presence in input X-ray images.  

VII. CNN interpretability  
There are many ways one can visualize the region(s) used 

by CNNs to predict the class label of an input image such as 
gradient descent class activation mappings or global average 
pooling class activation mappings and others [36][14][25].To 
interpret the output decision made by any of the CNN 
architectures investigated in this study, heatmaps of the most 
discriminating regions generated and visualized for the input 
images in testing using the method introduced in [14] which is 
known as class activation mappings (CAM). Using CAMs, 
one can highlight class specific distinctive regions used by 
CNNs that lead to its prediction. After fully training a CNN 
model, a testing image will be feed into the network and 
feature maps extracted from final convolutional layer. In what 
follows we briefly introduce the steps of generating CAMs. 
Let 𝐴"(𝑥, 𝑦) be activation of unit 𝑢 of the last convolutional 
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layer at a spatial position of (𝑥, 𝑦). Let  
																												𝐺" =,	

-,.

𝐴"(𝑥, 𝑦)																																												(1) 

be average pooling operation and the input by the SoftMax 
layer is then can be defined as follows: 

																					𝑆1 =,𝑤"1
"

𝐴"																																																							(2) 

where 𝑙 is the class label, 𝑤"1  is the weight of class 𝑙 of the 
unit 𝑢. Here, 𝑤"1  highlights important of the activation 𝐴" for 
a given class 𝑙 . Probability score output by SoftMax for a 
given class 𝑙 can then be defined as follows: 

			𝑃1 = 𝑒𝑥𝑝8,		
"

𝑤"1 	𝐴"9 × ;,	
"

𝑒𝑥𝑝 8,		
"

𝑤"1 	𝐴"9<

=>

		(3) 

Substituting equation (1) into equation (2) we obtain the 
following: 
	𝑆1 =,	

"

𝑤"1 	,	
-,.

𝐴"(𝑥, 𝑦) 	=,	
"

	,	
-,.

𝑤"1 	𝐴"(𝑥, 𝑦)										(4) 

Then each class 𝑙 activation maps can be defined at each 
spatial position (𝑥, 𝑦) as follows: 
																		𝑀1(𝑥, 𝑦) =,	

"

𝑤"1 	𝐴"(𝑥, 𝑦)																																					(5) 

Finally, substituting activation maps for each class label in 
equation (5) into equation (4) we obtain the activation output 
by SoftMax for each class label 𝑙 as follows: 

																𝑆1 =,	
-,.

𝑀1(𝑥, 𝑦).																																																							(6) 

Hence, 𝑀1(𝑥, 𝑦)  indicates the discriminative power of 
activation maps at the spatial grid (𝑥, 𝑦)  that leads to the 
decision made the CNN to classify the input image into class 
𝑙 . To allow comparison to the input image, bilinear up-
sampling is then applied to resize activation map to the size of 
input images accepted by each CNN model. 

In Fig.3 we demonstrate the image regions used by CNN 
models that lead to a successfully class prediction. It can be 
observed that in very few occasions the CNN algorithms are 
focusing on the frontal region of the chest where we search for 
signs/features of COVID-19 and other infections. Rather, they 
are using either regions outside the frontal view of chest area, 
see row (d) and (e) of Fig. 3, or texts and medical device pieces 
on the images to derive their decision, see 1st column in row 
(b) of Fig. 3. 

In the same vein, incorrect classification, too, may be 
caused by these artifacts, see Fig 4 where we show examples 
of mis-classified images by CNNs and their corresponding 
CAMs to highlight the most discriminating regions lead to 
CNN decisions. For example, in 4th column of Fig. 4 is an X-
ray image that has a letter R on it and used by almost all of the 
architectures to drive their incorrect decision.   

Therefore, we conclude that using the X-ray images as it is, 
without preprocessing to segment the region of interest and 
remove some hidden noise is not a good practice and result in 
a biased and misleading differentiation. 

 

 Bacteria Covid-19 Normal Viral 

(a) 

    

(b) 

    

(c) 

    

(d) 

    

(e) 

    

(f) 

    

(g) 

    

(h) 
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(j) 

    

(k) 

    
 
Fig. 3. Visualization of X-rays images classified correctly by CNNs. 

(a) Original X-ray, (b) AlexNet, (c) GoogleNet, (d)VGG16, (e) VGG19 
(f) ResNet18, (g) ResNet50 (h) InceptionResNet (i) DenseNet (j) 
SqueezeNet and (k) CNN-X (ours). 

In other words, one wants to have a CNN model that learn 
the symptoms of COVID-19 and its classification prediction is 
solely based on this feature.  

 



8 
 

 Bacteria Covid-19 Normal Viral 
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Fig. 4. Visualization of X-rays images classified incorrectly by CNNs. 
(a) Original X-ray, (b) AlexNet, (c) GoogleNet, (d)VGG16, (e) VGG19 
(f) ResNet18, (g) ResNet50 (h) InceptionResNet (i) DenseNet (j) 
SqueezeNet and (k) CNN-X (ours). 

VIII. Conclusion and Future Work 
This paper presented a critical analysis for 12 off-the-shelf 

CNN architectures, proposed originally for natural image 

analysis, for the purpose of aiding radiologists to discriminate 
COVID-19 disease based on chest X-ray images. We also 
proposed a simple CNN architecture that can outperform 
architectures such as Xception and Dense net when trained on 
a small dataset of images. Furthermore, beside quantitative 
analysis of CNNS, we qualitatively assessed CNN methods 
investigated here using class activation mappings where we 
visualize the regions on X-ray images utilised by CNNs to 
make their final prediction scores. Positive or negative class 
predictions by CNNs must be treated cautiously unless 
qualitatively inspected or segmented regions of interest feed 
into CNNs in both training and testing phases. Figures 3 and 4 
contain multiple examples where texts, medical device traces 
on X-rays can be used by CNNs which prevent them from 
learning the actual features of the disease. 

Future research directions, and in progress work, contain 
segmenting the lung region from chest X-rays and removing 
other artefact such as text and medical device traces on chest 
X-rays. Data from other sources need to incorporate to build 
CNN models that can be generalized and not biased towards a 
specific country, such as China or Italy, or a targeted 
population. 
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