
 

 

COVID-Classifier: An automated machine learning model to assist in the 
diagnosis of COVID-19 infection in chest x-ray images 
  

Abolfazl Zargari Khuzani1, Morteza Heidari2, S. Ali Shariati3,* 
 
1. Department of Electrical and Computer Engineering, University of California, Santa Cruz, Santa Cruz, CA 
abzargar@ucsc.edu  
2. School of Electrical and Computer Engineering, The University of Oklahoma, Norman, OK 
morteza.heidari@ou.edu  
3. Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 
alish@ucsc.edu  
 
*Correspondence: alish@ucsc.edu  
  

Abstract: 

Chest-X ray (CXR) radiography can be used as a first-line triage process for non-COVID-19 patients with 
pneumonia. However, the similarity between features of CXR images of COVID-19 and pneumonia caused 
by other infections make the differential diagnosis by radiologists challenging. We hypothesized that 
machine learning-based classifiers can reliably distinguish the CXR images of COVID-19 patients from 
other forms of pneumonia. We used a dimensionality reduction method to generate a set of optimal 
features of CXR images to build an efficient machine learning classifier that can distinguish COVID-19 cases 
from non-COVID-19 cases with high accuracy and sensitivity. By using global features of the whole CXR 
images, we were able to successfully implement our classifier using a relatively small dataset of CXR 
images. We propose that our COVID-Classifier can be used in conjunction with other tests for optimal 
allocation of hospital resources by rapid triage of non-COVID-19 cases. 

  

Introduction: 

Chest-X ray (CXR) radiography is one of the most commonly used and accessible methods for rapid 
examination of the lung conditions [1]. CXR images are almost immediately available for analysis by 
radiologists. The availability of CXR radiography made it one of the first imaging modalities to be used 
during the recent COVID-19 pandemic. In addition, the rapid CXR turnaround was used by the radiology 
departments in Italy and the U.K. to triage non-COVID-19 patients with pneumonia to allocate hospital 
resources efficiently [2]. However, there are many common features between medical images of COVID-
19 and pneumonia caused by other viral infections such as common flu (Influenzas A) [2]. This similarity 
makes a differential diagnosis of COVID-19 cases by expert radiologists challenging [2, 3]. A reliable 
automated algorithm for classification of COVID-19 and non-COVID-19 CXR images can speed up the triage 
process of non-COVID-19 cases and maximize the allocation of hospital resources to COVID-19 cases.  

Machine learning (ML) based methods have shown unprecedented success in the reliable analysis of 
medical images [4-8]. ML-based approaches are scalable, automatable, and easy to implement in clinical 
settings [9, 10]. A common application of ML-based image analysis is the classification of images with 
highly similar features. This approach relies on the segmentation of image region of interest,  identification 
of effective image features computed from the segmented area in the spatial or frequency domain, and 
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development of an optimal machine learning-based classification method to accurately assign image 
samples into target classes [11]. Here, we hypothesized that CXR images of COVID-19 patients can be 
reliably distinguished from other forms of pneumonia using an ML-based classifier. We used a 
dimensionality reduction approach to generate a model with an optimized set of synthetic features that 
can distinguish COVID-19 images with an accuracy of 94% from non-COVID-19 cases. A distinct feature of 
our model is identification and fusion of the global image features computed from the whole CXR image 
without lesion segmentation, which enables us to generate a new quantitative imaging marker for 
predicting the likelihood of a testing case being COVID-19. This new global X-ray image feature-based 
approach not only avoids lesion segmentation but also reduces the requirement of large training dataset 
as is the case for the conventional deep learning approach. Our study provides strong proof of concept 
that simple ML-based classification can be efficiently implemented as an adjunct to other tests to facilitate 
differential diagnosis of CXR images of COVID-19 patients. More broadly, we think that our approach can 
be easily implemented in any future viral outbreak for the rapid classification of CXR images.  

 

Results:   

Generation of synthetic features  

Identification of optimal features of the CXR images can decrease the feature space of ML models by 
generating key correlated synthetic features and removing less important features. These synthetic 
features perform more reliably in classification tasks while reducing the size of the ML models. 
Importantly, a more robust ML classifier can be generated by increasing the ratio between the training 
cases per class and image features. We initially extracted 252 features from the whole CXR image without 
involving lesion segmentation (Fig 1 A and Supplementary Figure 1) to finally generate a feature pool from 
420 CXR images (Fig1 B). We hypothesized that we can use a feature analysis scheme to reduce the size 
of the feature space to an optimal number of features. We computed Pearson correlation coefficients 
resulting in a matrix for each pairwise feature combination (Fig1 C). Analysis of the histograms of the initial 
feature pool shows that more than 73% of features have correlation coefficients of less than 0.4 (Fig1 D), 
indicating that the feature pool created in our study has provided a comprehensive view of the cases, 
containing relatively small redundancy.  We used Kernel-Principal Component Analysis (PCA) method to 
reduce the dimensionality of the feature space to an optimal number of synthetic features composed of 
correlated features. By employing PCA, we converted the original pool 252 features to 64 new synthetic 
features resulting in a ~4x smaller feature space. This vector of 64 selected features was used for 
classification purposes. 
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Figure 1: A) Feature extraction scheme to construct a feature array for each CXR image using the Texture, 
FFT, Wavelet, GLCM, and GLDM methods (See method section for the description of the features). B) A 
schematic diagram of creating a feature pool for 420 CXR images and applying a feature reduction 
method. C, D) Correlation analysis of features. The heat map (C) and histogram representation (D) of the 
Pearson correlation coefficients.  

Classification Performance 

To design our classifier, we grouped our CXR images into three target classes, each containing 140 images; 
normal, COVID-19, non-COVID-19 pneumonia (Supplementary Figure 2). We used a multi-layer neural 
network with two hidden layers and one output classifier to classify CXR images into three groups (Fig 2). 

 

 

Figure 2: Multi-layer neural network designed 
for the classification task including two hidden 
layers with 128 and 16 neurons respectively and 
a final classifier to classify cases into three 
categories of normal, COVID-19, non-COVID-19 
pneumonia   
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During training our model, both training and validation sets reached ~ 0.22 loss score and 94% accuracy 
after 33 epochs (Fig 3 A). The loss graph showed a good fit between validation and training curves, 
confirming that our model is not suffering from overfitting or underfitting.  We would like to note that our 
model has ~10,000 parameters that are considerably smaller than typical images classification models 
such as AlexNET with 60 million parameters [12], VGG-16 with 138 million [13], GoogleNet-V1 with 5 
million [14], and ResNet-50 with 25 million parameters [15]. Next, we generated a receiver operating 
characteristic (ROC) curve and computed area under the ROC (AUC) to further assess the performance of 
our model (Fig3 B). A comparison of CXR images of COVID-19 cases with non-COVID-19 showed that our 
model has100% sensitivity and 96% precision when evaluated on a test set of 84 CXR images (Fig3 C and 
Table 1). Moreover, our synthetic feature classifier outperforms any single feature classifier as measured 
by AUC (Fig3 D). It is noteworthy that single synthetic features as the primary fast and low computational 
cost classifier can be accurate up to ~ 90% (Supplmenatray Figure 3).  

 

 

Figure 3: A) The loss score graph of the training and validation sets during the model training process. B) 
The ROC curve generated from 84 test samples, while COVID-19 is the target class. C) The Confusion matrix 
of predicting 84 test samples in three categories. D) To compares and analyze the discrimination power 
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of different single features among the original 252 extracted features, we used AUC values as an indicator. 
All features were sorted in the order of their AUC values.  

 

Table 1:  Assessment of evaluation metrics for three target class labels using 84 test samples 

 Precision Sensitivity F-score Support 

COVOD-19 96% 100% 0.98 25 

Normal 89% 100% 0.94 31 

Pneumonia 100% 82% 0.90 28 

 

 

Discussion:  

In this study, we demonstrated that efficient machine learning classifier can accurately distinguish COVID-
19 CXR images from normal cases and also pneumonia caused by other viruses. Although different imaging 
modalities have been applied for lung screening [16-18], X-ray remains the fastest and widely used tool 
for population-based lung disease screening. However, a large number of suspicious lung lesions can 
result in misclassification of cases. Thus, the development of new approaches to facilitate the classification 
of different types of lung conditions is crucial to improve the efficacy of lung screening and analysis. In 
this study, we developed a novel machine learning scheme utilizing the global image features to predict 
the probability of the testing cases being COVID-19 without lesion segmentation. Our work has a number 
of new observations as follows: 

First, instead of computing image features from the segmented area, we extracted the global image 
features from the whole chest area, which avoids the difficulty and errors in lesion segmentation and 
finding the optimal size of the ROIs to include the lesions with varying sizes and shapes. Our result 
indicates that the clinically meaningful information is not only focused on the lesion but also distributes 
on the entire chest area of the X-ray image. 

Second, unlike many previously developed machine learning models that focus on computing the texture-
based features in the spatial domain, we calculated image features in both the spatial domain (Texture, 
GLDM, GLCM) and frequency domain (FFT and Wavelet). By assessing the prediction performance of all 
single features, the top three predictor features were Max_FFT, MeanDeviation_GLDM, and 
Kurtosis_Wavelet. Considering the nature of top features in the COVID-19 category, mostly recorded in 
the frequency domain, It is likely that the change of the variance in the frequency domain is the 
characteristic feature of the CXR image of COVID-19 cases. In addition, if we averaged the performance 
of the features in each of the five different groups, the FFT features have better predictive power than 
the other groups associated with COVID-19. It shows the significance of acquiring such frequency domain 
features and implies that those features are relevant to the detection of COVID-19 infection in the CXR 
image.   
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Third, since identifying optimal and most effective image features is one of the most important and 
challenging tasks in developing machine learning-based classifiers, we investigated the influences of 
applying a dimensionality reduction method to select optimal and more correlated features. Interestingly, 
the results demonstrated that our dimensionality reduction method not only reduces the dimension of 
feature space but also is able to reorganize the new smaller feature vector with more correlated 
information and a lower amount of redundancy. Besides, based on the machine learning theory, 
increasing the ratio of the number of cases per class to the number of features will improve the robustness 
of the machine learning classifier and reduce the risk of overfitting. Therefore, using this optimal feature 
selection method, we were able to use a relatively small dataset of 420 cases for the final classifier model, 
which avoids the large dataset requirement when developing the deep learning-based schemes with the 
same or even lower accuracy [19]. 

Despite the encouraging results, we recognize that this study has a few limitations. First, our CXR dataset 
has a relatively small size. A larger dataset consisting of the cases from different institutions would be 
useful to further verify the reliability and robustness of our proposed model. Second, in our future work, 
we will investigate different feature selection and feature reduction methods such as DNE [20], Relief [21], 
LPP [5], Fast-ICA [22], recursive feature elimination [23], variable ranking techniques [24], or combining 
them with our feature reduction approach. Third, this study used a neural network-based classifier that 
can solve complex problems and get adapted well to high dimensional data. However, there may exist 
needs to explore other effective classifiers such as SVM [25], GLM [26], Random Forest [27]. 

 

Method:  

Dataset and Code (GitHub page) 

Our Python codes and dataset are available for download on our GitHub page 
https://github.com/abzargar/COVID-Classifier.git.  

This resource is fully open-source, providing users with Python codes used in preparing image datasets, 
feature extraction, feature evaluation, training the ML model, and evaluation of the trained ML model. 
We are using a dataset, which is collected from two resources of [28, 29]. Our modified dataset includes 
420 2-D X-ray images, in the Posteroanterior (P.A.) chest view, classified by valid tests to three predefined 
categories of Normal (140 images), pneumonia (140 images), and COVID-19 (140 images). We set all image 
sizes to 512×512 pixels. Supplementary Figure 2 shows three example images. 

Feature extraction  

We used a scheme to compute a total of 252 features in both the spatial and frequency domain. We 
categorized them into five groups, including Texture [30], Gray-Level Co-Occurrence Matrix (GLCM) [31], 
Gray Level Difference Method (GLDM) [8], Fast Fourier Transform (FFT) [32], and Wavelet transform [33] 
as illustrated in Fig. 2. We implemented GLCM and GLDM methods in four different directions, and 
Wavelet transforms in eight sub-bands. As shown, for each group or each subsection, we computed 14 
features by applying the same statistical measures. The 14 features we measured consisted of Mean, Std, 
Skewness, Kurtosis, Energy, Entropy, Max, Min, Mean Deviation, Median, Range, RMS, Uniformity, 
MeanGradient, and StdGradient. The feature extraction scheme resulted in 252 features for each X-ray 
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image in total (14 features from Texture, 14 features from FFT, 56 features from GLCM, 56 features from 
GLDM, and 112 features from Wavelet). 

Evaluation of extracted features’ classification power 

Supplementary Figure 3A compares the AUC values among different single features (e.g., Mean, Std_FFT, 
and Min_Wavelet) for three positive class labels. All features were sorted using the AUC value as an 
indicator of feature discrimination power. As seen in all three graphs, more than 100 features recorded 
AUC values higher than 0.6 while features Max_FFT, MeanDeviation_GLDM, and Kurtosis_Wavelet are 
the top three performers associated with positive class labels of COVID-19, Normal, and Pneumonia with 
AUC value of 0.87, 0.91, and 0.88, respectively. 

Supplementary Figure 3B also shows the performance of five groups of features (e.g., Texture, FFT, and 
Wavelet) by comparing their average AUC values. As seen, there is no significant difference between 
them, particularly where the positive label is pneumonia. Given COVID is the target class, the FFT group 
recorded the best performance, while the best group for the Normal class is GLDM. 

Model training hyperparameters and run-time 

For the training process of the designed multi-layer neural network, we chose Adam optimizer to optimize 
model weights and minimize the categorical cross-entropy loss function.  The learning algorithm 
hyperparameters were set as follows: BatchSize=2, MaxEpochs=100, LearningRate=0.001, 
DropoutValue=0.2, TrainRatio=0.6, ValRatio=0.2, and TestRatio=0.2. We also used the Early Stopping 
technique to stop training when the validation score stops improving, aiming to avoid overfitting. The run-
time of different parts of our proposed machine learning scheme listed in Table 2, indicates that our model 
needed a short time of 15.4 seconds to learn, and also predicting one test sample took 2.03 seconds.  

Table 2: Run-time analysis on the local system with the CPU of Intel Core i7-8750H 2.2 GHz and GPU of 
RTX2080 Max-Q 

 Training phase One single predict phase 
Feature Extraction (Fig 1A) Feature Reduction (Figure 1B) Classifier (Figure 2) 

Run-time (Sec) 15.4 1.98 0.02 0.03 
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