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Abstract 41 

Artificial intelligence can potentially provide a substantial role in streamlining chest computed 42 

tomography (CT) diagnosis of COVID-19 patients. However, several critical hurdles have 43 

impeded the development of robust AI model, which include deficiency, isolation, and 44 

heterogeneity of CT data generated from diverse institutions. These bring about lack of 45 

generalization of AI model and therefore prevent it from applications in clinical practices. To 46 

overcome this, we proposed a federated learning-based Unified CT-COVID AI Diagnostic 47 

Initiative (UCADI, http://www.ai-ct-covid.team/), a decentralized architecture where the AI 48 

model is distributed to and executed at each host institution with the data sources or client ends 49 

for training and inferencing without sharing individual patient data. Specifically, we firstly 50 

developed an initial AI CT model based on data collected from three Tongji hospitals in Wuhan. 51 

After model evaluation, we found that the initial model can identify COVID from Tongji CT test 52 

data at near radiologist-level (97.5% sensitivity) but performed worse when it was tested on 53 

COVID cases from Wuhan Union Hospital (72% sensitivity), indicating a lack of model 54 

generalization. Next, we used the publicly available UCADI framework to build a federated 55 

model which integrated COVID CT cases from the Tongji hospitals and Wuhan Union hospital 56 

(WU) without transferring the WU data. The federated model not only performed similarly on 57 

Tongji test data but improved the detection sensitivity (98%) on WU test cases. The UCADI 58 

framework will allow participants worldwide to use and contribute to the model, to deliver a 59 

real-world, globally built and validated clinic CT-COVID AI tool. This effort directly supports 60 

the United Nations Sustainable Development Goals’ number 3, Good Health and Well-Being, 61 

and allows sharing and transferring of knowledge to fight this devastating disease around the 62 

world. 63 



Introduction 64 

COVID-19 has become a global pandemic. RT-PCR was adopted as the main diagnostic 65 

modality to detect viral nucleotide in specimens from patients with suspected COVID-19 66 

infection and remained as the gold standard for active disease confirmation. However, due to the 67 

greatly variable disease course in different patients, the detection sensitivity is only 60%-71% 1-3 68 

leading to considerable false negative results. These symptomatic COVID 19 patients and 69 

asymptomatic carriers with false negative RT-PCR results pose a significant public threat to the 70 

community as they may be contagious. As such, clinicians and researchers have made 71 

tremendous efforts searching for alternative and/or complementary modalities to improve the 72 

diagnostic accuracy for COVID-19.  73 

COVID-19 patients present with certain unique radiological features on chest computed 74 

tomography (CT) scans including ground glass opacity, interlobular septal thickening, 75 

consolidation etc., that have been used to differentiate COVID-19 from other bacterial or viral 76 

pneumonia or healthy individuals4-7. CT has been utilized for diagnosis of COVID-19 in some 77 

countries and regions with reportedly sensitivity of 56-98%2,3. However, these radiologic 78 

features are not specifically tied to COVID-19 pneumonia and the diagnostic accuracy heavily 79 

depending on radiologists’ experience. Particularly, insufficient empirical understanding of the 80 

radiological morphology characteristic of this unknown pneumonia resulted in inconsistent 81 

sensitivity and specificity by varying radiologists in identifying and assessing COVID-19. A 82 

recent study has reported substantial differences in the specificity in differentiation of COVID-19 83 

from other viral pneumonia by different radiologists8. Meanwhile, CT-based diagnostic 84 

approaches have led to substantial challenges as many suspected cases will eventually need 85 



laboratory confirmation. Therefore, there is an imperative demand for an accurate and specific 86 

intelligent automatic method to help to address the clinical deficiency in current CT approaches.  87 

Successful development of an automatic method depends on a tremendous amount of imaging 88 

data with high quality clinical annotation for training an artificial intelligence (AI) model. We 89 

confronted several challenges for developing a robust and universal AI tool for precise COVID-90 

19 diagnosis: 1) data deficiency. Our high-quality CT data sets were only a small sampling of the 91 

full infected cohorts and therefore it is unlikely we captured the full set radiological features. 2) 92 

data isolation, Data derived across multiple centers was difficult to transfer for training due to 93 

security, privacy, and data size concerns. and 3) data heterogeneity.  Datasets were generated by 94 

different scanner machines which introduces an additional layer of complexity to the training 95 

because every vendor provides some unique capabilities. Furthermore, it is unknown whether 96 

COVID-19 patients in diverse geographic locations, ethnic groups, or demographics show 97 

similar or distinct CT image patterns. All of these may contribute to a lack of generalization for 98 

an AI model, which a serious issue for a global AI clinical solution. 99 

To solve this problem, we propose here a Unified CT-COVID AI Diagnostic Initiative (UCADI) 100 

to deliver an AI-based CT diagnostic tool. We base our developmental philosophy on the 101 

concept of federated learning, which enables machine learning engineers and medical data 102 

scientists to work seamlessly and collectively with decentralized CT data without sharing 103 

individual patient data, and therefore every participating institution can contribute to AI training 104 

results of CT-COVID studies to a continuously-evolved and improved central AI model and help 105 

to provide people worldwide an effective AI model for precise CT-COVID diagnosis (Fig.1).  106 

 107 



Results 108 

Building AI model using pooled data 109 

We firstly gathered a dataset of 5732 CT images from 1276 individuals collected from multiple 110 

centers of Tongji Hospital including Tongji Hospital Main Campus (3457 CT images from 800 111 

studies), Tongji Optical Valley Hospital (882 CT images from 227 studies), and Tongji Sino-112 

French New City Hospital (1393 CT images from 241 studies) (Table 1 for patient information ).  113 

Among these patients, 432 patients had COVID-19 pneumonia confirmed by RT-PCR; 76 114 

patients had other viral pneumonia including 7 cases with respiratory syncytial virus (RSV), 13 115 

with EB virus, 16 with cytomegalovirus, 3 with influenza A, 1 with parainfluenza virus and 36 116 

with mixed virus pneumonia that were confirmed PCR or antibodies against corresponding 117 

viruses; 350 patients had bacterial pneumonia confirmed CT scan and bacterial culture. The 118 

remaining 418 individuals having clinical symptoms of respiratory system were healthy 119 

individuals who had normal chest CT scans. Based on the dataset, we developed an initial deep 120 

learning model by using convolutional neural networks (CNN) (detailed in Methods). 121 

Next, we validated the predictive performance of the CNN through a classification task: four-122 

class pneumonia partition—four featured clinical diagnoses in determining suspected cases of 123 

COVID-19. This task aimed at distinguishing COVID-19 (Fig. 3. i) from three types of non-124 

COVID-19 (Fig. 3. ii) including other viral pneumonia, bacterial pneumonia, and healthy cases 125 

(d, e, and f in Fig. 3). We selected 20% of 1036 CT cases in training and validation set for 5-fold 126 

cross-validation. The CNN demonstrated the validation result that achieved overall sensitivity of 127 

77.2% and specificity of 91.9%.  128 



We further tested the previously trained CNN by conducting a comparative study of same task 129 

between the CNN and expert radiologists using previously separated test set (detailed in 130 

Methods). Six qualified radiologists (ZL [18 years’ experience], LYM [9 years’ experience], 131 

YZL [9 years’ experience], COX [8 years’ experience], HLM [4 years’ experience], GC [4 132 

years’ experience]) from department of radiology, Tongji Hospital (Main campus), Wuhan, 133 

China were asked to make diagnosis as one of above 4 classes based on CT study. In this task, 134 

the CNN achieved a sensitivity of 97.5% and specificity of 89.4% in differentiating COVID-19 135 

from three types of non-COVID-19 cases whereas six radiologists obtained the average 79% in 136 

sensitivity (87.5%, 90%, 55%, 80%, 68%, 93%, respectively, and 90% for the maximal voting 137 

value among six radiologists), and 90% in specificity (92%, 97%, 89%, 95%, 88%, 79%, 138 

respectively, and 95.6% for the maximal voting value) (Fig 4). In the Tongji dataset, the CNN 139 

shows performance approaching that of expert radiologists. To examine the reliability of the 140 

model, we performed class activation mapping (CAM) analysis for raw CT images in both 141 

validation and test datasets9 and visualized the featured image regions which lead to 142 

classification decision. As shown in Figure 3. iii, the heatmap generated by CAM mostly 143 

characterized local lesions suggesting the model learned radiologic features rather than simply 144 

overfitting the dataset. 145 

To comprehensively evaluate the comparisons of two tasks, we visualized the correlation of 146 

sensitivity and specificity via receiver operating characteristic (ROC) curve to calculate the area 147 

under the curve (AUC) for representing the CNN’s classification performance. As a result, the 148 

AUC of the CNN attained 0.98, 0.88, 0.91, 0.98 in specifically identifying COVID-19 pneumonia, 149 

other viral pneumonia, bacterial pneumonia, and healthy tissue from 4 classes, and 0.92, 0.92, 150 

0.95 in assessing three ordinal severities of COVID-19. Fig. 4 illustrates the ROC curve of the 151 



CNN and sensitivity-specificity points displaying radiologists’ diagnosis. Importantly, the CNN 152 

performed comparable sensitivity-specificity to all six radiologists in differentiating COVID-19 153 

from non-COVID-19 cases (Fig. 4a). Meanwhile, the CNN also performed equivalent 154 

sensitivity-specificity in comparison with average radiologists in the assessment of three 155 

severities (e, f, g in Fig. 4). However, the CNN revealed insufficient capability in determining 156 

other viral pneumonia (Fig. 4b), bacterial pneumonia (Fig. 4c), and healthy case (Fig. 4d).  157 

To test the generalization of the initial model that was trained exclusively on data from Tongji 158 

hospitals, we evaluated the predictive performance using CT data from 100 confirmed COVID-159 

19 cases generated at Wuhan Union hospital. The accuracy of the model was only 72%, 160 

compared with a 97% sensitivity using reserved testing data from Tongji hospitals. This 161 

demonstrated a lack of generalization for the initial model.  162 

The global online AI diagnostic engine enabled with federated learning  163 

To overcome the hurdle, we proposed a federated learning framework to facilitate UCADI, a 164 

global joint effort to generate an AI based on large scale date and integration of diverse ethnic 165 

patient groups. In the traditional AI approach, sensitive user data from different sources are 166 

gathered and transferred to a central hub where models are trained and generated. The federated 167 

learning proposed by Google10, in contrast, is a decentralized architecture where the AI model is 168 

distributed to and executed at each host institution with the data sources or client ends for 169 

training and inferencing. The local copies of the AI model on the host institution eliminate 170 

network latencies and costs incurred due to sharing large size of data with the central server. 171 

Most importantly, the strategy privacy preserved by design enables medical centers collaborating 172 

on the development of models, but without need of directly sharing sensitive clinical data with 173 

each other.  174 



We implemented the federated learning framework at http://www.ai-ct-covid.team/ where we 175 

deployed the initial model to provide 1) online diagnostic interface allowing people easily query 176 

the model with patient CT images and 2) AI development federated learning interface(detailed in 177 

Methods). UCADI stakeholders can download the code and train a new model based on the 178 

initial model. Once the new model had been trained locally for several iterations, if UCADI 179 

participants share their updated version of the model, the framework will encrypt the model 180 

parameters based on Learning with Errors (LWE)-based encryption11 and transfer them back to 181 

the centralized server via a customized server protocol. Participants’ datasets will keep within 182 

their own secure infrastructure. The central server would then combine the contributions from all 183 

of the UCADI participants. The updated model parameters would then be shared with all 184 

participants, which enables continuation of local training. The framework is highly flexible, 185 

allowing hospitals join or leave the UCADI initiative at any moments, because it is not tied to 186 

any specific data cohorts.  187 

With the framework, we deployed two experiments to validate federated learning concept on the 188 

CT COVID data.  Firstly, we trained three models for each of three Tongji hospital datasets, and 189 

then transferred the datasets to three physically independent computer servers, respectively, and 190 

trained a Tongji federated model in a simulation mode (detailed in Methods). As shown in Figure 191 

4. e-h, the federated model performed close to the centralized-trained initial model and better 192 

than Tongji Main Campus model for predicting COVID-19, bacterial pneumonia and healthy 193 

case (the comparison not applied to models of Tongji Sino-French Hospital and Tongji Optics 194 

Valley because they lack of other viral pneumonia data).  It shows the effectiveness of federated 195 

model.  In the second experiment, we trained a federated model in real mode based on three 196 

Tongji hospital datasets (432 COVID-19 cases) and 407 confirmed COVID-19 cases from 197 



Wuhan Union hospital. We tested the federated model performance on predicting the same 100 198 

confirmed Wuhan Union COVID-19 cases which we used to test the initial model previously. 199 

The result, 98% sensitivity, was improved compared to the initial model (72% sensitivity) which 200 

was centralized trained only based on data from three Tongji hospitals.  201 

Discussion 202 

COVID-19 is a global pandemic. Over 2 million people have been infected, tens of thousands 203 

hospitalized, and nearly 200,000 have died worldwide as of April 23rd, 2020. There are borders 204 

between countries. But only real border in this war is the border between human being and virus. 205 

We need a global joint effort to fight the virus. The first challenge we have confronted in this 206 

war is to deliver is deliver people precise and effective diagnosis. In this study, we introduce a 207 

globally collaborative AI initiative framework, UCADI, to assist radiologists, streamline, and 208 

accelerate CT-based diagnosis. Firstly, we developed an initial CNN model that achieved a 209 

performance comparable to expert radiologist in classifying pneumonia to identify COVID-19, 210 

and additionally assessing the severity of identified COVID-19. Furthermore, we developed a 211 

federated learning framework, based on which hospitals worldwide can join UCADI to jointly 212 

train an AI-CT model for COVID-19 diagnosis. With CT data from multiple Wuhan hospitals, 213 

we confirmed the effectiveness of this the federated learning approach. We have shared the 214 

initial model and the federated learning programmatic API source code 215 

(https://github.com/HUST-EIC-AI-LAB/) and encourage hospitals worldwide join UCADI to 216 

form an international collaboration to fight the virus with a globally trained AI application. It is 217 

worth noting that there is still need for improvement in the technical implementation in the 218 

framework: 1) The number of local training iterations before global parameter updating. The 219 

number of local training iterations has a direct influence on the training efficiency, effectiveness, 220 



and model performance. Currently, different clients in UCADI framework train with their private 221 

data for one epoch before sending the parameter gradients to the global server. We will construct 222 

more detailed experiments about this hyper-parameter to explore the best trade-off between 223 

model performance and communication cost. 2) Private information leakage from gradients. 224 

Reconstruction of input data from the parameter gradients is possible for realistic deep 225 

architectures, and an encryption-decryption module is needed in the federated learning 226 

framework. We have adopted an additively homomorphic encryption scheme in our COVID 227 

diagnosis framework. The parameter gradients sent to the global server are encrypted while the 228 

secret key is kept confidential from the global server, which guarantees the privacy security of 229 

our framework. 3) Non-IID and unbalanced data distribution. The training data available is 230 

typically based on the patients in the hospital, and any particular hospital’s local dataset will not 231 

be representative of the entire distribution. Therefore, it requires a dynamic aggregation method 232 

that aggregates different parameter gradients via dynamic weighted averaging. Hence, it can 233 

decrease the influence of non-IID and unbalanced data. 234 

Methods 235 

CT data collecting and processing  236 

This study was approved by the Ethics Committee Tongji Hospital, Tongji Medical College of 237 

Huazhong University of Science and Technology to access this dataset for research purpose. 238 

Here we list the three major scanners used to obtain CT scans: GE Medical 239 

System/LightSpeed16, SOMATOM Definition AS+, and GE Medical Systems/Discovery 750 240 

HD. The scanning protocols of slice thicknesses and reconstruction kernel were 1.25mm and 241 

adaptive statistical iterative reconstruction (60%) for two GE scanners whilst 1mm and sinogram 242 

affirmed iterative reconstruction for the Siemens scanner. The high-quality CT image data from 243 



the 432 COVID-19 patients were scanned, enrolled, selected and annotated in this study since 244 

January 7, 2020 while other image data were retrospectively collected from CT databases of the 245 

three Tongji Hospitals. In addition, we collected an independent cohort including 507 COVID-19 246 

pneumonia CT cases confirmed by chest CT from Union Hospital, Wuhan, China. The cohort 247 

was used for testing the performance of initial model and the multi-hospital model using 248 

federated learning framework.  249 

We conducted image processing of the raw CT image data to reduce computing burdens. We 250 

utilized a sampling method to select 5 subsets of CT slices from all sequential images of one CT 251 

case using random starting positions and scalable sampling intervals on transverse view to 252 

picture the infected lung regions. All 5 processed subsets were separately fed to the CNN to 253 

obtain average predictive probabilities, which can effectively include impacts of different levels 254 

of lung from all CT slices. To further improve computing efficiency, we resized each slice from 255 

512 to 128 pixel regarding its width and height and rescaled the lung windows of CT to a range 256 

from -1200 to 600 and normalized them via the Z-score means before feeding the CNN. 257 

Building AI model using pooled data 258 

The dataset was split out into the training and validation set with 1036  cases (80% for training, 259 

20% for validation), and independent test set with 240 cases consisting of 80 COVID-19 studies 260 

(28 from Main Campus Hospital, 30 Sino-French New City Hospital, 20 Optical Valley 261 

Hospital), 20 with other viral pneumonia (19 from Main Campus Hospital, 1 Sino-French New 262 

City Hospital), 60 with bacterial pneumonia (50 from Main Campus Hospital, 8 Sino-French 263 

New City Hospital, 2 Optical Valley Hospital), and 80 healthy cases (58 Main Campus Hospital, 264 

10 Sino-French New City Hospital, 12 Optical Valley Hospital). We particularly considered the 265 

balanced data distribution of 4 classes in test set. We initially trained a four-class CNN (Fig. 2) 266 



based on 3D-Densenet12, a densely connected convolutional network, which performed 267 

remarkable advantages in classifying CT images. We customized its architecture to contain 14 268 

3D-convolution layers distributed in 6 dense blocks and 2 transmit blocks (Fig. 2b indicating the 269 

architecture and data flow). The CNN took 16 resized 128-x128-pixel CT image sequences as 270 

input of each CT case, and generated a predicted pneumonia type with maximum probability as 271 

output across thousands of attached computing neurons. We defined the loss function as the 272 

weighted cross entropy between predicted probability and the true labels. Fine-tuned parameters 273 

of the network via back-propagation were optimized using batch size of 16, learning rate of 0.01, 274 

weight decay of 0.0001, momentum of 0.9, and epsilon of 0.00001. We conducted the training 275 

process utilizing a workstation equipped with 2 Tesla V100 GPUs, costing 6 hours to finish the 276 

task. 277 

Building AI model using federated learning 278 

Data preparation: 279 

In experiment I, we trained with data collected from multiple centers of Tongji Hospital 280 

including Tongji Hospital Main Campus, Tongji Optical Valley Hospital, and Tongji Sino-281 

French New City Hospital. We assigned each hospital to a federated client and place their local 282 

data on three different physical machines. In experiment II, besides data collected from above 283 

three hospitals, we added Wuhan Union Hospital as a new participant, 284 

Federated model setup: 285 

For all experiments, we used the same architecture (3D-Densenet) with data-centralized training 286 

and the same set of local training hyperparameters for all clients with SGD optimizer: batch size 287 

of 35, learning rate of 0.01, momentum of 0.9 and weight decay of 5e-4. In experiment I, we set 288 



the number of federated rounds to 200 with one local epoch per federated round. A local epoch 289 

means each client train with its local data once before sending information to central 290 

server(cloud). We conducted the training process utilizing a workstation equipped with 3 Tesla 291 

V100 GPUs, costing 16 hours to finish. In experiment II, we set the number of federated rounds 292 

to 30 with one local epoch per federated round and start training with the global model coming 293 

from experiment I. For all experiments, we use the same evaluation metric with data-centralized 294 

training to check that our procedures are working properly. (In experiment II, we need to train 5 295 

rounds before the model achieving the same performance with data-centralized training on test 296 

data from Wuhan Union Hospital). 297 

Model aggregation: 298 

The server distributes a global model and receives synchronized weight updates �ΔW
�

�� from all 299 

clients at each federated round. Due to each client train with one epoch per federated round, so 300 

we just average all the weight updates from the client with equal weight and update the global 301 

model. 302 

Privacy-preserving setup: 303 

We use a variant of additively homomorphic encryption to achieve privacy-preserving, which 304 

called Learning with Errors (LWE)-based encryption. The encryption method allows us to leak 305 

no information of participants to the honest-but-curious parameter (cloud) server. 306 

Data Availability All relevant data used for developing the initial model and federated models 307 

during the current study are not publicly available. 308 

 309 

Model Availability  310 



The online application of AI model is publicly available at http://www.ai-ct-covid.team/.    311 

The initial model or offline APP is publicly available upon request at tianxia@hust.edu or 312 

xbai@hust.edu.cn or through website http://www.ai-ct-covid.team/.  313 

 314 

Federated Learning Framework Availability. The source code can be accessed at 315 

https://github.com/HUST-EIC-AI-LAB/.    316 

 317 
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Tables 363 

 Male Female 0-20 
years 

20-40 
years 

40-60 
years 

60-80 
years 

>80 
years 

Patient Number 617 659 40 444 421 340 31 

Table 1 | Patient information of 1276 studies collected from Tongji Hospital regarding gender 364 
and age distribution.  365 
 366 
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Figure 1 | The conceptual architecture of UCADI on the basis of federated learning. UCADI stakeholders 
firstly download the code and train a new model locally based on the initial model, and secondly transfer the 
encrypted model parameters back to the federated model. The central server combines the contributions shared 
from all of the UCADI participants. 



Figure 2 | Data and strategy. a, number of CT studies and total images. b, the CNN was developed based on 
3D-Densenet, consisting of 6 dense blocks in green, 2 transmit blocks in white and an output layer in gray. Pre-
processed 128-x-128-pixel CT images of one case were fed to the network across 14 3D-convolution layers and 
a number of functions embedded in 3D blocks, finally received the predicted classification result. c, the CNN 
classified CT case into 4 types and further assessed the severity into I or II or III if the case was predicted as 
COVID-19.
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Figure 3 | CT images. i and ii, the taxonomy of pneumonia and featured CT image for per-class. iii, the 
heatmap generated by GradCAM and local lesions annotated by the radiologist. i, COVID-19 pneumonia. 
a, b, c represent the CT images of COVID-19 defined by radiological features. ii, non-COVID-19 cases. d, e, f 
respectively displays the CT image of healthy case, other viral pneumonia, and bacterial pneumonia. iii, CAM 
visualized the image areas which lead to classification decision. The radiologist, LYM [9 years’ experience], 
from Department of Radiology, Tongji Hospital circumscribed the local lesions with the red curved masks. g-h, 
patients with COVID-19 pneumonia.     
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Figure 4| Pneumonia classification performance of  CNN models and radiologists. This figure illus-
trates the comparative analysis between the CNN and radiologists by correlating the ROC curve of  CNN and 
sensitivity-specificity points of  six invited radiologists for two conducted classification test tasks. a-d, per-class evalu-
ation for three types of  pneumonia and healthy case. The curve in black represents the performance of  the CNN. 
Cross marks in red separately represent the performance of  six radiologists and the blue mark annotates the average 
capability. e-h, comparative evaluation of  centralized-trained initial model, federated model, and Tongji Main 
Campus model on four per-class classification tasks.   
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