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Abstract

COVID-19 has become a global pandemic, resulting in nearly three hundred

thousand deaths distributed heterogeneously across countries. Estimating the

infection fatality rate (IFR) has been elusive due to the presence of asymp-

tomatic or mildly symptomatic infections and lack of testing capacity. We ana-

lyze global data to derive the IFR of COVID-19. Estimates of COVID-19 IFR

in each country or locality differ due to variable sampling regimes, demograph-

ics, and healthcare resources. We present a novel statistical approach based on

sampling effort and the reported case fatality rate of each country. The asymp-

tote of this function gives the global IFR. Applying this asymptotic estimator

to cumulative COVID-19 data from 139 countries reveals a global IFR of 1.04%

(CI: 0.77%,1.38%). Deviation of countries’ reported CFR from the estimator

does not correlate with demography or per capita GDP, suggesting variation is

due to differing testing regimes or reporting guidelines by country. Estimates

of IFR through seroprevalence studies and point estimates from case studies or

sub-sampled populations are limited by sample coverage and cannot inform a

global IFR, as mortality is known to vary dramatically by age and treatment

availability. Our estimated IFR aligns with many previous estimates and is the

first attempt at a global estimate of COVID-19 IFR.
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Introduction

SARS-COV-2 emerged from Wuhan, China at the end of 2019 and has be-

come a global pandemic with over four million confirmed infections and nearly

three-hundred thousand associated deaths [1, 2, 3, 4, 5]. Now spreading in all

continents but Antarctica, the disease associated with this novel virus (COVID-5

19) is a risk to people of all nations [6]. Yet, this risk is known to vary widely

with access to healthcare and demographic traits [3, 4, 7]. Although the extent

of sub-lethal impacts of the virus are still not known, deaths attributed to in-

fection are of great concern and are used as a measure of disease burden, being

a more reliable metric than the number of confirmed infections as the latter is10

notoriously dependent on testing capacity [8].

Counter-measures to inhibit the transmission of the virus are in place in

most countries, and economic decline has resulted from the closure of businesses

and travel restrictions [9, 10]. With pressure to re-open economies to reduce

job losses and downstream repercussions, leaders of countries and localities are15

weighing the health risks of COVID-19 with economic risks of control measures

[11]. The linchpin for policymakers is often the risk of mortality upon infection.

Reported data from countries reveals a large spread in case fatality rate (CFR)

from 0.5-15% [12]. This rate is given by the number of deaths per confirmed

infection. The vast difference in the reported CFR by country is primarily a20

product of testing availability [13, 14]. In the early phases of the outbreak

and in countries where testing kits were limited, only hospitalized patients with

advanced COVID-19 symptoms have been tested. Therefore, the CFR is an

inflated estimate of the infection fatality rate (IFR) because many infections in

the population are unidentified [15, 16]. This inflation is intrinsic for reported25

data across all countries, though it is much smaller for countries that have

greater testing capacity such that individuals with mild or no symptoms are

tested.

To understand how dramatic this inflation is, an increasing number of sero-

logical studies has contrasted the number of active infections confirmed with30
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PCR-based tests with the number of individuals with a detectable SARS-COV-

2 immune response in sampled populations [17]. Universally, seroprevalence

surveys confirm the presence of unreported infections, though the extent of the

unreported infections and associated adjustment to IFR is debated due to the

non-random nature of population sampling, low sample size, and questioned35

specificity of serological assays. Case studies reporting IFR from whole popu-

lation sampling, such as the Diamond Princess cruise where all patrons were

tested and the calculated IFR is near 2% are not necessarily representative of

global demographics, incomes, or healthcare availability [7, 18]. In the absence

of high resolution information of case demographics, seroprevalence, or stan-40

dardization of healthcare and underlying risk factors to COVID-19 morbidity

and mortality, there exists no method to assess the global IFR. A robust esti-

mate is essential to inform policy and interventions [8, 19]. We provide a new

statistical approach to estimate the global IFR using reported data, despite

variability in reporting and risk factors. Differences in reported country-level45

CFR from the estimator are compared to national demographic and economic

profiles to determine whether the reported CFR reflects known risk factors for

COVID-19 mortality.

Methods

Reporting standards and testing procedures vary widely across countries,50

preventing reliable interpretation of reported CFR. High CFR are generally

associated with restricted access to testing due to low test availability, such

that only individuals with marked COVID-19 symptoms – typically those of

older age or with pre-existing conditions, and thus at higher risk of death from

COVID-19 – receive testing [9, 13, 14, 20]. Greater testing capacity allows55

individuals with mild symptoms or those with suspected exposure to receive

testing. Figure 1 illustrates how this allows for a broader net of sampling in

a population, giving a closer estimate of the number of total infections in the

population.
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Figure 1: Increasing testing capacity uncovers a broader group of individuals, reducing esti-

mates of the CFR for each country. Full capacity allows for estimation of the IFR.
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As testing captures a greater proportion of the population, the estimated60

CFR better approximates the IFR because the individuals with mild or no

symptoms and more likely to recover are included in the confirmed infections.

With increasing testing capacity, the sample prevalence decreases. Testing ca-

pacity is relative to the case load in the country. A country with 1000 true

infections requires more tests than a country with 100 true infections for similar65

case estimates. Because the true case load of COVID-19 is unknown in each

country, we estimate testing capacity, C, as tests performed per positive case.

This estimate provides a metric of the availability of tests relative to the case

load, indicating relative testing capacity.

C =
total tests

positive tests
=

T

Ptest
(1)

Capacity ranges from 1, where all tests are positive, to ∞, where all tests70

are negative. As capacity increases towards ∞ the estimate of IFR improves

assuming testing targets people at risk of infection. This argument can be

demonstrated by taking the inverse of C:

C−1 = ρ =
Ptest
T

(2)

ρ is the sample prevalence. It is true that as the number of total tests

increases and approaches a randomized sample of the whole population, the75

number of positive tests better estimates the active true case load in the pop-

ulation, Ppop. The relation between ρ and the estimate of the true case load

differs by testing regimes and cannot be fully known, but if testing prioritizes

individuals with symptoms or at risk of infection, convergence of the known

positive, Ptest, to the true positive, Ppop, approximates an exponential decay80

with decay constant k, as shown in SI 1.

Ptest
Ppop

≈ e−kρ = e−k/C (3)

Despite differences in testing regimes in each country, the approximation in

equation 3 becomes closer to exact as testing capacity increases. As C → ∞,
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Ptest → Ppop. From equation 3 the following is true:

Ppop
Ptest

= ek/C (4)

Log transformation yields:85

log(
Ppop
Ptest

) =
k

C
(5)

Assuming COVID-19 attributed deaths are more reliably estimated than

COVID-19 cases, we can derive a relation to the true IFR from the reported

CFR.

IFR =
deaths

Ppop
‘CFR =

deaths

Ptest
(6)

Ppop
Ptest

=
CFR

IFR
(7)

Substitution of this relation in equation 5 gives

log(
CFR

IFR
) =

k

C
(8)

which is equivalent to90

log(CFR) = log(IFR) +
k

C
(9)

Equation 9 reveals that the y-intercept of a linear regression of C−1 = ρ and

log transformed CFR can be exponentiated to yield the true IFR. We compile

a comprehensive list of all countries that have recorded COVID-19 associated

deaths as of April 21, 2020. After calculating the CFR, Ptest, ρ, and C for each

country using cumulative cases, deaths, and tests performed, a weighted linear95

regression was performed according to equation 10:

β̂ = argmin{
∑
i

wi(log( ˆIFR) +
k̂

Ci
− log(CFRi))

2} (10)

Countries are inverse variance weighted (wi); in the absence of variance at-

tributed to testing regimes for each country, we assume homoscedasticity and
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variance of each estimate is inversely proportional to the number of tests per-

formed (SI 2). The right panel is the plot of testing capacity and CFR with100

the regression achieved by equation 9 overlayed on the plot. The exponential

of the y-intercept (at ρ = 0) in the regression corresponds to the asymptote as

C →∞ in panel B.

The variance-covariance matrix (V) of the parameter estimates, log( ˆIFR)

and k̂, is calculated as105

V =
H−1(RSS)

N − 2
(11)

where H−1 is the inverted numerically estimated Hessian, RSS is the weighted

residual sum of squares minimized in equation 10, and N is the number of

countries. Confidence interval calculations are given in SI 4. A t-test for un-

equal variances was performed for each country, comparing its log(CFR) to the

log( ˆCFR) predicted by the linear regression for the given ρ. Low p-values indi-110

cate a low reported CFR relative to the global mean for a given ρ. P-values that

are exceptionally low (p < 0.05) or exceptionally high (p> 0.95) indicate sig-

nificant deviation from the expected global CFR. Through linear regression we

investigated whether these deviations might be explained by per capita GDP or

the fraction of the populace 65 years and older, as these national metrics could115

correlate with the national IFR. Additionally, these two variables were evalu-

ated as possible predictors for a country’s reported CFR, independent of the

relationship to testing capacity. Evaluation occurred through model selection

via AIC in a GLMM framework using R Stan.

Results120

The transformation of the data from 139 countries according to equation 9

yields a linear relationship between sample prevalence (ρ) and the logarithm of

reported CFR for each country.

The weighted regression produces estimates for the y-intercept at −4.40 =

log( ˆIFR) and slope at 8.80 = k̂. R2 = 0.5524, signaling that the relationship125
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Figure 2: Weighted regression of reported national CFR and testing capacity. Circle area is

proportional to each country’s weight. Panel A: linear regression defined by equation 10. The

intercept corresponds to the logarithm of the estimated global IFR. Panel B: data plotted

with the exponentiated regression line. The x-axis is log-scale for visualization (see Figure S1

for linear scale). The asymptote as C → ∞ corresponds to the estimated global IFR. Black

dashed lines represent 95 % confidence intervals.
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described between testing capacity and reported CFR explains over 55 % of the

variation in the reported data. Exponentiating the y-intercept estimate yields

a global IFR of 0.0123, or 1.23%. This corresponds to the asymptote seen in

panel B of Figure 2 as C → ∞. 95% confidence intervals for IFR and k are

(0.0096, 0.0157) and (8.1, 9.5), respectively. Because recent evidence suggests130

up to 15% false negative rate for rapid SARS-COV-2 PCR based tests, we ad-

just the calculations of capacity and CFR for each country and perform and

adjusted regression which yields an intercept at −4.56 = log( ˆIFR). The ad-

justed IFR accounting for false negative tests is 1.04%. Due to the uncertainty

associated with the 15% false negative approximation, we retain the larger con-135

fidence intervals of the unadjusted estimate to give a 95% confidence interval of

(0.0077, 0.0138). These results support a global IFR between 0.77% and 1.38%.

This estimate implicitly accounts for asymptomatic cases and country-level dif-

ferences in demography and testing regimes, and as such, it represents a global

average.140

Reported here is a function relating testing capacity to the CFR estimate,

and deviation from that function by a country may convey information of the

underlying IFR. Placement above the regression line in panel B of Figure 2 could

indicate higher national true IFR than the expected global average. Among the

most reliable factors to predict IFR from COVID-19 are income and the age145

structure of the population, particularly the proportion of individuals 65 and

older [7, 21]. We tested whether the reported CFR for each country was higher

than the expected global mean at the corresponding testing capacity. p-values

< 0.05 denote a lower CFR than the global mean, while p-values > 0.95 denote

a higher CFR than the global mean. Figure 3 plots these p-values with World150

Bank data (2018) on country level per capita GDP and the percent of the

populace 65 years or older [22, 23].
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Figure 3: Relationships between P-values of the deviation of each country’s reported CFR from

the global mean and risk factors for mortality from COVID-19. Larger p-values correspond

to lower reported IFR relative to the global mean. Panel A: per capita GDP serves as a

proxy for income, with lower income being a known risk for COVID-19 mortality. Per capita

GDP is not predictive of differences in national IFR relative to the global mean. Panel B:

the proportion of individuals 65 and older in the national population is also not predictive of

national deviation from global CFR estimates.

Linear regressions reveal slight trends in favor of a lower CFR with increas-

ing GDP and higher CFR with increasing age. These trends are marginal, and

correlation between deviation from the global estimate and these factors is not155

substantiated. Rather, deviation is likely due to differences in COVID-19 re-

porting practices, testing, and stage of the epidemic in each country. Table 1

gives a list of the countries deviating significantly from the predicted CFR (all
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countries listed in SI 5). Countries with high p-values have a lower than ex-

pected CFR, which could indicate more conservative guidelines for attributing160

deaths to COVID-19. Conversely, countries with low p-values have a higher than

expected CFR, which could occur via liberal guidelines for attributing deaths

to COVID-19. Alternatively, extreme p-values could occur when testing does

not prioritize at-risk groups (e.g. occurs randomly) or when testing reporting

differs substantially from other countries, barring influence from risk factors like165

age, income, or access to healthcare.

Country P-value

Italy 2.27E-6

Venezuela 0.013

Canada 0.023

Hong Kong 0.950

Uzbekistan 0.972

Russia 0.994

UAE 0.994

Qatar 0.998

Singapore 0.999

Table 1: Countries that deviate substantially from the global trend in reported IFR. Countries

are ordered by p-value (low to high). The dashed line separates countries with significantly

higher (α < 0.05) reported CFR from countries with significantly lower (α > 0.95) reported

CFR.

National per capita GDP and the percent of the populace 65 years and older

may also improve the estimate of a country’s reported CFR over that provided

by testing capacity alone. Generalized linear mixed models including these

two additional predictor variables were compared via AIC to reveal that the170

model including all 3 variables, ρ, per capita GDP, and % 65+, out-performed

other models, including the model with ρ alone (SI 8). Results of the model

comparison are reported in Table 2. Alone, neither GDP nor age were strong
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predictors of a nation’s reported CFR. The weak relationships aligned well with

the relationships shown in Figure 3, where CFR increases with an aging populace175

and decreases with income. Due to the weakness of prediction, these models

were not included in model comparison. Four models were compared, expanding

on ρ. Age and GDP marginally improved the model fit, suggesting a small but

non-significant influence of these factors in a country’s CFR. The relationship

between age and GDP on a country’s IFR are unclear from these results because180

the most significant predictor of CFR is testing capacity.

Model WAIC dWAIC Weight

ρ + GDP + Age 348.2 0.0 0.72

ρ + GDP 351.0 2.8 0.18

ρ 352.8 4.6 0.07

ρ + Age 354.1 6.0 0.04

Table 2: Ranked model comparison demonstrating improved model performance with inclu-

sion of per capita GDP and % of the nation 65+ in age as predictors for national reported

log(CFR). Lower WAIC values correspond to better model performance, and the reported

weight is the proportional expanatory value of each model.

Discussion

Estimating the infection fatality rate from the case fatality rate is not possi-

ble with limited testing capacity, though many policies regarding the COVID-19

pandemic rely on estimates of the severity of the disease. IFR is the primary185

metric upon which decisions have been based, and estimates range from 0.1%

to over 3% [6, 8, 17, 18, 19]. The variety in reported CFR values stems from

the variation in demography of study groups, income, access to healthcare, test-

ing fidelity, or study design. Lack of large sample size or non-random selection

of study participants hinders true estimates of the IFR in any locality. The190

estimate of IFR in one locality will differ from the IFR in another due to dif-

ferences in underlying health conditions, demography, and medical treatment.
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Rather than understanding the extent of the variability these factors can create

in IFR measurements, we derive a new approach to IFR estimation using global

data. Provided testing has prioritized people at highest risk of SARS-COV-2195

infection, the metric of relative testing capacity used in our approach should

reflect each country’s ability to accurately estimate the true IFR. Despite vari-

ation in reporting and testing strategy, we do find a close relationship between

testing capacity and reported IFR. Moreover, the relationship aligns well with

the predicted relationship given assumptions regarding testing capacity. Trans-200

formation of the data using equation 9 results in a linear relationship shown in

panel A of Figure 2, and the weighted regression provides a precise estimate of

the global IFR of 1.04%. This estimate will vary by country, and the equations

detailed in this study should not be used to estimate country level IFR without

many independently derived samples of varying testing capacity as shown in205

this study. Equation 3 approximates global discovery of true positive cases, but

it may not be reliable at smaller scales due to variation in testing protocol.

Deviation of reported CFR by each country from the global mean estimated

from the regression line does not necessarily reflect true differences in national

IFR from the global IFR. There is little to no correlation between these devia-210

tions and GDP or age, which are considered proxies of risk for mortality from

COVID-19 [7, 21]. Instead, deviations likely represent variation in testing and

reporting strategies. Table 1 gives the countries outside of the 90% confidence

interval of the estimated global mean at their reported ρ. These countries likely

vary from expectation due to testing differences that change estimates of testing215

capacity or differences in reporting deaths from COVID-19. Additional varia-

tion can occur because COVID-19 associated deaths lag diagnosis, so countries

early in an epidemic may report a lower than expected CFR.

COVID-19 associated deaths may be positively identified through a PCR-

based test or reported if medical diagnostic criteria are met as judged by a physi-220

cian [20]. Due to comorbidities, such as hypertension or diabetes, estimates of

COVID-19 deaths have been questioned. Arguments that death coinciding with

a positive SARS-COV-2 test does not necessarily meet criteria for a COVID-19
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associated death have been made. Given results of this work that indicate the

risk of death to be approximately 1% from COVID-19, which is higher than the225

risk of death in the same 2-3 week interval from common chronic comorbidities

[24, 25], the probability that a SARS-COV-2 positive death could be attributed

to COVID-19 is higher than the probability the death could be attributed to

other chronic comorbidities. In an estimate of 0.1% probability of mortality in

a 2 week window due to existing comorbidities, the probability that death of an230

infected patient with a pre-existing condition is primarily due to the existing

condition is less than 10% (SI 6). In this case, the reported CFR needs to be

adjusted to 90% of its value. In light of this, the vast majority of SARS-COV-

2 positive deaths are due in whole or primarily to COVID-19. High reported

CFR values are a result of under-counting of positive infections rather than over-235

counting COVID-19 associated deaths. This contrasts needed adjustments in

deaths associated with influenza, as the lower IFR of active influenza infections

leads to a higher coincidence of mortality due to chronic disease and infection

relative to the incidence of influenza associated mortality alone. In some lo-

calities it is estimated that COVID-19 associated deaths are under-reported by240

25-50% because these deaths occur outside of a hospital setting [26]. Under-

reporting of deaths is likely to outweigh over-reporting due to comorbidities in

many localities.

The inflation of reported CFR values can be approximated by testing ca-

pacity, as we relate in this study. The remaining 45% of the variation in the245

data unexplained by the metric of testing capacity used here is likely explained

by a mixture of variability in national reporting, testing strategies, and stage

of the epidemic with select cases explained by demography, underlying health

conditions, income, or availability of treatment. The methods provided in this

work and the supplement are easy to translate to other studies when high qual-250

ity data and independent samples are available. We hope this approach can be

used to give updated estimates of the global IFR, as deaths due to infection

often lag diagnosis. Reported CFR values for some countries in this study are

low due to the nascency of viral transmission in the country in April 2020. As
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more data becomes available for infections and COVID-19 deaths, case fatality255

rates can be more reliably approximated, which can be translated to a global

IFR. Temporal or regional variation in testing strategy affects the relationship

between CFR and testing capacity, therefore cumulative data collected at least

1 month after the first recorded COVID-19 death in each country better repre-

sents the relationship than point estimates. Best estimates rely on standardized260

global reporting practices, though this method is robust despite differences. Of

note, some countries have yet to report deaths, and more have yet to report the

number of tests administered, including China. Failure to report these estimates

impairs resolution of the global IFR, which is crucial in providing a predictive

framework for epidemiologists and policy makers to inform appropriate control265

measures.

The aim of this study was to provide a reliable metric that enables a ro-

bust estimate of the global IFR capturing a wide range of variation without

accounting for underlying variability that is necessary to give point estimates

of the IFR in each locality. Though we provide the first measurement, the es-270

timate of a global IFR of 1.04% is dynamic and can be updated with incoming

data. This number is lower than the IFR for the Diamond Princess cruise (2%),

whose demography was skewed toward older individuals [18]. The older age of

this sample may be partially counterbalanced by the higher income and access

to healthcare of the majority of these individuals than the global average. Na-275

tional surveys performed in Iceland have estimated an IFR below 0.6%, which

is among the most randomized testing conducted in any nation, though much

of these cases have affected a younger group than is representative of the nation

[27]. A previous estimate of IFR in China of 0.66% aligns well with projec-

tions from Iceland [19]. Seroprevalence studies have inferred widely different280

estimates of IFR, including a non-random sample of Santa Clara county resi-

dents in CA that suggested an IFR of 0.12-0.2% [17]. NYC seroprevalence of

grocery shoppers suggests approximately one of every 5 NYC residents has been

exposed. Because 0.15% of NYC residents had died from COVID-19 at the time

the study was conducted, seroprevalence results yield a city-wide IFR of 0.75%.285
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The variety of IFR estimates reflects study design and underlying risk factors

that contribute to COVID-19 mortality. Although randomized seroprevalence

surveys will provide the most accurate measurement of local IFR, these surveys

cannot be conducted on a global scale, especially if the results of these surveys

are to be used proactively to inform control strategies. Much of the current290

local estimates of IFR are representative of high income areas with high access

to treatment. Higher IFR is possible in areas where surveys have not been con-

ducted due to disparity in healthcare access or testing [21]. The IFR reported

in this study attempts to capture some of the variability associated with these

disparities between countries, which has otherwise been neglected in previous295

studies.

Most importantly, the realized IFR is dependent on healthcare capacity,

which can vary with conditions of the pandemic. High case load can overwhelm

hospital staff and resources, leading to high realized IFR. This is a possible

explanation for the high departure of Italy’s reported CFR from the global300

estimate for equivalent testing capacity [28]. We estimate the IFR for Italy as

1.91% (SI 7), which is higher than a recent estimate of 1.29% provided by Rinaldi

and Paradisi from early data but within their credible interval [29]. The IFR

for Italy is likely higher than for countries of equivalent GDP and healthcare

access due to the spike in cases that occurred in March 2020 that exhausted305

hospital resources in the northern regions. Proper control measures and testing

can minimize infection spikes to levels that hospitals can manage, reducing the

IFR.
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1. Equation 3335

Equation 3 in the main text can be derived from simple principles given a

finite population of size n. In this population there is an underlying prevalence

of COVID-19 infection such that this true prevalence (prev) is represented by

prev =
Ppop
n

(S1)

Discovery of the true number of cases, Ppop in the finite population with

increased sampling depends on the information available on the likelihood of340

infection with COVID-19. For a discrete process whereby sampling of the pop-

ulation for COVID-19 cases occurs iteratively, such that a defined subsample

of the population is tested in each iteration, the proportion of the population

sampled can be denoted z. Each subsample, t, changes the available prevalence

of cases in the finite population when information is available to bias sampling345

in favor of testing COVID-19 positive individuals. This information exists be-

cause of the presence of symptoms or suspicion of exposure to infection. The

bias associated with the information is denoted λ > 1. When λ = 1, sampling

is random. Bias can be defined as the fold increase in likelihood of sampling

an infected individual relative to sampling an uninfected individual. The preva-350

lence of COVID-19 positive individuals in the unsampled population can be

represented by rt where r0 = prev is the true prevalence (prior to sampling

without replacement) in the population. Each iteration, t, is not by definition

a time-dependent index. Rather, it is related to the number of tests conducted

on the finite population, and is thus associated with sampling effort. When the355

population size is fixed, t can be indirectly related to time by way of the time

taken to conduct t rounds of tests. The following relation can be found:

rt+1 =
rt − λrtz

1− z
= rt(

1− λz
1− z

) (S2)

It follows that

rt+τ = rt(
1− λz
1− z

)τ (S3)
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Therefore, the following relation is true:

rτ = r0(
1− λz
1− z

)τ (S4)

The sample prevalence can be represented as360

ρτ = λrτ ρ0 = λr0 (S5)

Substitution yields

ρτ
λ

=
ρ0
λ

(
1− λz
1− z

)τ (S6)

Rearrangement gives

ρτ
ρ0

= (
1− λz
1− z

)τ (S7)

The total number of positive test results achieved can be calculated as

Ptest =

∫ τ

0

r0n(
1− λz
1− z

)tdt = r0n
( 1−λz

1−z )τ − 1

log( 1−λz
1−z )

(S8)

From equation S1, the number of cases in the population is

Ppop = r0n (S9)

Combining equations S8 and S9 yields365

Ptest
Ppop

=
( 1−λz

1−z )τ − 1

log( 1−λz
1−z )

(S10)

From equation S7 we find

Ptest
Ppop

=

ρτ
ρ0
− 1

log(ρ1ρ0 )
(S11)

As ρ0 is dependent on the true prevalence in the population and is the

maximum in the set {ρt}, the sample prevalence at τ can be adjusted to a
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reported sample prevalence ρ that can vary between 0 and 1 rather than 0 and

ρ0.370

kρτ =
ρτ
ρ0

(S12)

Denoting ∆ as the quotient of ρ1 and ρ0 gives a simplified equation

Ptest
Ppop

=
kρτ − 1

log(∆)
(S13)

For Ptest to converge to Ppop as ρτ → 0, ∆ has a unique real valued solution

at e−1. The equation becomes

Ptest
Ppop

= 1− kρτ = 1− e−τ (S14)

The Taylor expansion of e−kρτ at ρτ = 0 is 1 − kρτ + O(ρ2τ ), therefore

supplemental equation 14 can be approximated as375

Ptest
Ppop

≈ e−kρτ (S15)

Equation S14 is an exact relation that represents a closed system in which

sampling occurs much more quickly than the accumulation of new infections.

Even under slow sampling, convergence to the true population case load occurs

at a constant rate. However, when new cases occur at a similar rate to testing,

convergence should occur more slowly. Equation S15 has the capacity to capture380

this property more accurately at high ρτ (slow sampling) than equation S14

while maintaining the same properties at low ρτ (high sampling).

Equation 3 in the main text reports the relationship between testing capac-

ity and the convergence of the positively identified COVID-19 cases and the

true number of cases in the population, which is the sum of the identified and385

unidentified active cases. This relationship will differ with testing regime, as in

each locality procedures for administering tests vary, including the frequency of

re-testing that occurs. However, the function should approach 1 as C → ∞.

With a higher proportion of symptomatic patients, more information is available
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to prioritize testing, so convergence of the estimate of cases occurs more rapidly390

with increasing capacity. Ptest
Ppop

= e−k/C provides a simple function with the

desired property of approaching 1 as C →∞. Use of this equation provides the

derivation of equation 9 in the main text, which gives the relationship between

CFR and C. Transforming the data by inverting the x-axis and log-transforming

the y-axis produces a linear relationship as predicted by equation 9. In this way,395

the use of equation 3 is supported, though because it is not otherwise empiri-

cally verified, its use should not be extended to approximate local case loads.

As mentioned in the main text and here, variation in testing protocol invalidate

use of equation 3 at small scales.
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1.1. Parameter definitions400

Parameter Definition

C Testing capacity

T No. SARS-COV-2 tests conducted in country

Ptest No. positive test results in country

ρ Sample prevalence at given testing effort τ (same as ρτ )

Ppop No. cases in country at a given time

k Slope of linear regression and decay constant

CFR No. of deaths per positive test result

IFR No. of deaths per infection

N No. of countries

prev = r0 Infection prevalence in population

n Size of population

z Proportion of population tested per iteration t

t Index of testing effort

τ Total testing effort

λ Sampling bias in favor of infected individuals

rt Infection prevalence after τ testing effort

∆ ρ1/ρ0

σ2
i Sample variance for country i

Table 3: List of parameters in order of appearance. The dashed line separates parameters

defined in the main text from those defined in the supplement.
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2. Linear regression

The linear regression reported in Figure 2 (main text) was performed ac-

cording to equation 10 with inverse variance weights. Variance in reported

CFR values for each country is a function of the sample variance σ2
i due to

testing protocol, specificity, and accuracy, and the number of tests performed405

ni.

ˆV ari =
σ2
i

Ti
(S16)

Because sample variance has not been measured for each country, we assume

{σ2} is homoscedastic across countries. The estimate of variance is therefore in-

versely proportional to the number of tests performed by each country. Weights

are then assigned as410

wi =
Ti∑
i Ti

(S17)

These weights are used as the loss function on the squared residuals. Equa-

tion 10 (main text) is minimized with a ‘BFGS’ optimization algorithm provided

by the Python scipy.optimize.minimize routine. Parameters ˆlog(IFR) and k̂ are

estimated through minimization of the weighted residuals, and the Hessian is

numerically estimated and inverted. This provides a scaled variance-covariance415

matrix that is multiplied by the RSS and divided by the degrees of freedom to

give the variance-covariance matrix, V (equation 11 main text). The standard

error of each parameter is

SEi =
√

Vii (S18)

The covariance of ˆlog(IFR) and k̂ is reported in the two off-diagonal entries

of V.420
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Figure S1: Plot of raw data of capacity vs CFR by country with superimposed estimated re-

gression. In contrast to Figure 2 in the main text, the capacity axis is not log-scale. Venezuela

is not plotted due to its high capacity.

3. R2 calculation

The R2 reported from the linear regression in Figure 2 panel A of the main

text is given as follows:

R2 = 1− RSS

TSS
(S19)

RSS is defined as:

RSS =
∑
i

wi(( ˆlog(IFR) +
k̂

Ci
)− log(CFRi))

2 (S20)

TSS is defined as:425

TSS =
∑
i

wi(wi
∑
i

log(CFRi)− log(CFRi))
2 (S21)

4. Confidence interval estimation

The linear regression on the log-transformed data provides a estimated line

with normally distributed errors, and the 95% confidence intervals for log( ˆIFR)

is easily approximated as log( ˆIFR) ± 1.96(0.124), where 0.124 is the standard
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error of the estimated parameter. The same calculation provides a 95% confi-430

dence interval for k̂, approximated as k̂±1.96(0.353), where 0.353 is the standard

error for k̂. A confidence interval for ˆIFR requires exponentiating log( ˆIFR) to

produce a log-normal distribution. Letting α̂ = log( ˆIFR), the confidence inter-

val becomes (eα̂−1.96(SEα̂), eα̂+1.96(SEα̂)). This interval can be used to propagate

error in the nonlinear regression. To do so, we define values which represent the435

standard difference between the estimate and the 95% bounds:

σIFR,0.975 = eα̂+1.96(SEα̂) − eα̂ σIFR,0.025 = eα̂ − eα̂−1.96(SEα̂) (S22)

The 95% confidence intervals for the linear regression can be calculated as

ˆlog(CFR)± 1.96(
∂log(CFR)

∂log(IFR)

2

SE2
α̂ +

∂log(CFR)

∂k

2

SE2
k̂
+

2
∂log(CFR)

∂log(IFR)

∂log(CFR)

∂k
Cov(α̂, k̂))

1
2 (S23)

Partial derivatives are calculated as

∂log(CFR)

∂log(IFR)
= 1

∂log(CFR)

∂k
= C−1 (S24)

Therefore, the confidence interval simplifies to

ˆlog(CFR)± 1.96(SE2
α + C−2SE2

k̂
+ 2C−1Cov(α̂, k̂))

1
2 (S25)

These intervals are reported as the dashed lines in Figure 2 panel A (main

text). Nonlinear 95% confidence intervals are estimated using the values defined440

in equation S25. Upper and lower bounds are described as

Upper : ˆCFR+ (
∂CFR

∂IFR

2

σ2
IFR,0.975 +

∂CFR

∂k

2

(1.96(SEk̂))2+

2(1.96)
∂CFR

∂IFR

∂CFR

∂k
Cov( ˆIFR, k̂))

1
2 (S26)
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Lower : ˆCFR− (
∂CFR

∂IFR

2

σ2
IFR,0.025 +

∂CFR

∂k

2

(1.96(SEk̂))2+

2(1.96)
∂CFR

∂IFR

∂CFR

∂k
Cov( ˆIFR, k̂))

1
2 (S27)

Partial derivatives are calculated as

∂CFR

∂IFR
= e

k
C

∂CFR

∂k
=

ˆIFR

C
e
k
C (S28)

Therefore, the confidence interval simplifies to

Upper : ˆCFR+ e
k
C (σ2

IFR,0.975 +
ˆIFR

C
(1.96(SEk̂))2+

2(1.962)
ˆIFR

C
Cov( ˆIFR, k̂))

1
2 (S29)

Lower : ˆCFR− e kC (σ2
IFR,0.025 +

ˆIFR

C
(1.96(SEk̂))2+

2(1.962)
ˆIFR

C
Cov( ˆIFR, k̂))

1
2 (S30)

The covariance of the parameters in the linear regression, Cov(α̂, k̂), is given

by the Hessian-derived variance-covariance matrix, V. However, because of the445

exponentiation of α to derive ˆIFR, the covariance between the parameters no

longer applies. Cov( ˆIFR, k̂) 6= Cov(α̂, k̂). Cov(α̂, k̂) requires derivation. Let

ξ be the log-normally distributed random variable representing IFR with me-

dian at ˆIFR. Let α be the normally distributed random variable representing

log(IFR) with mean at α̂. k is a normally distributed random variable with450

mean at k̂. ξ = eα
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Cov( ˆIFR, k̂) = E[(ξ − E[ξ])(k − k̂)]

= E[(eα − eα̂+ 1
2σ

2
α)(k − k̂)]

= E[eσ
−1
α (2π)−1/2e−1/2((t−α̂)σ−1

α )2

− eα̂+ 1
2σ

2
α)(k − k̂)]

= E[λ(α− α̂)(k − k̂)]

= λCov(α̂, k̂) (S31)

λ ≈ ˆIFR (S32)

Cov( ˆIFR, k̂) ≈ ( ˆIFR)Cov(α̂, k̂) (S33)

This approximation was verified by monte carlo simulation at 107 replicates.

5. Statistical test for deviation

A Welch’s one-way T-test for unequal variances was conducted to determine

the significance of the deviation of national CFR values from the expected re-455

gression estimate. The mean and standard error for the regression estimate are

available for each value of ρ = C−1 corresponding to each nation’s data. The

standard error for reported national CFR values was calibrated to the confi-

dence interval reported in the regression such that 95% of p-values fell within

0.025 < p < 0.975. Calibration occurred assuming homoscedasticity in the460

sampling variance, and denominator of the variance estimate was given as the

number of tests administered by each country. The p-values were used in the

linear regressions of Figure 3 in the main text. Extreme p-values were reported

in Table 1 of the main text. Table 1 of the supplement gives the full list of

p-values by country.465
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Table 4: P-values for deviation analysis. Countries are ordered by caseload as of April 21,

2020. Higher p-values indicate lower than expected reported CFR. Lower p-values indicate

higher than expected reported CFR.

Country P-value

USA 0.826336186

Spain 0.270157541

Italy 2.26846E-06

France 0.914576609

Germany 0.142246921

UK 0.257076874

Turkey 0.92898805

Iran 0.803861253

Russia 0.994236252

Brazil 0.252094768

Belgium 0.317549238

Canada 0.022982151

Netherlands 0.234649182

Switzerland 0.260507996

Portugal 0.23950239

India 0.087766819

Peru 0.621884336

Ireland 0.477440109

Sweden 0.177677078

Austria 0.317627288

Israel 0.783275514

Saudi Arabia 0.883889659

Japan 0.592299578

Chile 0.81015236

S. Korea 0.126123919

Continued on next page
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Table 4 – Continued from previous page

Country P-value

Ecuador 0.818784914

Poland 0.079106717

Pakistan 0.60501945

Romania 0.210758118

Singapore 0.999855755

Mexico 0.391216727

UAE 0.993970499

Denmark 0.207061155

Norway 0.34702921

Indonesia 0.277136975

Czechia 0.21803765

Serbia 0.764975613

Belarus 0.877870455

Australia 0.741042416

Philippines 0.226028066

Qatar 0.998365991

Ukraine 0.539827104

Malaysia 0.564438229

Dominican Republic 0.727902637

Panama 0.722696067

Colombia 0.225764624

Finland 0.327381656

Luxembourg 0.596243094

Egypt 0.133888707

South Africa 0.462760453

Bangladesh 0.508061431

Morocco 0.551665026

Continued on next page
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Table 4 – Continued from previous page

Country P-value

Argentina 0.330781152

Algeria 0.661886034

Thailand 0.412721477

Moldova 0.680310801

Greece 0.180227219

Hungary 0.071451087

Kazakhstan 0.698204121

Bahrain 0.949006252

Croatia 0.478666965

Iceland 0.814416624

Uzbekistan 0.972284664

Iraq 0.131697771

Estonia 0.352250183

Azerbaijan 0.514334326

New Zealand 0.693552243

Armenia 0.596890773

Lithuania 0.254472221

Slovenia 0.161957569

Bosnia and Herzegovina 0.393935057

North Macedonia 0.431056746

Slovakia 0.586887575

Cuba 0.329250092

Afghanistan 0.561044649

Ghana 0.682890952

Hong Kong 0.950311445

Bulgaria 0.270178118

Djibouti 0.831238788

Continued on next page
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Table 4 – Continued from previous page

Country P-value

Tunisia 0.342506553

Cyprus 0.489822576

Nigeria 0.486822923

Latvia 0.556187427

Andorra 0.640812433

Lebanon 0.358088409

Costa Rica 0.63092592

Niger 0.530106254

Albania 0.458448083

Bolivia 0.494696456

Kyrgyzstan 0.556198556

Uruguay 0.456515469

Channel Islands 0.49501435

Honduras 0.476357048

San Marino 0.524252782

Palestine 0.615918068

Malta 0.673737286

Jordan 0.452787797

Taiwan 0.474240598

Senegal 0.737245538

Georgia 0.590654083

Mauritius 0.424734372

Montenegro 0.529807476

Mayotte 0.588310991

Sri Lanka 0.474131866

Isle of Man 0.515523712

Kenya 0.295867433

Continued on next page

32



Table 4 – Continued from previous page

Country P-value

Guatemala 0.461236542

Venezuela 0.0125414

El Salvador 0.366511736

Jamaica 0.516605842

Paraguay 0.404899712

Gabon 0.608519643

Brunei 0.601341629

Myanmar 0.391689589

Trinidad and Tobago 0.443444898

Ethiopia 0.409772408

Aruba 0.504099989

Togo 0.343416797

Bermuda 0.484882477

Liechtenstein 0.535481231

Barbados 0.445650504

Zambia 0.42286905

Sint Maarten 0.498089094

Guyana 0.489465653

Cayman Islands 0.522498783

Libya 0.511674277

Haiti 0.475863784

Eswatini 0.47646627

Zimbabwe 0.303789686

Antigua and Barbuda 0.492345939

Botswana 0.365663737

Belize 0.425067406

Malawi 0.442945877

Continued on next page
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Table 4 – Continued from previous page

Country P-value

Curacao 0.466133317

Turks and Caicos 0.488545444

Gambia 0.451386448

Suriname 0.443242425

Mauritania 0.392601151

Burundi 0.469897304

6. Comorbidities and assignment of death to COVID-19

Estimating the mortality due to COVID-19 is not clear for many cases be-

cause infection can co-occur pre-existing conditions that put patients at risk of

death upon infection. There is an argument to be made for accurately assigning470

cause of death, and infection with COVID-19 may not be sufficient. Analogies

have been made to estimates of mortality due to influenza, which are noto-

riously variable depending on the criteria used to assign mortality. The vast

majority of patients that die from influenza have pre-existing conditions, much

like those that die from COVID-19. Therefore, many influenza associated deaths475

could be attributed to pre-existing conditions. Although for both influenza and

COVID-19 infections, pre-existing conditions may be associated with higher risk

of mortality, there are major differences in the responsibility comorbidites share

in death between these infectious diseases. The primary difference is due to the

greater IFR for COVID-19 and influenza. For symptomatic infections, the CFR480

for influenza is 0.1%. Accounting for asymptomatic patients, which may be

between 15 and 85% of cases (we will assume a conservative estimate of 25%),

the IFR is approximately 0.00075. The estimated IFR for COVID-19 from this

study is approximately 0.01. There is mounting evidence suggesting overlapping

comorbidities between influenza and COVID-19. Assuming the window of mor-485
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tality due to infection from influenza or COVID-19 is approximately 2 weeks,

the probability of death from one of the most likely comorbidities like heart

disease or diabetes in the two week window is approx. 10−3 (after diagnosis and

50+ yrs of age, USA) [30]. The harmonic mean of the life expectancy for men

(6.7 yrs) and women (7.9 yrs) over 50 diagnosed with heart disease in the USA490

is 7.25 yrs. The probability of death in a two week window assuming constant

death rate is

Pr(c) =
−log( 1

2 )

7.25(26)
= 0.0037 (S34)

Similar calculations for diabetes yields Pr(c) < .001. Other pre-existing

conditions associated with COVID-19 deaths have similar or lower death rates.

Assuming contracting an infectious disease is independent of pre-existing con-495

ditions, the probability that the death of a patient with both a pre-existing

condition and infection can be assigned primarily to the infection can be calcu-

lated. Given a death of a patient with a pre-existing condition (c = death by

condition) and positive infection (i = death by infection), the probability the

infection can be assigned the primary contributor to death is:500

Pr(i) =
Pr(i\c)
Pr(i ∪ c)

=
Pr(i)(1− Pr(i)Pr(c)

Pr(i)+Pr(c) )

Pr(i) + Pr(c)− Pr(i)Pr(c)
=

Pr(i)

Pr(i) + Pr(c)
(S35)

Given Pr(c) = 0.001 and Pr(i) = IFR, the probability an influenza associ-

ated death is due to influenza is:

Pr(i) =
.00075

.00075 + .001
= 0.429 (S36)

The probability a COVID-19 associate death is due to COVID-19 is:

Pr(i) =
.01

.01 + .001
= 0.91 (S37)

Although these calculations are simplifications of a more complex process

(e.g. death rates are not constant with age), the magnitude of the IFR has a505

dramatic influence on the adjustment needed to assignment of cause of death.

35



Adjustments required for estimates of an IFR for COVID-19 are far smaller

than the adjustments needed for influenza. Likely, these adjustments will be

less than 10% with an IFR above 1%. Lower adjustments are needed with fewer

cases with comorbidities, and higher adjustments are needed when more than510

one comorbidity affect an individual. Assuming a 10% reduction in COVID-19

associated deaths would give a global IFR of 0.9%.

7. Timing of regression estimation

The regression estimate provided in the main text does not explicitly account

for temporal variation in testing strategies or in CFR estimates for each coun-515

try. Because these factors could have a strong impact on a country’s relationship

between CFR and testing capacity, the best estimates of the relationship come

near the peak of the epidemic in each country. This gives an opportunity for

the estimate of the CFR in the country to level, as deaths lag diagnoses, and

minimize subsequent swings in the relationship between testing capacity and520

accumulation of new cases. Figure S2 shows how the relationship between CFR

and capacity can change over time with cumulative data for Italy. Using cu-

mulative data from any day in March would yield similar results due to the

linear nature of the relationship between sample prevalence and log(CFR) in

this period.525

Italy illustrates this concept well due to the easily measured peak in the epi-

demic near the end of March. Once deaths began to accumulate in each region

in the beginning of March, the relationship between log(CFR) and ρ is linear

until the peak of the epidemic where testing capacity outpaced new cases, and

the number of positive cases per test drastically fell. Because cumulative data530

from Italy used in the global analysis presented in the main text was taken on

April 21, 2020, this may explain the deviation of Italy from the expected curve.

4 weeks past the peak, data for Italy at the end of April is sub-optimal and

predicts a higher CFR relative to capacity compared to countries that have yet

to peak. April 21, 2020 remains a good choice for a single date measurement535
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Figure S2: The relationship between CFR and capacity changes through the course of the

epidemic in Italy. Orange points represent the rise in the epidemic (last orange point = March

22, 2020), demonstrating a close relationship between the scaling of testing and the rise in

cases and fatalities. When new infections subside, testing capacity outpaces the accumulation

of new cases relative to the previous weeks, changing the relationship. The estimator works

best near the peak of the epidemic. Y-axis is reported as log-scale.
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because many countries are near the peak or before the peak in the epidemic.

Future estimates should focus on obtaining CFR and capacity measurements

of cumulative data at the peak of each country’s epidemic. Best estimates also

occur if testing capacity, as defined in the main text, is approximately constant

over time. This indicates that the number of tests available keeps pace with540

growth and waning of case loads in the country. Variation in this relationship

will not dramatically impact results, as cumulative data approximates the aver-

age over time. However, dramatic swings in testing capacity or testing protocol

may impact reliability of estimates. Particular to this study, by April 21, most

countries with reported deaths had experienced a few weeks or months of the545

pandemic. For these countries, estimates of the relationship between CFR and

capacity are more reliable, particularly for the countries for which peaks in

daily mortality had occurred. Several countries had few reported deaths and

a growing case load due to later introduction of COVID-19 to the country or

differences in control strategies. For these countries, estimates as applicable in550

a global regression will improve over time. The result of this approach can be

updated to account for better estimates as the pandemic continues, though the

global IFR is unlikely to fall far outside of the 95% confidence interval reported

here. Italy provides a good example of the use of the approach developed in

this study, as the epidemic growth occurred quickly, such that a peak is easily555

defined, and a range of dates near the peak is optimal for obtaining cumula-

tive data and performing a regression. Doing so for Italy (at March 23, 2020),

produces Figure S3.

For some countries, such as the USA, a peak is not clearly defined due to

regional heterogeneity in the course of the epidemic and variation in control560

strategies. Adjustment for false negatives in testing results in an adjusted IFR

estimate for Italy at 1.91% (CI: 1.25%, 2.85 %). This estimate is almost twice as

high as the global estimate, which is not unexpected given the high proportion of

older individuals and the spike in cases that overwhelmed the healthcare system

in Italy in March 2020.565
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Figure S3: Regression estimate of Italy’s IFR using 20 Italian regions. The intercept corre-

sponds to an unadjusted IFR of 2.24% (CI: 1.58%, 3.18 %).

8. Bayesian model selection

The generalized linear mixed model run to determine whether national per

capita GDP or age (% 65+) added predictive value to the relationship between ρ

and cumulative national log(CFR) revealed marginal improvement in the model

fit as evaluated by AIC. The best fitting model included all three variables (ρ,570

per capita GDP, and age). 4 models were compared: ρ alone, ρ + per capita

GDP, ρ + age, and all 3. Here we report the estimates provided by these models

as well as raw output to demonstrate model convergence.

Model convergence is shown below
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Figure S4: Plots of MCMC iterations, showing convergence for all parameter estimates. The

shaded region gives the warmup period. α= intercept, β1 = ρ, β2 = GDP, β3 = age, σ =

random error of model. Colors represent each of 4 chains.

Raw output for model parameters.

40



The relationships among the model parameters are reported below in Figure575

S5.

Figure S5: Distributions and relationships reported among model parameters. 2D density

plots are given in the upper right triangle, while correlation coefficients are available in the

corresponding bottom triangle. The diagonal reports the estimated distribution of each pa-

rameter and provides column and row labels. α= intercept, β1 = ρ coefficient, β2 = GDP

coefficient, β3 = age coefficient, σ = random error of model.

The best performing model is specified as

log(CFR) ∼ N(α+ β1(ρ) + β2(GDP ) + β3(age), σ) (S38)

Priors were set as the following:

α ∼ N(0, 10)

β1 ∼ N(0, 10)

β2 ∼ N(0, 10)

β3 ∼ N(0, 10)

σ ∼ Cauchy(0, 1) (S39)

The estimate of α provides the intercept, which markedly differs from the

weighted regression estimate of −4.4 provided in the main text. The difference580
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here is primarily attributed to the lack of weighting in the Bayesian GLMM

approach to compare variables. A weighting scheme was not appropriate for

GDP and age data, and to compare ρ with the same framework to recover

underlying relationships, this data was also unweighted. Additional differences

can be attributed to residual influences of the other variables on the intercept.585
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