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Abstract   
The  COVID-19  pandemic  has  created  an  urgent  need  for  models  that  can  project  epidemic  trends,                               
explore  intervention  scenarios,  and  estimate  resource  needs.  Here  we  describe  the  methodology                         
of  Covasim  (COVID-19  Agent-based  Simulator),  an  open-source  model  developed  to  help  address                         
these  questions.  Covasim  includes  country-specific  demographic  information  on  age  structure  and                       
population  size;  realistic  transmission  networks  in  different  social  layers,  including  households,                       
schools,  workplaces,  long-term  care  facilities,  and  communities;  age-specific  disease  outcomes;                     
and  intrahost  viral  dynamics,  including  viral-load-based  transmissibility.  Covasim  also  supports  an                       
extensive  set  of  interventions,  including  non-pharmaceutical  interventions,  such  as  physical                     
distancing  and  protective  equipment;  pharmaceutical  interventions,  including  vaccination;  and                   
testing  interventions,  such  as  symptomatic  and  asymptomatic  testing,  isolation,  contact  tracing,                       
and  quarantine.  These  interventions  can  incorporate  the  effects  of  delays,  loss-to-follow-up,                       
micro-targeting,  and  other  factors.  Implemented  in  pure  Python,  Covasim  has  been  designed  with                           
equal  emphasis  on  performance,  ease  of  use,  and  flexibility:  realistic  and  highly  customized                           
scenarios  can  be  run  on  a  standard  laptop  in  under  a  minute.  In  collaboration  with  local  health                                   
agencies  and  policymakers,  Covasim  has  already  been  applied  to  examine  epidemic  dynamics  and                           
inform  policy  decisions  in  more  than  a  dozen  countries  in  Africa,  Asia-Pacific,  Europe,  and  North                               
America.   
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1   Introduction   
More  than  a  year  after  COVID-19  was  first  identified,  governments  continue  to  be  faced  with  an  urgent                                   
need  to  understand  the  rapidly  evolving  pandemic  landscape  and  translate  it  into  policy.  Since  the  onset                                
of  the  pandemic,  mathematical  modeling  has  been  at  the  heart  of  informing  this  decision-making.                             
Numerous  statistical  models  and  data  visualization  tools  have  been  developed  over  the  last  year  in  an                                 
attempt  to  meet  this  demand,  with  varying  purposes,  structures,  and  levels  of  detail  and  complexity;  for                                 
example,  despite  their  limitations  (1),  data  dashboards  have  proven  crucial  for  understanding  the  current                             
state  of  the  epidemic  on  both  global  and  local  scales  (2,3).  However,  more  detailed  models  are  needed                                   
to  evaluate  scenarios  based  on  complex  intervention  strategies.  These  strategies  are  important  to                           
evaluate  in  order  to  understand  the  epidemiological  impact  of  reopening  schools,  businesses,  and                           
society.   

  
Models  for  examining  COVID-19  transmission  and  control  measures  can  be  broadly  divided  into  two                             
main  types:  compartmental  models  and  agent-based  models  (also  called  individual-based  or                       
microsimulation  models),  with  the  former  generally  being  simpler  and  faster,  while  the  latter  are                             
generally  more  complex,  detailed,  and  computationally  expensive.  Numerous  compartmental  models                     
have  been  developed  or  repurposed  for  COVID-19:  Walker  et  al.  (4)  used  an  age-structured  stochastic                               
"susceptible,  exposed,  infectious,  recovered"  (SEIR)  model  to  determine  the  global  impact  of  COVID-19                           
and  the  effects  of  various  social  distancing  interventions;  Read  et  al.  (5)  developed  an  SEIR  model  to                                   
estimate  the  basic  reproduction  number  in  Wuhan;  Keeling  et  al.  (6)  used  one  to  look  at  the  efficacy  of                                       
contact  tracing  as  a  containment  measure;  and  Dehning  et  al.  (7)  used  an  SIR  model  to  quantify  the                                     
impact  of  intervention  measures  in  Germany.  In  models  such  as  those  by  Giordano  et  al.  (8)  and  Zhao                                     
and  Chen  (9),  compartments  are  further  divided  to  provide  more  nuance  in  simulating  progression                             
through  different  disease  states,  and  have  been  deployed  to  study  the  effects  of  various  population-wide                               
interventions   such   as   social   distancing   and   testing   on   COVID-19   transmission.     
  

For  microsimulation  models,  several  agent-based  influenza  pandemic  models  have  been  repurposed  to                         
simulate  the  spread  of  COVID-19  transmission  and  the  impact  of  social  distancing  measures  in  the                               
United  Kingdom  (10),  Australia  (11),  Singapore  (12),  and  the  United  States  (13).  Additionally,  new                             
agent-based  models  have  been  developed  to  evaluate  the  impact  of  social  distancing  and  contact                             
tracing  (14–18)  and  superspreading  (19).  Features  of  these  models  include  accounting  for  the  number                             
of  household  and  non-household  contacts  (13,15,16);  the  age  and  clustering  of  contacts  within                           
households  (13,14,16);  and  the  microstructure  in  schools  and  workplace  settings  informed  by  census                           
and  time-use  data  (14).  Branching  process  models  have  also  been  used  to  investigate  the  impact  of                                 
non-pharmaceutical   intervention   strategies   (20,21)   and   the   proportion   of   unobserved   infections   (22).   
  

In  developing  Covasim,  our  aim  was  to  produce  a  tool  that  would  be  capable  of  informing  real-world                                   
policy  decisions  for  a  variety  of  national  and  subnational  settings.  We  wanted  to  capture  the  benefits  of                                   
agent-based  modeling  (in  particular,  the  ability  of  such  models  to  simulate  the  kinds  of  microscale                               
policies  being  used  to  respond  to  the  COVID-19  pandemic),  whilst  making  use  of  recent  advances  in                                 
software  tools  and  computational  methods  to  minimize  the  complexity  and  computation  time  typically                           
associated  with  such  models.  In  this  regard,  Covasim  is  most  similar  to  the  OpenABM-Covid19  model                               
(23,24),  which  has  also  been  developed  as  a  high-performance,  user-friendly,  general-purpose  COVID                         
model.   
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To  date,  Covasim  has  been  used  by  researchers  and  public  health  officials  in  over  a  dozen  countries.                                   
Covasim  has  been  used  to  inform  policy  decisions  in  the  United  States  (25,26),  Vietnam  (27),  the  United                                   
Kingdom  (28),  and  Australia  (29).  It  has  also  been  used  for  research  studies  in  these  locations  (30–33),                                   
and  well  as  other  countries  including  India,  Russia,  Kenya,  and  South  Africa.  This  paper  describes  the                                 
methodology   underlying   Covasim,   and   provides   several   examples   to   illustrate   its   use.   
  

2   Methods   

2.1   Overview   
Covasim  simulates  the  state  of  individual  people,  known  as  agents,  over  a  number  of  discrete  time                                 
steps.  Conceptually,  the  model  is  largely  focused  on  a  single  type  of  calculation:  the  probability  that  a                                   
given  agent  on  a  given  time  step  will  change  from  one  state  to  another,  such  as  from  susceptible  to                                       
infected,  or  from  critically  ill  to  dead.  Once  these  probabilities  have  been  calculated,  a  pseudorandom                               
number  generator  with  a  user-specified  seed  is  used  to  determine  whether  the  transition  actually  takes                               
place   for   a   given   model   run.   
  

The  logical  flow  of  a  single  Covasim  run  is  as  follows.  First,  the  simulation  object  is  created,  then  the                                       
parameters  are  loaded  and  validated  for  internal  consistency,  and  any  specified  data  files  are  loaded                               
(described  in  Section  2.6.1).  Second,  a  population  of  agents  is  created,  including  age,  sex,  and                               
comorbidities  for  each  agent,  drawing  from  location-specific  data  distributions  where  available;  the,                         
agents  are  then  connected  into  contact  networks  based  on  their  age  and  other  statistical  properties                               
(Section  2.4).  Next,  the  integration  loop  begins.  On  each  timestep  (which  corresponds  to  a  single  day  by                                   
default),  the  order  of  operations  is:  dynamic  rescaling  (Section  2.6.2);  applying  health  system  constraints                             
(Section  2.6.3);  updating  the  state  of  each  agent,  including  disease  progression  (Section  2.2);                           
importation  events  (Section  2.6.4);  applying  interventions  (Section  2.5);  calculating  disease  transmission                       
events  across  each  infectious  agent's  contact  network  (Section  2.3);  collating  outputs  into  results  arrays                             
(Section  2.6.5);  and  applying  analyzers  (Section  2.6.7).  The  following  sections  describe  each  step  in                             
more   detail.   

2.2   Disease   progression   
In  Covasim,  each  individual  is  characterized  as  either  susceptible,  exposed  (i.e.,  infected  but  not  yet                               
infectious),  infectious,  recovered,  or  dead,  with  infectious  individuals  additionally  categorized  according                       
to  their  symptoms:  asymptomatic,  presymptomatic,  mild,  severe,  or  critical.  A  schematic  diagram  of  the                             
model   structure   is   shown   in   Fig.   1.   
  

The  length  of  time  after  exposure  before  an  individual  becomes  infectious  is  set  by  default  to  be  a                                     
log-normal  distribution  with  a  mean  of  4.6  days,  which  is  within  the  range  of  values  reported  across  the                                     
literature  (Table  1).  The  length  of  time  between  the  start  of  viral  shedding  and  symptom  onset  is                                   
assumed  to  follow  a  log-normal  distribution  with  a  mean  of  1  day  (Table  1).  Exposed  individuals  may                                   
develop  symptoms  or  may  remain  asymptomatic.  Individuals  with  symptoms  are  disaggregated  into                         
either  mild,  severe,  or  critical  cases,  with  the  probability  of  developing  a  more  acute  case  increasing  with                                   
age  (Table  2).  Covasim  can  also  model  the  effect  of  comorbidities,  which  act  by  modifying  an  individual's                                   
probability  of  developing  severe  symptoms  (and  hence  critical  symptoms  and  death).  By  default,                           
comorbidity  multipliers  are  set  to  1  since  they  are  already  factored  into  the  marginal  age-dependent                               
disease   progression   rates.   
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Fig.  1 :  Covasim  model  structure,  including  infection  (exposure),  disease  progression,  and  final                         
outcomes.  Yellow  shading  indicates  that  an  individual  is  infectious  and  can  transmit  the  disease  to                               
other  susceptible  agents.  States  with  a  dashed  border  are  considered  symptomatic  with  respect  to                             
symptomatic   versus   asymptomatic   testing.   

  
Estimates  of  the  duration  of  COVID-19  symptoms  and  the  length  of  time  that  viral  shedding  occurs  are                                   
highly  variable,  but  durations  are  generally  reported  to  increase  according  to  acuity  (34,35).  We  reflect                               
this  in  our  model  with  different  recovery  times  for  asymptomatic  individuals,  those  with  mild  symptoms,                               
and  those  with  severe  symptoms,  as  summarized  in  Table  1.  All  non-critical  cases  are  assumed  to                                 
recover,  while  critical  cases  either  recover  or  die,  with  the  probability  of  death  increasing  with  age  (Table                                   
2).    

Table   1.    Default   duration   parameters,   in   days,   used   in   the   Covasim   model.   

4   

Parameter    Description    Distribution    (mean,   std)    Source   

s    Length   of   time   after   exposure   before   
an   individual   is   infectious   (i.e.,   has   
begun   viral   shedding)  

s   ~   lognormal(4.6,4.8)    From  Lauer  et  al.  (36);  additional             
sources  Du  et  al.,  Nishiura  et  al.,               
and   Pung   et   al.   (37–39).   

i    Length   of   time   after   viral   shedding   has   
begun   before   an   individual   has   
symptoms   

i   ~   lognormal(1,0.9)    Linton   et   al.   (40)   report   the   
incubation   period   as   5.6   days   ( 95%   
CI:   5.0 – 6.3   days ).   Using   the   period   
of   exposure   before   becoming   
infectious,   we   infer   the   period   of   
viral   shedding   before   symptomatic.   
However,   other   studies   have   
estimated   longer   periods,   e.g.   (41).   

r a    Recovery   time   for   asymptomatic   cases    r a ~   lognormal(8,   2)    Wölfel   et   al.   (42)   

r m    Recovery   time   for   mild   cases    r m    ~   lognormal(8,   2)    Wölfel   et   al.   (42)   

r s    Recovery   time   for   severe   cases    r s    ~   lognormal(14,   2.4)    Verity   et   al.   (43)   

r c    Recovery   time   for   critical   cases    r c    ~   lognormal(14,   2.4)    Verity   et   al.   (43)   
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Table  2:   Age-linked  disease  susceptibility,  progression,  and  mortality  probabilities.  Key:   r sus :  relative  susceptibility  to                             
infection;   p sym :  probability  of  developing  symptoms;   p sev :  probability  of  developing  severe  symptoms  (i.e.,  sufficient                             
to  justify  hospitalization);   p cri :  probability  of  developing  into  a  critical  case  (i.e.,  sufficient  to  require  ICU);   p dea :                                   
probability  of  death  (i.e.,  infection  fatality  ratio).  Relative  susceptibility  values  are  derived  from  odds  ratios                               
presented  in  Zhang  et  al.  (44).  Mortality  rates  are  based  on  O'Driscoll  et  al.  (45)  for  ages  <90  and  Brazeau  et  al.  (46)                                               
for  ages  >90.  All  other  values  are  derived  from  Verity  et  al.  (43)  and  Ferguson  et  al.  (47),  which  did  not  differentiate                                             
80-89  and  90+.  Values  were  validated  from  model  fits  to  data  on  numbers  of  cases,  numbers  of  people  hospitalized                                       
and  in  intensive  care,  and  numbers  of  deaths  from  Washington  and  Oregon  states.  Note  that  "overall"  values                                   
depend  on  the  age  structure  of  the  population  being  modeled.  For  a  population  like  the  USA  or  UK,  the  symptomatic                                         
proportion  is  roughly  70%,  while  for  populations  skewed  towards  younger  ages,  this  proportion  is  lower.  Similarly,                                 
overall   mortality   rates   are   estimated   to   vary   from   0.2%   in   Kenya   to   0.9%   in   the   USA   and   1.4%   in   Italy.   

  

2.3   Transmission   and   within-host   viral   dynamics   
Whenever  a  susceptible  individual  comes  into  contact  with  an  infectious  individual  on  a  given  day,                               
transmission  of  the  virus  occurs  according  to  probability   β .  For  a  well-mixed  population  where  each                               
individual  has  an  average  of  20  contacts  per  day,  a  value  of   β  =  0.016  corresponds  to  a  doubling  time  of                                           
roughly  4–6  days  and  an   R 0  of  approximately  2.2–2.7;  exact  values  depend  on  the  population  size,  age                                   
structure,  and  other  factors.  The  value  of   β  =  0.016  is  currently  used  as  the  default  in  Covasim;  however,                                       
this  value  is  typically  calibrated  by  the  user  to  best  match  local  epidemic  data,  as  described  in  Section                                     
2.6.8.   
  

If  realistic  network  structure  (i.e.,  households,  schools,  workplaces,  and  community  contacts)  is                         
included,  the  value  of   β  depends  on  the  contact  type.  Default  transmission  probabilities  are  roughly                               
0.050  per  contact  per  day  for  households,  0.010  for  workplaces  and  schools,  and  0.005  for  the                                 
community.  These  values  correspond  to  relative  weightings  of  10:2:2:1,  chosen  (a)  for  consistency  with                             
both  time-use  surveys  (48)  and  studies  of  infections  with  known  contact  with  types  (44),  and  (b)  to  have                                     
a  weighted  mean  close  to  the  default   β  value  of  0.016  for  a  well-mixed  population  (i.e.,  if  different                                     
network  layers  are  not  used).  When  combined  with  the  default  number  of  contacts  in  each  layer,                                 
age-based  susceptibility,  and  other  factors,  for  a  typical  (unmitigated)  transmission  scenario,  the                         
proportions  of  transmission  events  that  occur  in  each  contact  layer  in  the  absence  of  interventions  are                                 
approximately  30%  via  households,  25%  via  workplaces,  15%  via  schools,  and  30%  via  the  community.                               
The   value   of    β    can   also   be   modified   by   interventions,   such   as   physical   distancing,   as   described   below.   
  

In  addition  to  allowing  individuals  to  vary  across  disease  severity  and  time  spent  in  each  disease  state,                                   
we  allow  individual  infectiousness  to  vary  between  people  and  over  time.  We  use  individual  viral  load  to                                   
model  these  differences  in  infectivity.  Several  groups  have  found  that  viral  load  is  highest  around  or                                 
slightly  before  symptom  onset,  and  then  falls  monotonically  (49–53).  As  a  simple  approximation  to  this                               
viral  time  course,  we  model  two  stages  of  viral  load:  an  early  high  stage  followed  by  a  longer  low  stage.                                         
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   0-9    10-19    20-29    30-39    40-49    50-59    60-69    70-79    80-89    90+    Overall   

r sus    0.34   0.67   1.00   1.00   1.00   1.00   1.00   1.24   1.47   1.47   1.00  

p sym    0.50   0.55   0.60   0.65   0.70   0.75   0.80   0.85   0.90   0.90   0.5–0.75   

p sev    0.00050    0.00165    0.00720    0.02080    0.03430    0.07650    0.13280    0.20655    0.24570    0.24570    0.1–0.2   

p cri    0.00003    0.00008    0.00036    0.00104    0.00216    0.00933    0.03639    0.08923    0.17420    0.17420    0.05–0.1   

p dea    0.00002    0.00002    0.00010    0.00032    0.00098    0.00265    0.00766    0.02439    0.08292    0.16190    0.002–0.015   
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By  default,  we  set  the  viral  load  of  the  high  stage  to  be  twice  as  high  as  the  low  stage  and  to  last  for                                                 
either  30%  of  the  infectious  duration  or  4  days,  whichever  is  shorter.  The  default  viral  load  for  each  agent                                       
is  drawn  from  a  negative  binomial  distribution  with  mean  1.0  and  shape  parameter  0.45,  which  was  the                                   
value  most  consistent  with  both  international  estimates  (54,55)  and  fits  to  data  in  Washington  state  and                                 
Oregon.  The  daily  viral  load  is  used  to  adjust  the  per-contact  transmission  probability  ( β )  for  an  agent  on                                     
a   given   day   (Fig.   2).   
  

Evidence  is  mixed  as  to  whether  transmissibility  is  lower  if  the  infectious  individual  does  not  have                                 
symptoms  (50).  We  take  a  default  assumption  that  it  is  not,  but  include  a  parameter  that  can  be  modified                                       
as  needed  depending  on  the  modeling  application  or  context,  noting  that  some  studies  have  used  much                                 
lower   rates   of   infectiousness   for   asymptomatic   individuals   (56).     
  

  
Fig.  2 :  Example  of  within-host  viral  load  dynamics  in  Covasim.  Each  row  shows  a  different  agent  in                                   
the  model.  Color  indicates  viral  load,  which  typically  peaks  the  day  before  or  the  day  of  symptom                                   
onset,   before   declining   slowly.   

2.4   Contact   network   models   
Covasim  is  capable  of  generating  and  using  three  alternative  types  of  contact  networks:  random                             
networks,  SynthPops  networks,  and  hybrid  networks.  Each  of  these  may  be  useful  in  different  settings,                               
and  in  addition  users  have  the  option  of  defining  their  own  networks.  Covasim’s  default  contact  networks                                 
are  shown  schematically  in  Fig.  3;  different  options  for  construction  these  networks  are  provided  in  the                                 
following  sections.  To  facilitate  easy  adaptation  to  different  contexts,  Covasim  comes  pre-loaded  with                           
data  on  country  age  distributions  and  household  sizes  as  reported  by  the  UN  Population  Division  2019                                 
( population.un.org ).     
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2.4.1   Random   networks   
Covasim  generates  random  networks  by  assuming  that  each  person  in  the  modeled  population  can                             
come  into  contact  with  anyone  else  in  the  population.  Each  person  is  assigned  a  number  of  daily                                   
contacts,  which  is  drawn  from  a  Poisson  distribution  whose  mean  value  can  be  specified  by  the  user                                   
depending  on  the  modeling  context  (with  a  default  value  of  20).  The  user  can  also  decide  whether  these                                     
contacts  should  remain  the  same  throughout  the  simulation,  or  whether  they  should  be  sampled                             
randomly   from   the   population   each   day.     
  

  
Fig.   3 :   Schematic   diagram   of   contact   networks   with   multiple   layers   in   Covasim.   

2.4.2   SynthPops   networks   
Covasim  is  integrated  with  SynthPops,  an  open-source  data-driven  model  capable  of  generating  realistic                           
synthetic  contact  networks  for  populations;  further  information,  including  documentation  and  source                       
code,  is  available  from   synthpops.org .  Briefly,  the  method  draws  upon  previously  published  models  and                             
empirical  studies  to  infer  high-resolution  age-specific  contact  patterns  in  key  settings  (e.g.,  households,                           
schools,  workplaces,  and  the  general  community)  relevant  to  the  transmission  of  infectious  diseases                           
(57–59).  Census  or  survey  data  such  as  those  from  Demographic  and  Health  Surveys  (60,61)  are  used                                 
by  SynthPops  to  inform  demographic  characteristics  (e.g.,  age,  household  size,  school  enrollment,  and                           
employment  rates).  Age-specific  contact  matrices,  such  as  those  in  (57,62–64),  are  then  used  to                             
generate  individuals  and  their  expected  contacts  in  a  multilayer  network  framework.  By  default,                           
SynthPops  generates  household,  school,  and  work  contact  networks;  community  connections  are                      
generated  using  the  random  approach  described  above,  and  long-term  care  facilities  can  be  included  if                               
data   are   available.   An   example   synthetic   network   as   generated   by   SynthPops   is   shown   in   Fig.   4.   

2.4.2.1   Households   
SynthPops  generate  individuals  within  households  using  data  on  the  distribution  of  ages,  household                           
sizes,  and  the  age  of  reference  individuals  per  household  for  a  given  population.  The  algorithm  first                                 
generates  household  sizes  from  the  household  size  distribution,  and  then  assigns  a  reference  individual                             
(for  example,  the  head  of  the  household)  with  their  age  sampled  conditional  on  the  household  size.  To                                   
construct  the  other  household  members,  location-specific  household  age  mixing  contact  matrices  and                         
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the  population  age  distribution  are  used  to  infer  the  likely  ages  of  household  contacts  for  the  reference                                   
person.  Each  column   c  of  the  contact  matrix  is  treated  as  an  age  distribution  of  the  household  contacts                                     
for  a  person  in  the  age  group   c .  The  ages  of  other  household  members  are  then  sampled  conditional  on                                       
the   age   of   the   reference   person   for   the   household.   
  

  
Fig.  4 :  Synthetic  population  networks  for  households  (top),  schools  (middle),  and  workplaces                         
(bottom).  Age-specific  contact  matrices  are  shown  on  the  left,  while  actual  connectivity  patterns  for                             
a  127-person  subsample  of  a  population  of  10,000  individuals  are  shown  on  the  right.  All  individuals                                 
are  present  in  the  household  network,  including  some  with  no  household  connections.  A  subset  of                               
these  individuals,  including  teachers,  are  present  in  the  school  network  (circles);  another  subset  is                             
present  in  workplace  networks  (squares);  some  individuals  are  in  neither  school  nor  work  networks                             
(triangles).   
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2.4.2.2   Schools   
A  similar  approach  is  used  to  construct  schools.  School  enrollment  data,  available  from  census  studies                               
or  survey  data  can  be  used  to  inform  enrollment  rates  by  age,  school  sizes,  and  student-teacher  ratios.                                   
The  SynthPops  algorithm  first  chooses  a  reference  student  for  the  school  conditional  on  enrollment                             
rates  to  infer  the  school  type,  and  then  uses  the  age  mixing  contact  matrix  in  the  school  setting  to  infer                                         
the  likely  ages  of  the  other  students  in  the  school.  Students  are  drawn  from  an  ordered  list  of                                     
households,  such  that  they  reproduce  an  approximation  of  the  neighborhood  dynamics  of  children                           
attending  area  schools  together.  Teachers  and  other  non-teaching  staff  (e.g.,  administrative  or  cleaning                           
staff)  are  drawn  from  the  adult  population  comprising  the  labor  force  and  assigned  to  schools  as                                 
needed,  reflecting  average  student-teacher  and  student-staff  ratio  data.  With  large  schools,  it  is  unlikely                             
for  each  student,  teacher,  or  other  staff  member  to  be  in  close  contact  with  all  other  individuals.  Instead,                                     
for  each  individual  in  the  school  layer  we  model  their  close  and  effective  contacts  as  a  subset  of                                     
contacts  from  their  school  who  can  infect  them  by  sampling  a  random  set  of   n  other  individuals  in  their                                       
school,  where   n  is  drawn  from  a  Poisson  distribution  with  rate  parameter  λ s  equal  to  the  average  class                                     
size   (   λ s    =   20   as   a   default).     

2.4.2.3   Workplaces   and   community   
The  labor  force  is  drawn  using  employment  rates  by  age,  and  non-teachers  are  assigned  to  workplaces                                 
using  data  on  establishment  sizes.  Workers  are  assigned  to  workplaces  using  a  similar  method  with  an                                 
initial  reference  worker  sampled  from  the  labor  force  and  their  co-workers  inferred  from  age  mixing                               
patterns  within  the  workforce.  All  workers  (teachers  included)  are  drawn  at  random  from  the  population,                               
to  reflect  the  general  mixing  of  adults  from  different  neighborhoods  at  work.  Similar  to  the  school  layer,                                   
large  workplaces  are  unlikely  to  be  fully  connected  graphs  of  contacts.  Instead,  for  each  worker,  we                                 
model  their  close  contacts  as  a  subset  of   n  contacts  from  other  individuals  in  their  workplace,  where   n  is                                       
drawn  from  a  Poisson  distribution  with  rate  parameter  λ w  equal  to  the  estimated  maximum  number  of                                 
close   contacts   in   the   workplace   (λ w    =   20   as   a   default).   
  

For  contacts  in  the  general  community,  we  draw   n  random  contacts  for  each  individual  from  other                                 
individuals  in  the  population,  where   n  is  drawn  from  a  Poisson  distribution  with  rate  parameter  λ c  equal                                   
to  the  expected  number  of  contacts  in  the  general  community  (with  λ c  =  20  as  a  default,  as  above).                                      
Connections  in  this  layer  reflect  the  nature  of  contacts  in  shared  public  spaces  like  parks  and                                 
recreational  spaces,  shopping  centers,  community  centers,  and  public  transportation.  All  links  between                         
individuals  are  considered  undirected  to  reflect  the  ability  of  either  individual  in  the  pair  to  infect  each                                   
other.   
  

The  generated  multilayer  network  of  household,  school,  work,  and  community  network  layers  presents  a                             
population  with  realistic  microstructure.  This  framework  can  also  be  extended  to  consider  more  detailed                             
interactions  in  key  additional  settings,  such  as  hospitals,  encampments,  shelters  for  those  experiencing                           
homelessness,   and   long   term   care   facilities.   

2.4.3   Hybrid   networks   
Covasim  contains  a  third  option  for  generating  contact  networks,  which  captures  some  of  the  realism  of                                 
the  SynthPops  approach  but  does  not  require  as  much  input  data,  and  is  more  readily  adaptable  to  other                                     
settings.  As  such,  it  is  a  "hybrid"  approach  between  a  fully  random  network  and  a  fully  data-derived                                   
network.  As  with  SynthPops,  each  person  in  the  population  has  contacts  in  their  household,  school  (for                                 

9   

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 11, 2021. ; https://doi.org/10.1101/2020.05.10.20097469doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.10.20097469
http://creativecommons.org/licenses/by-nc-nd/4.0/


  
children),  workplace  (for  adults),  and  community.  A  population  of  individuals  is  generated  according  to  a                              
location-specific  age  distribution,  and  each  individual  is  randomly  assigned  to  a  household  using                           
location-specific   data   on   household   sizes.     
  

Unlike  SynthPops,  the  hybrid  algorithm  does  not  account  for  the  distribution  of  ages  within  a  household.                                 
Children  are  assigned  to  schools  and  adults  to  workplaces,  each  with  a  user-specified  number  of  fixed                                 
daily  contacts  (by  default,  Poisson-distributed  with  means  of  20  for  schools  and  16  for  workplaces,                               
chosen  to  match  the  mean  values  for  SynthPops  networks).  Individuals  additionally  have  contacts  with                             
others  in  the  community  (by  default,  Poisson  distributed  with  a  mean  of  20).  All  children  and  young                                   
adults  aged  between  6  and  22  are  assigned  to  schools  and  universities,  and  all  adults  between  22  and                                     
65  are  assigned  to  workplaces.  This  distinguishes  it  from  SynthPops  where  enrollment  or  employment                             
varies  depending  on  the  given  data.  A  comparison  of  the  different  population  structure  options  available                               
in   Covasim   is   listed   in   Table   3.   
  

Table   3 :   Comparison   of   population   options   in   Covasim.   

  

2.5   Interventions   
A  core  function  of  Covasim  is  modeling  the  effect  of  interventions  on  disease  transmission  or  health                                 
outcomes,  to  understand  the  impact  that  different  policy  options  may  have  in  a  specific  setting.  In                                 
general,  interventions  are  modeled  as  changes  to  parameter  values.  Covasim  has  built-in                         
implementations  of  the  common  interventions  described  below,  as  well  as  the  ability  for  users  to  create                                 
their  own  interventions.  Each  intervention  has  full  access  to  the  simulation  object  at  each  timestep,                               
which  means  that  user-defined  interventions  can  dynamically  modify  any  aspect  of  the  simulation.  This                             
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Population   type    Data   requirements    Best   suited   for    Not   well   suited   for   

Random   networks    None    Models   of   transmission   in   
special   settings   such   as   
prisons   or   cruise   ships   

Large   or   complex   
populations   

Hybrid   networks    Data   on   the   age   distribution   
and   household   sizes   for   
each   country   are   pre-loaded   
  

No   additional   data   is   
required,   but   users   can   
optionally   specify   the   daily   
number   of   school,   
workplace,   and   community   
contacts   

Population   network   models   
in   data-rich   settings;   
adaptable   and   suited   to   
most   modeling   contexts   

Populations   with   high   
heterogeneity   in   contact   
patterns   or   size   distributions     
  
  

SynthPops   networks    Household,   school,   
workplace,   and   community   
age   mixing   patterns   
  

School   size   distributions,   
enrollment   rates   by   age,   
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can  be  used  to  create  interventions  more  specific  than  those  included  by  default  in  Covasim,  such  as                                   
age-specific   physical   distancing   or   quarantine.   

2.5.1   Physical   distancing,   masks,   and   hygiene   
The  most  basic  intervention  in  Covasim  is  to  reduce  transmissibility  ( β )  starting  on  a  given  day.  This  can                                     
be  used  to  reflect  both  (a)  reductions  in  transmissibility  per  contact,  such  as  through  mask  wearing,                                 
personal  protective  equipment,  hand-washing,  and  maintaining  physical  distance;  and  (b)  reductions  in                         
the  number  of  contacts  at  home,  school,  work,  or  in  the  community.  However,  Covasim  also  includes  an                                   
"edge-clipping"  intervention  (considering  a  contact  between  two  agents  as  a  weighted  "edge"  between                           
two  "nodes"),  where   β  remains  unchanged  but  the  number  of  contacts  that  person  has  is  reduced.                                 
Complete  school  and  workplace  closures,  for  example,  can  be  modeled  either  by  setting   β  to  0,  or  by                                     
removing  all  edges  in  those  contact  layers;  partial  closures  can  be  modeled  by  smaller  reductions  in                                 
either    β    or   the   number   of   contacts.   
  

In  general,  both  types  of  interventions  have  similar  impact  –  for  example,  halving  the  number  of  contacts                                   
and  keeping   β  constant  will  produce  very  similar  epidemic  trajectories  as  halving   β  and  keeping  the                                 
number  of  contacts  constant.  However,  the  distinction  becomes  important  when  considering  the                         
interaction  between  physical  distancing  and  other  interventions.  For  example,  in  a  contact  tracing                           
scenario,  the  number  of  contacts  who  require  tracing,  number  of  tests  performed,  and  number  of  people                                 
placed  in  quarantine  are  all  strongly  affected  by  whether  physical  distancing  is  implemented  as  a                               
reduction   in    β    of   specific   edges,   or   removing   those   edges   entirely.   

2.5.2   Testing   and   diagnosis   
Testing  can  be  modeled  in  two  different  ways  within  Covasim,  depending  on  the  format  of  testing  data                                   
and  purpose  of  the  analysis.  The  first  method  allows  the  user  to  specify  the  probabilities  that  people  with                                     
different  risk  factors  and  levels  of  symptoms  will  receive  a  test  on  each  day.  Separate  daily  testing                                   
probabilities  can  be  entered  for  those  with/without  symptoms,  and  those  in/out  of  quarantine.  The                             
model  will  then  estimate  the  number  of  tests  performed  on  each  day.  The  second  method  allows  the                                   
user  to  enter  the  number  of  tests  performed  on  each  day  directly,  including  multipliers  on  the  probability                                   
of  a  person  receiving  a  test  if  they  have  symptoms,  are  in  quarantine,  or  are  over  a  certain  age.  This                                         
method  will  then  allocate  the  tests  among  the  population.  If  data  on  the  number  of  daily  tests  performed                                     
each   day   are   available,   the   second   method   is   preferable.   
  

Once  a  person  is  tested,  the  model  contains  a  delay  parameter  that  indicates  how  long  people  need  to                                     
wait  for  their  results,  as  well  as  a  loss-to-follow-up  parameter  that  indicates  the  probability  that  people                                 
will   not   receive   their   results.   Additional   parameters   control   the   sensitivity   and   specificity   of   the   tests.   

2.5.3   Contact   tracing   
Contact  tracing  corresponds  to  notifying  individuals  that  they  have  had  contact  with  a  confirmed  case,                               
so  that  they  can  be  quarantined,  tested,  or  otherwise  change  their  behavior.  Contact  tracing  in  Covasim                                 
is  parameterized  by  the  probability  that  a  contact  can  be  traced,  and  by  the  time  taken  to  identify  and                                       
notify  contacts.  Both  parameters  can  vary  by  type  of  contact,  and  can  be  controlled  by  the  user.  For                                     
example,  it  may  be  reasonable  to  assume  that  people  can  trace  members  of  their  household                               
immediately  and  with  100%  probability,  while  tracing  work  colleagues  may  take  several  days  and  may  be                                 
incomplete.   
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2.5.4   Isolation   of   positives   and   contact   quarantine   
Isolation  (referring  to  behavior  changes  after  a  person  is  diagnosed  with  COVID-19)  and  quarantine                             
(referring  to  behavior  changes  after  a  person  is  identified  as  a  known  contact  of  someone  with                                 
confirmed  or  suspected  COVID-19)  are  the  primary  means  by  which  testing  interventions  reduce                           
transmission.  In  Covasim,  people  diagnosed  with  COVID-19  can  be  isolated.  Their  contacts  who  have                             
been  traced  can  be  placed  in  quarantine  with  a  specified  level  of  compliance;  people  in  quarantine  may                                   
also  have  an  increased  probability  of  being  tested.  People  in  isolation  or  quarantine  typically  have  a                                 
lower  probability  of  infecting  others  (if  infectious)  or  of  acquiring  COVID-19  (if  quarantined  and                             
susceptible).  The  default  reductions  for  isolation  are  70%  in  the  household  and  90%  in  school,  work,  and                                   
community  layers,  while  quarantine  is  assumed  to  have  lower  compliance  (40%  reduction  in  the                             
household  and  80%  in  other  layers).  However,  if  psychosocial  support  is  not  provided  to  people  in  home                                   
isolation  or  quarantine,  there  may  be  an  increased  risk  of  passing  on  infection  to,  or  acquiring  infection                                   
from,   other   household   members.   

2.5.5   Vaccines   and   treatments   
Pharmaceutical  interventions,  especially  vaccines,  are  an  increasingly  important  part  of  public  health                         
responses  to  COVID-19.  However,  there  are  significant  modeling  challenges  due  to  the  large  number  of                               
vaccine  candidates  under  investigation,  coupled  with  the  considerable  uncertainty  regarding  their                       
properties  –  such  as  the  extent  to  which  they  block  acquisition  and  transmission  as  well  as  symptoms,                                   
how  much  protection  is  conferred  by  a  single  dose,  the  extent  to  which  immunity  wanes  over  time,  and                                     
their  effectiveness  against  different  COVID-19  strains  (65).  Vaccines  in  Covasim  are  modeled  by                           
adjusting  individuals'  susceptibility  to  infection  and  probability  of  developing  symptoms  after  being                         
infected;  both  of  these  modifications  affect  the  overall  probability  of  progressing  to  severe  disease  and                               
death.  Additional  flexibility,  including  waning  efficacy  and  differential  effectiveness  across  variants,  will                         
be  incorporated  as  trial  results  become  available.  Though  treatments  for  COVID-19  have  so  far  had  only                                 
modest  results  in  clinical  trials  (66),  they  can  be  implemented  in  Covasim  as  interventions  that  reduce                                 
the   probability   of   progressing   to   severe   disease   or   death.   

2.6   Additional   features   

2.6.1   Data   inputs   
In  addition  to  the  demographic  and  contact  network  data  available  via  SynthPops,  Covasim  includes                             
interfaces  to  automatically  load  COVID-19  epidemiology  data,  such  as  time  series  data  on  deaths  and                               
diagnosed  cases,  from  several  publicly  available  databases.  These  databases  include  the  Corona  Data                           
Scraper  ( coronadatascraper.com ),  the  European  Centre  for  Disease  Prevention  and  Control                     
( ecdc.europa.eu ),  and  the  COVID  Tracking  Project  ( covidtracking.com ).  At  the  time  of  writing,  these  data                             
are  available  for  over  4,000  unique  locations,  including  most  countries  in  the  world  (administrative  level                               
0),  all  US  states  and  many  administrative  level  1  (i.e.,  subnational)  regions  in  Europe,  and  some                                 
administrative   level   2   regions   in   Europe   and   the   US   (i.e.,   US   counties).   

2.6.2   Dynamic   rescaling   
One  of  the  major  challenges  with  agent-based  models  is  simulating  a  sufficient  number  of  agents  to                                 
capture  an  epidemic  at  early,  middle,  and  late  stages,  without  requiring  cumbersome  levels  of  memory  or                                 
processor  usage.  Whereas  compartmental  SEIR  models  require  the  same  amount  of  computation  time                           
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regardless  of  the  population  size  being  modeled,  the  performance  of  agent-based  models  typically                           
scales  linearly  or  supralinearly  with  population  size  (see  Section  2.7.1).  As  a  consequence,  many                             
agent-based  models,  including  Covasim,  include  an  optional  "scaling  factor",  where  a  single  agent  in  the                               
model  is  assumed  to  represent  multiple  people  in  the  real  world.  A  scaling  factor  of  10,  for  example,                                     
corresponds  to  the  assumption  that  the  epidemic  dynamics  in  a  city  of  2  million  people  can  be                                   
considered   as   the   sum   of   the   epidemic   dynamics   of   10   identical   subregions   of   200,000   people   each.   
  

However,  the  limitation  of  this  approach  is  that  it  introduces  a  discretization  of  results:  model  outputs                                 
can  only  be  produced  in  increments  of  the  scaling  factor,  so  relatively  rare  events,  such  as  deaths,  may                                     
not  have  sufficient  granularity  to  reflect  the  epidemic  behavior  at  a  small  scale.  In  addition,  using  too  few                                     
agents  in  the  model  introduces  stochastic  variability  patterns  that  do  not  reflect  real-world  processes  in                               
the   entire   population.   
  

To  circumvent  this,  Covasim  includes  an  option  for  dynamic  rescaling.  Initially,  when  the  epidemic  is                               
small,  there  is  no  scaling  performed:  one  agent  corresponds  to  one  person.  Once  a  certain  threshold  is                                   
reached,  however  (by  default,  5%  of  the  population  is  non-susceptible),  the  non-susceptible  agents  in  the                               
model  are  downsampled  and  a  corresponding  scaling  factor  is  introduced  (by  default,  a  factor  of  1.2  is                                   
used).  For  example,  in  a  simulation  of  100,000  agents  representing  a  true  population  of  1  million  with  a                                     
threshold  of  10%  and  a  rescaling  factor  of  2,  dynamic  rescaling  would  be  triggered  when  cumulative                                 
infections  surpass  10,000,  leaving  90,000  susceptible  agents;  dynamic  rescaling  would  then  resample                         
the  non-susceptible  population  to  5,000  (now  representing  10,000  people)  and  increase  the  number  of                             
susceptible  agents  to  95,000  (now  representing  190,000  people),  i.e.  with  every  agent  now  counting  as                               
two.  If  the  epidemic  expands  further,  this  process  will  repeat  iteratively  until  the  scale  factor  reaches  its                                   
upper  limit  (which  in  this  example  is  10,  and  which  would  be  reached  after  100,000  cumulative                                
infections).  Through  this  process,  arbitrarily  large  populations  can  be  modeled,  even  starting  from  a                             
single   infection,   maintaining   a   constant   level   of   precision   and   computation   time   throughout.   

2.6.3   Health   system   capacity   
Individuals  in  the  model  who  have  severe  and  critical  symptoms  are  assumed  to  require  regular  and                                
intensive  care  unit  (ICU)  hospital  beds,  respectively,  including  ventilation  in  the  latter  case.  The  number                               
of  available  hospital  beds  (ICU  and  otherwise)  beds  are  input  parameters.  If  the  model  estimates  that  the                                   
number  of  severe/critical  cases  is  greater  than  the  number  of  available  non-ICU/ICU  beds,  then  the                               
health  system  capacity  is  exceeded.  This  means  that  severely  ill  individuals  have  an  increased                             
probability  of  progressing  to  critical,  and  critically  ill  individuals  who  are  unable  to  access  treatment  have                                 
an   increased   mortality   rate   (by   default,   both   by   a   factor   of   2).   

2.6.4   Importations   
The  spatial  movement  of  agents  is  not  currently  modeled  explicitly  in  Covasim,  and  the  population  size                                 
for  a  given  simulation  is  fixed.  Thus,  importations  are  implemented  as  spontaneous  infections  among                             
the  susceptible  population.  This  corresponds  to  agents  who  become  infected  elsewhere  and  then  return                             
to   the   population.   

2.6.5   Model   outputs   
By  default,  Covasim  outputs  three  main  types  of  result:  "stocks"  (e.g.,  the  number  of  people  with                                 
currently  active  infections  on  a  given  day),  "flows"  (e.g.,  the  number  of  new  infections  on  a  given  day),                                     
and  "cumulative  flows"  (e.g.,  the  cumulative  number  of  infections  up  to  a  given  day).  For  states  that                                   
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cannot  be  transitioned  out  of  (e.g.  death,  plus  recovery  if  reinfection  is  not  considered),  the  stock  is                                   
equal  to  the  cumulative  flow.  Flows  that  are  calculated  in  the  model  include:  the  number  of  new                                   
infections  and  the  number  of  people  who  become  infectious  on  that  timestep;  the  number  of  tests                                 
performed,  new  positive  diagnoses,  and  number  of  people  placed  in  quarantine;  the  number  of  people                               
who  develop  mild,  severe,  and  critical  symptoms;  and  the  number  of  people  who  recover  or  die.  The  date                                     
of  each  transition  (e.g.,  from  critically  ill  to  dead)  is  also  recorded.  By  default,  these  results  are  summed                                     
over  the  entire  population  on  each  day;  results  for  subpopulations  can  be  obtained  by  defining  custom                                 
analyzers,   as   described   in   Section   2.6.7.   

2.6.6   Reproduction   number   and   doubling   time   
In  addition  to  these  core  outputs,  Covasim  includes  several  outputs  for  additional  analysis.  For  example,                               
several  methods  are  implemented  to  compute  the  effective  reproduction  number   R e .  Numerous                         
definitions   of    R e    exist;   in   standard   SIR   modeling,   the   most   common   definition   ("method   1")   is   (67):   
  

  
  

where   R 0  is  the  basic  reproduction  number,   S  is  the  number  of  susceptibles,  and   N  is  the  total  population                                       
size.  However,  with  respect  to  COVID-19,  many  authors  instead  define   R e  to  include  the  effects  of                                 
interventions,   due   to   the   implications   that    R e    =   1   has   for   epidemic   control.     
  

A  second  common  definition  of   R e  ("method  2")  is  to  first  determine  the  total  number  of  people  who                                     
became  infectious  on  day   t ,  then  count  the  total  number  of  people  these  people  went  on  to  infect,  and                                       
then  divide  the  latter  by  the  former.  "Method  3"  is  the  same  as  method  2,  except  it  counts  the  number  of                                           
people  who  stopped  being  infectious  on  day   t  (i.e.,  recovered  or  died),  and  then  counts  the  number  of                                     
those  people  infected.  Unlike  in  a  compartmental  model,  where   R e  can  only  be  estimated  by  using                                 
simplifying  assumptions,  in  an  agent-based  model,  methods  2  and  3  can  be  implemented  by  simply                               
counting  exactly  how  many  secondary  infections  are  caused  by  each  primary  infection.  By  doing  so,  all                                 
details  of  the  epidemic  –  including  time-varying  viral  loads,  population-level  and  localized  immunity,                           
interventions,  network  factors,  and  other  effects  –  are  automatically  incorporated,  and  do  not  need  to  be                                 
considered   separately.   
  

While  methods  2  and  3  are  implemented  in  Covasim,  they  have  the  disadvantage  that  they  introduce                                 
significant  temporal  blurring,  due  to  the  potentially  long  infectious  period  (and,  for  method  3,  the  long                                 
recovery  period).  To  avoid  this  limitation,  the  default  method  Covasim  uses  for  computing   R e  is  to  divide                                   
the  number  of  new  infections  on  day   t  by  the  number  of  actively  infectious  people  on  day   t ,  multiplied  by                                         
the  average  duration  of  infectiousness  ("method  4").  This  definition  of   R e  is  nearly  identical  to  the                                 
definition  of  the  "instantaneous  reproductive  number"  in  Gostic  et  al.  (68),  which  in  that  study  is  used  as                                     
the   ground   truth   against   which   other    R e    estimators   are   compared.   
  

Covasim  also  includes  an  estimate  of  the  epidemic  doubling  time,  computed  similarly  to  the  "rule  of                                 
69.3"   (69),   specifically:   

  
  

where   T  is  the  doubling  time,   w  is  the  window  length  over  which  to  compute  the  doubling  time  (3  days  by                                           
default),   and    n i (t)     is   the   cumulative   number   of   infections   at   time    t .   
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2.6.7   Analyzers   
In  addition  to  interventions,  Covasim  also  includes  a  library  of  "analyzers".  Like  interventions,  in  principle                               
they  can  access  and  modify  any  aspect  of  the  simulation  state.  However,  they  are  typically  used  to                                   
record  additional  details  about  the  internal  state  of  the  model  that  are  not  included  as  standard  outputs                                   
(e.g.,  the  age  distribution  of  infections  at  a  given  point  in  time).  By  convention,  interventions  and                                 
analyzers  differ  in  that  interventions  modify  the  state  of  the  simulation  (and  are  applied  at  the  beginning                                   
of   each   timestep),   while   analyzers   record   the   state   (and   are   applied   at   the   end   of   each   timestep).   

2.6.8   Calibration   
The  process  of  calibration  involves  finding  parameter  values  that  minimize  the  difference  between                           
observed  data  (which  typically  includes  daily  confirmed  cases,  hospitalizations,  deaths,  and  number  of                           
tests  conducted)  and  the  model  predictions.  In  practice,  minimizing  the  difference  between  the  model                             
and  data  equates  to  maximizing  a  log-likelihood  function  (or  an  approximation  thereof,  as  in                             
approximate  Bayesian  computation  (70)).  Since  most  data  being  calibrated  to  are  time  series  count  data,                               
this   function   is   defined   as:   
  

  
  

where   is  a  time  series  of  observations  (such  cumulative  confirmed  cases  or  number  of  deaths);   is    s                               t    
the  time  index;   is  the  weight  associated  with  ;  and   are  the  counts  from  the  data  and  model,        ws             s   cd

s,t   cm
s,t                  

respectively,  for  this  time  series  at  this  time  index;  and   f  is  the  loss,  objective,  or  goodness-of-fit  function                                     
(e.g.,  normalized  absolute  error,  mean  absolute  error,  mean  squared  error,  or  the  Poisson  test  statistic).                               
By   default,   Covasim   calculates   the   loss   using   normalized   absolute   error.   
  

Calibrating  any  model  to  the  COVID-19  epidemic  is  an  inherently  difficult  task:  not  only  is  there                                 
significant  uncertainty  around  the  reported  data,  but  there  are  also  many  possible  combinations  of                             
parameter  values  that  could  give  rise  to  these  data.  Thus,  in  a  typical  calibration  workflow,  most                                 
parameters  are  fixed  at  the  best  available  values  from  the  literature,  and  only  essential  parameters  (for                                 
example,    β )   are   allowed   to   vary.   
  

Currently,  calibration  must  be  performed  externally  to  Covasim.  However,  since  a  single  model  run                             
returns  a  scalar  loss  value,  these  runs  can  be  easily  integrated  into  standardized  calibration  frameworks.                               
Any  standard  optimization  library  –  such  as  the  optimization  module  of  SciPy  –  can  be  easily  adapted                                   
(as  long  as  it  can  handle  stochastic  results,  which  standard  gradient  descent  cannot),  as  can  more                                 
advanced  methods  such  as  the  adaptive  stochastic  descend  method  of  the  Sciris  library  (71),  or                               
Bayesian  approaches  such  as  history  matching  (72)  and  sequential  Monte  Carlo  methods  (73).  To  date,                               
the  Optuna  hyperparameter  optimization  library  (74)  has  proven  to  be  the  most  effective  approach  for                               
calibration,   and   an   example   implementation   is   included   in   the   codebase.   

2.7   Software   architecture   
Covasim  was  developed  for  Python  3.8  using  the  SciPy  ( scipy.org )  ecosystem  (75).  It  uses  NumPy                               
( numpy.org ),  Pandas  ( pandas.pydata.org ),  and  Numba  ( numba.pydata.org )  for  fast  numerical                   
computing;  Matplotlib  ( matplotlib.org )  and  Plotly  ( plotly.com )  for  plotting;  and  Sciris  ( sciris.org )  for  data                           
structures,   parallelization,   and   other   utilities.     
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The  source  code  for  Covasim  is  available  via  both  the  Python  Package  Index  (via   pip  install  covasim )                                 
and  GitHub  ( github.com/institutefordiseasemodeling/covasim ).  Covasim  is  fully  open-source,  released                 
under  the  Creative  Commons  Attribution-ShareAlike  4.0  International  Public  License.  More  information  is                         
available  at   covasim.org ,  with  full  documentation  and  a  comprehensive  set  of  tutorials  available  at                             
docs.covasim.org .     

2.7.1   Performance   
All  core  numerical  algorithms  in  the  Covasim  integration  loop  –  specifically,  calculating  intra-host  viral                             
load,  per-person  susceptibility  and  transmissibility,  and  which  contacts  of  an  infected  person  become                           
infected  themselves  –  are  implemented  as  highly  optimized  32-bit  array  operations  in  Numba.  For                             
further  efficiency,  agents  are  not  represented  as  individual  objects,  but  rather  as  indices  of                             
one-dimensional  state  arrays  (Fig.  5).  This  avoids  the  need  to  use  an  explicit  for-loop  over  each  agent  on                                     
every  integration  timestep,  increasing  performance  by  more  than  an  order  of  magnitude.  Similarly,                           
contacts   between   all   agents   in   the   model   are   stored   as   a   single   array   of   "edges"   per   contact   layer.   
  

  
Fig.  5 :  Illustration  of  the  standard  object-oriented  approach  for  implementing  agent-based  models                         
(top),  where  each  agent  is  a  separate  object,  compared  with  the  approach  used  in  Covasim  (bottom),                                 
where  agents  are  represented  as  slices  through  a  set  of  state  arrays.  Dots  (...)  represent  omitted                                 
entries.  In  practice,  each  agent  has  40  states,  and  there  are  typically  hundreds  of  thousands  of                                 
agents.   

  
As  shown  in  Fig.  6,  these  software  optimizations  allow  Covasim  to  achieve  high  levels  of  performance,                                 
despite  being  implemented  purely  in  Python.  Performance  scales  linearly  with  population  size  over                           
multiple  orders  of  magnitude:  memory  scales  at  a  rate  of  roughly  1  KB  per  agent,  while  compute  time                                     
(benchmarked  on  an  Intel  i9-8950HK  laptop  processor)  scales  at  a  rate  of  roughly  2  million  simulated                                 
person-days  per  second  of  CPU  time.  These  speed  and  memory  use  results  are  comparable  to                               
OpenABM-Covid19,  despite  the  latter  being  implemented  in  C  (23).  Due  to  Covasim's  computational                           
efficiency,  it  is  feasible  to  run  realistic  scenarios,  such  as  tens  of  thousands  of  infections  among  a                                   
susceptible  population  of  hundreds  of  thousands  of  people  for  a  duration  of  12  months,  in  under  a                                   
minute  on  a  personal  laptop.  Covasim  is  also  suited  to  high-performance  computing  environments,  with                             
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support  for  parallelization  via  the  built-in  "multiprocessing"  library;  it  can  also  be  adapted  easily  to  other                                 
libraries   such   as   Celery   and   Dask.   
  

  
Fig.  6 :  Covasim  performance  in  terms  of  processor  usage  (top)  and  memory  usage  (bottom),                             
showing   nearly   linear   scaling   over   three   orders   of   magnitude   of   population   size.   

2.7.1   Deployment   and   access   
While  Covasim  is  primarily  intended  to  be  used  via  Python  scripts,  a  number  of  other  options  for  using  it                                       
are  also  available.  A  simple  webapp  for  Covasim  has  been  developed,  based  on  Vue.js  (for  the  frontend),                                   
ScirisWeb  (for  communicating  between  the  frontend  and  the  backend),  Flask  (for  running  the  backend),                             
and  Gunicorn/NGINX  (for  running  the  server);  this  webapp  is  available  at   app.covasim.org .  A  screenshot                             
of  the  user  interface  is  shown  in  Fig.  7.  A  pre-built  version  of  Covasim,  including  the  webapp,  is  also                                       
available  on  Docker  Hub  ( hub.docker.com ).  Covasim  can  also  be  run  via  R  using  the  "reticulate"  library,                                 
and   from   the   command   line   via   the   "fire"   library.   

2.7.2   Software   tests   
Covasim  includes  an  extensive  suite  of  both  integration  tests  and  unit  tests;  code  coverage  for  version                                 
2.0.3  is  88%,  with  much  of  the  remaining  12%  consisting  of  exceptions  that  are  not  raised  by  standard                                     
usage.  In  addition,  outputs  from  the  default  simulations  for  each  version  are  compared  against  cached                               
values  in  the  repository;  since  random  seeds  are  stored,  results  are  exactly  reproducible  despite  the                               
stochasticity  in  the  model.  When  new  data  become  available  and  parameter  values  are  updated,  previous                               
parameters  are  stored,  ensuring  that  any  changes  affecting  the  model  outputs  are  intentional,  and  that                               
previous   versions   can   be   easily   retrieved   and   compared   against.   
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Fig.   7 :   Covasim   webapp   user   interface;   screenshot   taken   from    http://app.covasim.org .   

  
  

3   Results   

3.1   Example   usage   
Several  of  Covasim's  standard  features  are  illustrated  in  Fig.  8.  It  represents  a  simulation  of  200,000                                 
people,  from  February  10  to  June  29  2020,  starting  with  75  seed  infections.  After  an  initial  45  days  of                                       
uncontrolled  epidemic  spread,  the  following  interventions  are  applied:  March  26,  close  schools  and                           
reduce  work  and  community  contacts  to  70%  of  their  original  values;  April  10,  reduce  work  and                                 
community  to  30%  of  their  original  values;  May  5,  reopen  work  and  community  to  80%  of  their  original                                     
values;  May  20,  begin  testing  10%  of  people  with  COVID-like  illness  each  day,  and  trace  the  contacts  of                                     
people   who   test   positive.     
  

By  default,  Covasim  shows  time  series  for  key  cumulative  counts,  daily  counts,  and  health  outcomes                               
(including  deaths).  All  plotting  outputs  are  configurable,  and  results  can  also  be  saved  in  Excel,  JSON,  or                                   
NumPy  formats  for  further  processing.  While  a  full  Covasim  application  would  likely  include  additional                             
complexity  regarding  calibration  and  plotting,  other  aspects  of  the  example  shown  in  Fig.  8  are                               
comparable  to  a  real-world  exploratory  policy  analysis.  Despite  this,  the  Python  script  used  to  generate                               
Fig.   8   is   only   28   lines;   this   code   is   listed   in   Fig.   9.   
  

In  addition  to  running  single  simulations,  Covasim  also  allows  the  user  to  run  multiple  simulations,  which                                 
can  be  averaged  over  to  determine  forecast  intervals.  By  default,  the  forecast  intervals  used  correspond                               
to  the  10th  and  90th  percentiles  of  the  simulated  trajectories.  Since  these  forecast  intervals  are  typically                                 
produced  by  a  combination  of  both  stochastic  variability  ("aleatory  uncertainty")  and  imperfect                         
knowledge  of  the  "true"  parameter  values  ("epistemic  uncertainty"),  they  should  not  be  interpreted  as                             
statistically   rigorous   credible   intervals   (76,77).   
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Fig.  8 :  Illustrative  example  of  a  single  run  of  a  Covasim  simulation.  Interventions  (described  in  the                                 
text)   are   shown   as   dashed   vertical   lines.   
  

  
Fig.  9 :  Full  listing  of  the  code  used  to  produce  Fig.  8,  including  defining  the  parameters  of  the                                     
simulation  (lines  4-11);  defining  the  interventions  (lines  14-23);  and  creating,  running,  and  plotting  the                             
simulation   (lines   26-28).   
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3.2   Transmission   analyses   
The  preceding  examples  illustrate  some  aspects  of  Covasim's  core  functionality  that  are  used  in  most                               
applications.  More  in-depth  analyses  are  also  possible,  leveraging  either  the  default  outputs,  or  the  fact                               
that   the   full   state   of   the   model   is   accessible   to   the   user   at   every   timestep   via   custom   analysis   functions.   
  

For  example,  detailed  information  about  the  transmission  tree  is  stored  for  each  simulation.  This                             
information  can  be  used  to  determine  the  detailed  microstructure  of  the  infection  patterns  in  a  given                                 
simulation.  Complete  transmission  trees  for  a  small  network  under  three  different  intervention  scenarios                           
are  shown  in  Fig.  10,  visualized  via  the  ETE  Toolkit  (78).  For  realistically  sized  networks,  it  is  not  feasible                                       
to  visualize  entire  transmission  trees.  However,  their  statistical  properties  can  be  analyzed  to  determine                             
transmission  routes  and  potential  intervention  targets.  For  example,  such  information  can  be  used  to                             
determine  the  net  contribution  of  schools  (or  even  teachers  at  schools)  to  the  overall  epidemic  trajectory                                 
(26).   

  
Fig.  10 :  Example  transmission  trees  for  a  hypothetical  population  of  300  individuals  with  a  single                               
seed  infection  on  day  1,  with  (A)  no  interventions,  (B)  testing  only,  and  (C)  testing  plus  contact                                   
tracing.  Time  is  shown  on  the  horizontal  axis,  with  each  tree  representing  approximately  90  days.                               
The   vertical   size   of   each   tree   is   proportional   to   the   total   number   of   infections.   
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3.3   Case   study   
Here  we  provide  a  case  study  of  how  Covasim  was  used  to  inform  a  policy  decision  in  King  County  (the                                         
local  government  area  that  includes  the  city  of  Seattle),  Washington,  USA;  a  full  description  of  the                                 
methodology  used  is  given  in  (25).  Briefly,  we  used  Optuna  to  calibrate  Covasim  to  epidemiological  and                                 
program  data  from  January  27  to  November  14  2020;  these  data  are  available  from  the  Public  Health                                   
Seattle  King  County  data  dashboard  (3).  We  then  used  the  calibrated  model  to  (a)  estimate  unobserved                                 
quantities,  such  as  the  number  of  new  infections  and  the  case  detection  rate;  (b)  estimate  the  impact  of                                     
proposed  new  mobility  restrictions  (such  as  limiting  indoor  dining)  scheduled  to  start  on  November  16,                               
which  we  estimated  would  result  in  a  15%  reduction  in  transmission  (79);  and  (c)  compare  this  scenario                                   
with  counterfactual  scenarios  of  either  not  implementing  the  scheduled  restrictions,  or  by  implementing                           
them   together   with   increased   testing   and   contact   tracing.   
  

As  shown  in  Fig.  11,  Covasim  was  able  to  capture  numerous  features  of  the  epidemic  during  the                                   
calibration  period,  including  numbers  of  tests  and  contacts  traced  (which  were  used  as  input  data,  along                                 
with  mobility  data  from  SafeGraph;  see   safegraph.com );  the  three  infection  "waves"  (spring,  summer,  and                             
fall);  changes  in  test  positivity  rate  (not  shown),  and  numbers  of  deaths.  During  the  scenario  period,  we                                   
assumed  that  the  number  of  tests  conducted  per  day  would  remain  constant  at  the  average  value  from                                   
the   previous   7   days   (Fig.   11A).   
  

Despite  a  rapid  increase  of  cases  in  the  preceding  weeks,  the  model  predicted  counterintuitively  that                               
even  these  modest  mobility  restrictions  would  be  sufficient  to  stop  the  rise  in  cases  (Fig.  11B),  a                                   
projection  that  turned  out  to  be  accurate.  (Note  that  using  actual  testing  data  for  this  period,  rather  than                                     
assuming  a  constant  number  of  tests,  would  have  resulted  in  an  even  more  accurate  prediction  of                                 
diagnoses,  though  of  course  these  data  were  not  available  at  the  time  the  prediction  was  made).  While                                   
the  model  correctly  predicted  the  trend  in  cases,  it  underestimated  the  number  of  deaths  (Fig.  11C),                                 
although  the  observations  were  still  within  the  80%  forecast  interval  (the  large  uncertainty  interval  for                               
deaths  is  a  consequence  of  the  small  numbers  of  events  being  predicted,  i.e.,  fewer  than  10  deaths  per                                     
day).  This  underestimate  was  likely  due  to  assuming  a  continuation  of  infection  patterns  that  occurred                               
over  the  summer  and  early  fall,  during  which  younger  adults  were  disproportionately  infected  compared                             
to   older   ones.   
  

Finally,  we  predicted  that  had  the  additional  restrictions  not  been  implemented,  by  the  end  of  the  year,                                   
daily  infection  rates  would  have  been  roughly  three  as  high  as  actually  occurred  (Fig.  11D).  Had  testing                                   
and  contact  tracing  programs  been  rapidly  scaled  up  (by  50%  and  five  fold  respectively),  we  estimated                                 
the  number  of  infections  would  have  been  approximately  halved.  These  predictions  helped  provide                           
quantitative   support   for   public   health   decisions   regarding   mobility   restrictions   and   increased   testing.     
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Fig.  11 :  Example  calibration  of  Covasim  to  data  from  Seattle/King  County,  Washington,  USA  from                             
January  27  to  November  14  2020  (dashed  line),  with  projections  until  December  31,  including                             
additional  restrictions  imposed  on  November  16.  (A)  Number  of  daily  COVID-19  tests,  which  are                             
used  as  input  data.  (B)  Calibration  to  the  number  of  daily  COVID-19  diagnoses.  (C)  Calibration  to  the                                   
number  of  daily  COVID-19  deaths.  (D)  Projections  of  the  number  of  new  infections  if  restrictions  had                                 
not  been  implemented,  with  the  restrictions  as  implemented,  and  if  restrictions  were  implemented                           
together  with  increases  in  testing  and  contact  tracing.  Bands  show  80%  forecast  intervals.  Data                             
shown   are   daily   counts   with   rolling   7-day   averages   to   account   for   reporting   delays   due   to   weekends.   
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4   Discussion   
The  COVID-19  pandemic  has  presented  an  unprecedented  challenge  to  the  disease  modeling  community                           
in  terms  of  requiring  rapid,  accurate  predictions,  often  based  on  extremely  limited  data,  with                             
consequences  of  global  scale.  Covasim  was  developed  to  help  policymakers  make  decisions  based  on                             
the  best  available  data,  while  taking  into  account  the  large  uncertainties  that  remain  in  terms  of                                 
COVID-19  transmission  dynamics,  disease  progression,  and  other  aspects  of  its  biology,  such  as  the                             
proportions   of   asymptomatic   and   presymptomatic   transmission.   
  

We  prioritized  five  different  factors  when  developing  Covasim:  rapid  development  process,                       
computational  performance,  flexibility,  simplicity  for  users,  and  simplicity  for  developers.  Striking  a                         
balance  between  these  factors  required  making  certain  tradeoffs.  For  example,  choosing  to  implement                           
Covasim  in  Python  instead  of  C++  or  Java  significantly  reduced  development  time  and  increased                             
simplicity  for  users  and  developers;  however,  it  imposed  a  large  penalty  on  performance.  While  we  were                                 
able  to  solve  this  by  using  Numba  and  vectorized  state  arrays  in  place  of  object-oriented  agents,  this                                   
implementation  increased  development  time  and  increased  the  complexity  for  developers.  Another                       
tradeoff  we  encountered  is  that  while  the  gold  standard  in  simplicity  of  use  remains  interactive  webapps                                 
(80),  the  limited  flexibility  such  webapps  provide  means  that  most  Covasim  users  to  date  have  instead                                 
used   Python   scripts   to   run   analyses.   
  

Beyond  implementation  tradeoffs,  it  is  worth  noting  that  in  many  cases,  compartmental  models  offer                             
simpler,  faster,  and  more  robust  results  than  agent-based  models  such  as  Covasim.  Indeed,  many  of  the                                 
most  influential  COVID-19  models  that  have  been  developed  to  date  have  been  compartmental  models                             
(4,79,81,82).  However,  compartmental  models  have  two  major  limitations.  First,  they  cannot  be  easily                           
adapted  to  changing  epidemic  conditions,  such  as  new  strains  or  multiple  types  of  vaccine,  since  these                                 
often  require  a  combinatorial  explosion  in  the  number  of  compartments  (83,84).  Second,  they  are                             
unsuitable  for  answering  questions  that  depend  on  details  of  behavior  at  the  individual  level,  such  as                                 
superspreading  events,  transmission  within  multigenerational  households,  school  classroom  cohorting,                   
and  contact  tracing.  While  it  is  possible  to  approximate  some  of  these  phenomena  in  compartmental                               
models  (85,86),  these  approximations  typically  exclude  important  factors  such  as  time  delays.  Some  of                             
the  issues  regarding  compartmental  models'  predictive  performance  (87–89)  may  be  partly  a                         
consequence  of  their  inability  to  capture  key  mechanisms  of  epidemic  spread.  While  agent-based                           
models,  including  Covasim,  are  difficult  to  deploy  widely  enough,  and  calibrate  quickly  enough,  to  be  a                                 
feasible  replacement  for  compartmental  models,  they  can  provide  a  mechanistic  understanding  of  the                           
COVID-19   epidemic   in   ways   that   compartmental   models   cannot.   

4.1   Limitations   of   Covasim   
Covasim  is  subject  to  the  usual  limitations  of  mathematical  models,  most  notably  constraints  around  the                               
degree  of  realism  that  can  be  captured.  For  example,  human  contact  patterns  are  intractably  complex,                               
and   the   algorithms   that   Covasim   uses   to   approximate   these   are   necessarily   quite   simplified.     
  

Like  all  models,  the  quality  of  the  outputs  depends  on  the  quality  of  the  inputs,  and  many  of  the                                       
parameters  on  which  Covasim  relies  are  still  subject  to  large  uncertainties.  Most  critically,  the  proportion                               
of  asymptomatics  and  their  relative  transmission  intensity,  and  the  proportion  of  presymptomatic                         
transmission,  strongly  affect  the  number  of  tests  required  in  order  to  achieve  workable  COVID-19                             
suppression   via   testing-based   interventions.   
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Dynamical  models  are  commonly  validated  by  comparing  their  projections  against  data  on  what  actually                             
happened,  as  shown  in  the  case  study  (Fig.  11).  However,  several  challenges  are  commonly  encountered                               
when  using  this  approach  for  COVID-19,  including  (a)  data  quality  issues  (such  as  low  case  detection                                 
rates  and  under-reporting  of  deaths);  (b)  the  difficulty  of  predicting  future  social  and  political  responses                               
that  would  significantly  impact  model  projections  (such  as  the  timing  of  school  and  workplace                             
reopening,  or  a  sudden  increase  in  testing  rates,  as  in  the  case  study  presented  above);  and  (c)  the  fact                                       
that  model-based  projections  themselves  have  the  potential  to  influence  policy  decisions,  e.g.,  optimistic                           
model  projections  may  lead  to  relaxed  policies,  which  in  turn  will  lead  to  worse  outcomes  than  predicted,                                   
while  pessimistic  model  projections  may  lead  to  stricter  policies,  which  in  turn  will  lead  to  better                                 
outcomes   than   predicted.   

4.2   Future   directions   
More  than  a  year  after  the  emergence  of  SARS-CoV-2,  our  understanding  of  the  pandemic  is  still  evolving                                   
rapidly,  especially  regarding  the  risks  posed  by  variant  strains  and  the  opportunities  offered  by  vaccine                               
candidates.  These  two  issues  currently  present  the  most  important  questions  regarding  epidemic                         
control,  and  hence  are  the  two  most  active  areas  of  Covasim  development.  Model  parameter  values  are                                 
also  continually  updated  as  new  data  become  available.  Future  development  plans  also  include  the                             
incorporation  of  more  detailed  populations  and  networks,  including  healthcare  workers,  different  types                         
of  industry,  spatial  mixing  patterns,  and  the  socioeconomic  and  racial  disparities  present  in  both                             
transmission  patterns  and  health  outcomes.  Finally,  we  are  committed  to  continuing  our  collaborations                           
with  stakeholders  and  policymakers  around  the  globe,  to  work  with  them  in  determining  how  COVID-19                               
suppression   can   be   achieved   via   a   combination   of   distancing,   testing,   contact   tracing,   and   vaccination.   
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