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Abstract

During the SARS-CoV-2 pandemic, numerous mathematical models have been developed.
Reporting artefacts and missing data about asymptomatic spreaders, imply considerable
margins of uncertainty for model-based predictions. Epidemiological models can however
also be used to investigate the consequences of measures to control the pandemic, reflected in
changes to parameter values.

We present a SIR-based, SUIR model in which the influence of testing and a reduction of
contacts is studied by distinguishing ‘Unidentified’ and ‘Identified’ spreaders of infections.
The model uses four ordinary differential equations and is kept deliberately simple to
investigate general patterns occurring from testing and contact restrictions. The model goes
beyond other efforts, by introducing time dependent parameter curves that represent different
strategies in controlling the pandemic.

Our analysis reveals the effect of ‘pro-active’ testing for the design of contact restriction
measures. By pro-active testing we mean testing beyond those people who show symptoms.
The simulations can explain why the timing of contract restrictions and pro-active testing is
important. The model can also be used to study the consequence of different strategies to exit
from lockdown.

Our SUIR model is implemented in Python and is made available through a Juypter
Notebooks. This an extensive documentation of the derivation and implementation of the
model, as well as transparent and reproducible simulation studies. Our model should
contribute to a better understanding of the role of testing and contact restrictions.

1 Introduction

During the SARS-CoV-2 pandemic, numerous mathematical models have been developed. Using
these models to predict infections, for a particular region or country has been very difficult to do
a lack of sufficiently rich and time accurate datasets. Reporting artefacts and missing data about
asymptomatic spreaders, imply considerable margins of uncertainty for predictions.

There is however a second use of models, that investigate general pattern and can answer
questions, including: What is the role of testing in controlling the pandemic? What difference
does an early restriction of contacts (lockdown) have on the timing and size of infections have?
What effect does the length of the lockdown have on the occurrence of a second peak have?
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We present here a SIR-based, SUIR model motivated by Singh and Adhikary, in which the
influence of testing and a reduction of contacts is studied by distinguishing ‘Unidentified’ and
‘Identified’ spreaders of infections [1, 2]. The model uses four ordinary differential equations
and is kept deliberately simple to investigate general pattern occurring from testing and contact
restrictions. The model goes beyond other efforts, by introducing time dependent parameter
curves that represent different strategies in controlling the pandemic.

Our analysis reveals the effect of ‘pro-active’ testing for the design of contact restriction measures.
By pro-active testing we mean testing beyond those people who show symptoms. The simulations
can explain why the timing of contract restrictions and pro-active testing is important. The model
can also be used to study the consequence of different strategies to exit from lockdown, whether
a short lockdown, combined with pro-active testing, can be sufficient or whether an exit strategy
with a cyclic pattern of restrictions and no restrictions is appropriate. Our simulations also show
that a short lockdown or period lockdown-exit pattern bring substantial reductions in the number
of infections, without a long-term lockdown of large parts of the economy.

Since both, a total lockdown and pro-active testing will be difficult to achieve, especially in the
early phase of a pandemic. Our analysis suggests however that with pro-active testing and strict
isolation of identified spreaders, it is possible to achieve control of the pandemic without a total
lockdown.

2 Compartmental SUIR Modelling

During the initial phase of the SARS-CoV-2 pandemic, most tests conducted were on people
showing symptoms. We are here particularly interested in “pro-active” testing, which we interpret
to be testing individuals even without symptoms. Pro-active testing may consider the following
scenarios:

• Random testing of individuals (for example, walk-in testing stations installed in South
Korea)

• Strategic testing such as testing of all persons who have been in contact with some identified
patient

• Testing of all persons in identified ‘hot-spots’ of the disease

We assume that the health system is economically and socially capable of organizing an pro-active
testing scenario. In such a case, as opposed to the SEIR model, one does not need to consider the
the compartment E of exposed individuals, because pro-active testing is done irrespective of the
fact whether a person in susceptible, exposed, infected.

Our model is quite similar to the basic SIR model, but with the I compartment split into two parts,
one capturing identified spreaders, and another un-identified spreaders [1]. The construction of
our model can also be considered a simplified version of a model proposed by Singh and Adhikary
[2]. We interpret the model slightly differently to investigate the importance of pro-active testing
in controlling the pandemic. We consider the following groups (“compartments”):

• S: Susceptible; People who can still become infected

• U: Unidentified (silent) spreaders; People who can spread the infection and have not been
tested to be COVID positive yet
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• I: Identified spreaders; People who can spread the infection and have been tested to be
COVID positive

• R: Resolved; Resolved cases (deaths+recovery)

Note that, we use the notion of Unidentified spreaders and Identified spreaders in this model
since the Unidentified spreaders have a large role in spreading the disease. We usually do not
know the actual number of infections. During the initial phase of the outbreak, PCR based tests
could only detect an active infection. So, we do not consider the Infection compartment as usually
done in classical SEIR model. Rather we defined the compartment as ‘Identified spreaders’, a
variable that can be reliably evaluated, simply because the primary data usually available publicly
is the number of cases appearing each day. Note that, these numbers do not represent the total
number of infections or total number of spreaders, but only the number of persons who have been
tested. The reported number of identified cases is also highly dependant on the degree of testing
performed by a medical system. This model considers a parameter quantifying the probability
of a disease spreader to be identified. In a practical scenario, this probability is likely to be high
when there is pro-active testing. Moreover, it considers parameters accounting for social isolation
assuming that, an identified spreader would be rigorously quarantined and would thus contribute
significantly less in spreading the epidemic.

In the next section, we derive the equation of the model step-by-step.

2.1 Construction of the model

Let S(t) count how many individuals are susceptible at time t. This group is at risk of becoming
infected.

Assuming that most people are not isolated, they can get infected. The initial condition for S
would thus be approximately N −U(0) − I(0) − R(0), where N is the size of the population at
risk of contracting the virus.

The group U(t) at time t are unidentified (silent) spreaders - people who are contagious, who can
spread the infection but have not been tested to be positive yet.

Any increase to U, implies an equal decrease of S. Any term that adds to the equation for U, will
be mirrored by the same term with a minus in front in the equation for S.

The group of identified spreaders at time t is denoted I(t). The individuals have been tested
positive, and can spread the disease. Once tested positive, one can assume that these person will
be isolated reasonably well. This means the contribution of this group to the decrease of S should
be small, compared to the contribution from U. We shall denote these contributions of U and I to
the decrease of S with κI and κU .

We refer to κI as the Isolation Index, defining the effectiveness of isolating identified spreaders.
A low value of κI refers to good quarantining, through strict isolation of identified spreaders.

The Contact restriction Index κU defines the contribution of unidentified spreaders on the
infection of susceptibles. If measures, like contact restrictions are implemented, their effectiveness
would be reflected by κU . A low value of κU , refers to strict contact restrictions as would happen
during a lockdown.

One would then expect that κU � κI
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Any increase of identified spreaders I, implies an equal decrease of S. Any term that adds to the
equation for I, will be mirrored by the same term with a minus in front in the equation for S.

Finally, we combine death and recoveries in the subpopulation denoted by R(t). Considering
subpopulations S, U, I, and R, we may refer to our model as a SUIR model. Models, where
individuals move from one subpopulation “compartment”) to another, are also referred to as
‘compartmental models’. Most classical epidemiological models include E for an exposed group,
which means that our model slightly deviates from standard models. We deliberately avoided
a larger model with more variables. The current coronavirus pandemic has revealed various
problems with data generated. The larger the size of the model, the greater the risk of making
it unidentifiable. The predictions arising from SEIR type epidemiological models also tend to
be sensitive to changes in parameter values. Taken together, during the current crisis numerical
predictions of case numbers and specific times (e.g. of peaks) has been difficult. As a consequence,
we here focus on a simple model that does not try to focus on values and time points. Instead, the
goal is to investigate general pattern and scenarios. An example of such type of modelling that
we pursue here is the model by Uri Alon [3].

2.2 Building the equations

Denoting by t time in days, the model that looks at daily changes, where ∆t=1, would be
represented by difference equations. In epidemiological modelling it is however common to
assume ∆t to go to zero, so that the model is formulated in terms of differential equations. To
then simulate the differential equation model, one introduces a uniform mesh in the, tn = n∆t,
n = 0, . . . , Nt, and seek S at the mesh points. The numerical approximation of S at time tn is
denoted by Sn.

In the time interval ∆t some people will be infected, so S will decrease. Both, I and U contribute
to this decrease,

Sn+1 = Sn − β (κI In + κUUn) Sn∆t (1)

From what we said above, the equation for In+1 and Un+1 will automatically receive the term,

+ β (κI In + κUUn) Sn∆t (2)

The parameter β reflects how easily people get infected during a time interval of unit length (here
per day). This is also referred to as the “transmission rate”.

Suppose that during a time interval T we measure that x actual pairwise meetings do occur among
y theoretically possible pairings of people from the S, U and I subpopulations. The probability
that people meet in pairs during time T is, estimated as a relative frequency, y/x. From such a
statistic we want the probability per unit time, µ = x/(yT).

Given the probability µ, the expected number of meetings per time interval of (κI In + κUUn)Sn

possible pairs of people is µ(κI In + κUUn)Sn. During a time interval ∆t, there will be µ(κI In +
κUUn)Sn∆t expected number of meetings between susceptibeles, with identified and unidentified
people.

Only a fraction of the µ(κI In + κUUn)Sn∆t meetings are effective in transmitting the virus.
Counting that m people get infected in n such pairwise encounters (e.g. 5 are infected in 1000

4

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 13, 2020. ; https://doi.org/10.1101/2020.05.08.20095596doi: medRxiv preprint 

https://medium.com/@urialonw/adaptive-cyclic-exit-strategies-from-lockdown-to-suppress-covid-19-and-allow-economic-activity-4900a86b37c7
https://doi.org/10.1101/2020.05.08.20095596


encounters), we can estimate the probability of being infected as p = x/y. The expected number
of individuals in the S subpopulation of susceptibles that in time interval ∆t catch the virus and
get infected is then,

pµ(κI In + κUUn)Sn∆t (3)

Next, describing the evolution of I(t), we have from the equation of S already one term,

In+1 = In + β (κI In + κUUn) Sn∆t (4)

However, there will also be people that either recover, or die, giving us,

In+1 = In + β (κI In + κUUn) Sn∆t− γIn∆t (5)

Introducing testing, there will be a proportion ρ and ε of individuals identified by ‘pro-
active testing’ of people without symptoms and testing due to the manifestation of symptoms,
respectively. This proportion will move to subpopulation I. The rest of them moves to
compartment U. This gives us for In+1,

In+1 = In + (ρ + ε)β (κI In + κUUn) Sn∆t− γIn∆t (6)

The equation for Un+1, can now be constructed from the symmetry that must be there from the
other equations,

Un+1 = Un + (1− ρ− ε)β (κI In + κUUn) Sn∆t− γUn∆t (7)

Changes in the subpopulation R will simply be determined by,

Rn+1 = Rn + γ(In + Un)∆t (8)

To summarise, we the model is constructed from the following difference equations:

Sn+1 = Sn − β (κI In + κUUn) Sn∆t

Un+1 = Un + (1− ρ− ε)β (κI In + κUUn) Sn∆t− γUn∆t

In+1 = In + (ρ + ε)β (κI In + κUUn) Sn∆t− γIn∆t

Rn+1 = Rn + γ(In + Un)∆t

(9)

Subtracting the Sn, Un, In, Rn on both sides, and dividing by ∆t, gives us the discretitzed version
of differential equations, using the Forward Euler method for n=0, . . . , Nt, over some finite interval
[0, T]. The corresponding ordinary differential equations are:

S′ = −β (κI I + κUU) S
U′ = (1− ρ− ε)β (κI I + κUU)− γU
I′ = (ρ + ε)β (κI I + κUU) S− γI

R′ = γ(I + U)∆t

(10)
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Estimating parameter values

For the purpose of our study we shall adopt for initial conditions and values chosen for the key
parameters, from the Nature publication on SIR modelling from 20th April 2020.

The parameter β reflects how easily people get infected during a time interval of unit length. This
is also referred to as the “transmission rate”. β−1 is the typical/average time between contacts
Bjoernstad et al Nature April 2020[1].

We refer to γ as the Recovery Index. It is estimated as the inverse of the average duration of illness.
The average duration of illness is assumed to be 14 days Bjoernstad et al Nature April 2020 [1].
For the SIR model, the relationship between β and γ is the reproduction number R = β/γ. The
basic reproduction number R(0) represents how many new infections are caused at the start of
an epidemic by a spreader. Note that this estimation of R(0) also holds for our SUIR model. The
reason behind is that, the sum of the compartments U and I essentially is essentially same as the
compartment ISIR representing spreaders in the SIR model. The chance of transmission is directly
proportional to the contact frequency, i.e., how many close contacts a person makes on an average
per day. During the COVID-19 pandemic, the reproduction number has been adopted in several
countries as a criteria for lifting contact restrictions measures. For the estimation of R(t) several
methods exist and depending on how it is calculated, the estimates can differ quite considerably.
In Germany, the Robert Koch Institute has estimated R(t) as the quotient of new daily infections in
two successive four day windows. The model from Michael Meyer-Herrmann from the Helmholtz
Centre, Braunschweig, also used a sliding window, of seven days, but also included a model in
the estimate of R(t) [4].

A virus incubates for some time after it enters a human but before it causes symptoms. The
incubation period for the new coronavirus SARS-CoV-2 typically ranges from two to 14 days,
with the median being four or five days. During some of the incubation period, a person can be
infectious. The parameter ε can be interpreted as the inverse of the incubation period (in days).
We assume this to be around 5 days [5]. The incubation period is the average number of days
after which a person shows perceivable symptoms and is therefore forced to take a COVID test. ε
is thus linked to testing focusing on those with symptoms, and a low ε, corresponds to a longer
incubation period, which means that more spreaders will be unidentified.

Pro-active Testing Index ρ describes the proportion of spreaders identified as COVID +ve. This
parameter relates to the aggressiveness of testing. We assume that the more pro-active the testing
is, the higher the probability of the detection of a previously unidentified spreader. A low value
of ρ, corresponds to little aggressive testing, implying more unidentified spreaders. A high value
of ρ, describes pro-active testing, reducing the number of unidentified spreaders.

Finally, the population size N is often chosen for the initial condition of the susceptibles group
S(0). But even this figure can be debated. During the SARS-CoV-2 pandemic, the spread across
countries occurred through people travelling and then within countries primarily linked to more
densely populated regions. I would therefore not make much sense to choose the population size
of a country to decide upon the initial condition for S.

Initial conditions and other assumptions: We assume that in the beginning of the pandemic, in
a hot-spot, there are 20 unidentified spreaders per population of 100,000 and 1 identified spreader
per million. Visualizing the results, we display counts per 1 million. The reason is the population
of a standard administrative unit (a country or state) is of the same order. We simulate our model
for a period of 365 days considering each time unit, a day. Since our focus is testing and contract
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restrictions, linked to identified and unidentified spreaders, we shall hereafter only plot I and U,
or the sum of spreaders, U + I. We emphasize again here that our model is deliberately not trying
to make accurate predictions about cases numbers at a particular point in time, for a specific region
or country. We are thus not fitting our model to actual data for a particular region. The focus is
on studying general patterns, arising from different scenarios, combining contact restrictions with
testing.

3 Results and discussions

In this Section present our results with follow up discussions in Subsections 3.1, 3.2 and 3.3. In
Subsection 3.1, we investigate different scenarios of contract restrictions and pro-active testing. In
these scenarios parameters are not time-dependant:

• Scenario 1: No isolation of identified spreaders; No contact restrictions; No pro-active testing
• Scenario 2: Isolation of identified spreaders; No contact restrictions; No pro-active testing
• Scenario 3: Isolation of identified spreaders; Contact restrictions; No pro-active testing
• Scenario 4: Isolation of identified spreaders; Contact restrictions; Pro-active testing

In Subsection 3.2, we then introduce time-dependent changes to testing and contact reduction
measures, focusing on the timing of these:

• Policy 1: Early lockdown; No pro-active testing
• Policy 2: Late lockdown; No pro-active testing
• Policy 3: No lockdown; Early pro-active testing
• Policy 4: Late lockdown; Late pro-active testing
• Policy 5: Early lockdown; Early pro-active testing
• Ploicy 6: Early lockdown; Late pro-active testing

Finally in Subection 3.3, we compare the following exit strategies from lockdown:

• Strategy 1: Early abrupt exit, minimal pro-active testing
• Strategy 2: Early gradual exit, minimal pro-active testing
• Strategy 3: Late abrupt exit, minimal pro-active testing
• Strategy 4: Late gradual exit, minimal pro-active testing
• Strategy 5: Early abrupt exit, high pro-active testing
• Strategy 6: Periodic lockdown, high pro-active testing

3.1 Scenarios w.r.t isolation, contact restrictions, and pro-active testing

For the following simulation studies we consider different scenarios with changes to κI (isolation),
κU (contact restrictions), and ρ (pro-active testing). The parameters γ, β and ε remain fixed (as are
the initial conditions and population size). For the following analyses, the transmission rate β, the
recovery index γ, the inverse of the incubation period ε, and the isolation index κI will be “fixed”,
while the focus of our attention is on the contact restriction index κI and pro-active testing index
ρ. A low value of κU , refers to strict contact restrictions as would happen during a lockdown. A
high value of ρ, describes pro-active testing, reducing the number of unidentified spreaders. Both,
ρ and κU take values in the unit interval [0, 1].
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Figure 1: Figure showing number of spreaders for several scenarios

Scenario 1: No isolation of identified spreaders; No contact restrictions; No pro-active testing

This scenario corresponds to the situation where there is no isolation of identified spreaders which
does not usually happen in practice. This translates to κU = 1, κI = 1 and ρ = 0 in terms
of parameter values. Thus, although unrealistic, this is the worst-case scenario can theoretically
happen. Here we see the peak to be appearing at around day 120 with more than 150K (120K+30K)
spreaders per million population. (See Figure 1)

Scenario 2: Isolation of identified spreaders; No contact restrictions; No pro-active testing

This scenario corresponds to the situation where there is isolation of spreaders, no contact
restriction and no pro-active testing. This translates to κU = 1, κI = .25 and ρ = 0 in terms of
parameter values. This scenario is more realistic compared to Scenario 1. Usually any patient
with a contagious disease is quarantined by common practice. However, this scenario implies
no additional measures such as contact reduction or pro-active testing that can be employed to
control a pandemic. We notice here that the peak appears on day 160 with about 100K(80K+20K)
spreaders per million population. (See Figure 1)

Scenario 3: Isolation of identified spreaders; Contact restrictions; No pro-active testing

This scenario corresponds to the situation where there is isolation of spreaders, contact restriction
and no pro-active testing. This translates to κU = .75, κI = .25 and ρ = 0 in terms of parameter
values. The assumption of contact reduction of only 25% is however time independent. This
might reflect the situation in a county or state with relatively less human contacts that can be
attributed to population density or lifestyle. Time independent contact rate thus makes this more
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of a hypothetical scenario. In this case the peak appears much later around day 300 with about
25K(20K+5K) spreaders per million. This reflects that a population with intrinsically less contact
rate is likely to be at a lesser risk. (See Figure 1).

Scenario 4: Isolation of identified spreaders; Contact restrictions; Pro-active testing

This scenario corresponds to the situation where there is isolation of spreaders, contact restriction
and pro-active testing. This translates to κU = 1, κI = .25 and ρ = .1 in terms of parameter values.
The assumption of contact reduction and pro-active testing are however time independent which
again makes this a hypothetical scenario. In this case, the peak appears even later compared to
Scenario 3 after 1 year timescale. This in general shows that a 10% pro-active testing (detection of
10% of the unidentified spreaders) can have a considerable effect in further ‘flattening the curve’.
It is worthwhile to mention here, that this is an important observation given that the pandemic
re-surges after some time. If we can come up with a stable and affordable testing method before
the second resurgence, we would be at a much lower risk. (See Figure 1).

Comparing Scenarios

Figure 2: Figure showing for each scenario the temporal evolution of all spreaders, ie the sum of
identified and unidentified spreaders.

What we see in the Figure 2, showing the total number of spreaders (U+I), for the different
scenarios, is the following. Scenario 1, is the worst case, with little action taken to respond
to the pandemic. Scenario 2 gives people maximum freedom of movement following by strict
isolation of infected individuals. The peak appears a little later compared to Scenario 1. Scenario
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3, implements measures for contact restrictions, with good isolation of identified spreaders but no
pro-active testing. Scenario 4, in addition to conditions of Scenario 3 there is some testing beyond
people with symptoms (pro-active testing).

Our analysis shows that Scenario 4 reflects best management of the pandemic in terms of
‘flattening the curve’. The simulation confirms what other simulation studies have already shown
numerous times - contract restrictions help flattening the curve and shifting the peak.

However, the simulation study above, like most others, assume static values for parameters κI ,
κU and ρ. This might not reflect the dynamics of the pandemic, including the implementation of
policies and response of the population to the pandemic. For example, if we assume κU = 0.75, we
assume that from the beginning itself there is a restriction on social interactions imposed, which
is quite far from reality. For this reason, we next observe the dynamics of our pandemic model
for time dependent parameters κU and ρ. We do not assume time dependent κI since, for any
contagious disease (even normal flu) a diagnosed patient is quarantined anyway. We translate
several time dependent parameter settings to real-world scenarios.

3.2 Analysing late/early implementation of policies

We here consider time dependent changes in testing and contact restrictions. We introduce curves
derived from the logistic function to model time dependent changes in κU (linked to contact
restrictions) and ρ (linked to pro-active testing). Other parameters are not changed to compare
the policies: κI = 0.2, β = 0.14, γ = 0.071, ε = 0.2.

Modeling with time dependent parameters

We create two functions, one modelling an increasing parameter value and another a decreasing
parameter value.

For example, most countries had initially free social interactions with no restrictions, which
corresponds to a higher κU at the beginning of the pandemic. As the awareness about the
pandemic increases and with lockdown measures implemented, social interactions are limited.
We model this scenario with a flipped logistic function.

Similarly, for most countries testing would pick up over time. pro-active testing, which goes
beyond testing people with symptoms, will start delayed. We model this by a time dependent ρ
value, following the shape of a logistic function.

To compare policies in different countries, we can shift the inflection point forward or backward.
For example, comparing the UK with Germany, it is widely acknowledged that widespread testing
started earlier in Germany. For social distancing, comparing Norway and Sweden, Norway
started social distancing much earlier than Sweden. With these policy functions above we can
cover a wide range of policies through which a country or region might respond to the pandemic.

Assumptions on parameters for the implementation of policies

The COVID-10 pandemic has effected numerous countries. After about two months, the effects of
different policies to deal with the pandemic at national level have emerged. Comparing the UK
with Germany, it is widely acknowledged that Germany responded faster with testing and contact
restriction measures. Comparing Sweden to Norway, there was a notable difference to when social
distancing was enforced. (While Sweden did not enforce contact restriction measures, when the
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number of COVID-10 related death were rising, the behavior of people changed). Two primary
aspects of a pandemic related policy, are

• promptness in implementing a lockdown (total or partial)
• promptness in ramping up the testing procedure

There are other policies that an administrative system could adopt, such as ramping up hospital
beds, and ICUs, but these are more related to dealing with the effect of the pandemic while not so
much to controlling the spread of the pandemic.

To describe the policies as we implement in our model in terms of numbers, the following points
should be noted:

• By early lockdown, we mean that the lockdown is enforced at a timeline of approximately
40 days with contact restriction index of 0.3.

• By late lockdown, we mean that the lockdown is enforced at a timeline of approximately 60
days with contact restriction index of 0.3.

• By early pro-active testing, we mean that the pro-active testing starts at around 60 days with
pro-active testing index of 0.7.

• By late pro-active testing, we mean that the pro-active testing starts at around 90 days with
pro-active testing index of 0.7.

Figure 3: Figure showing parameter values (first row) and number of spreaders (second row) for
Policies 1-3 (represented column-wise)

Policy 1: Early lockdown; No pro-active testing

This policy is the most realistic and have been adopted by many countries/states as most
counties/states do not have the possibility to have a high rate of pro-active testing. We note here
that the peak appears at around 45 days with around 1300 spreaders per million. (See Figure 3)
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Policy 2: Late lockdown; No pro-active testing

This policy reflects the possible situation in some countries/states who, might not have been
prompt enough with their lockdown policy. By late lockdown, we mean that the lockdown
is enforced at a timeline of approximately 60 days which is 20 days later compared to early
lockdown. We note here that the peak appears at around 65 days with around more than 3000
spreaders per million. Comparing to Policy 1, we can thus conclude that a lockdown delay of 20
days might increase the number of spreaders more than twofold. (See Figure 3)

Policy 3: No lockdown; Early pro-active testing

This policy at this point is hypothetical. However if there is future relapse of the pandemic at a
time when a pro-active testing is affordable, this scenario can be of importance. We note here that
the number of identified spreaders becomes higher than the number of unidentified spreaders
at around 50 days. The peaks for the identified and unidentified spreaders occur at around 65
days and 45 days with 1500 and 1200 spreaders respectively. The peak numer of total spreaders
is around 2200 on areound 55 days. This shows that if pro-active testing can be employed, even
without any lockdown, the effect of the pandemic can be considerably diminished. (See Figure 3)

Figure 4: Figure showing parameter values (first row) and number of spreaders (second row) for
Policies 4-6 (represented column-wise)

Policy 4: Late lockdown; Late pro-active testing

For this policy the peak appears at around 55-60 days with around 3000 (2500+500) spreaders.
The delay in lockdown clearly could not be compensated with the pro active testing (which also
starts late). Interestingly, this policy has more number of spreaders at its peak compared to Policy
3 where there was no lockdown at all and early pro-active testing. (See Figure 4)
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Policy 5: Early lockdown; Early pro-active testing

This policy has been employed by South Korea to some extent. The peaks for the identified
and unidentified spreaders occur at around 55 days and 45 days with 400 and 1000 spreaders
respectively. Note that number of identified spreaders peak, around the time when the testing
starts. Thus the peak of the identified spreaders shift to right compared to Policy 1, which
corresponds to early lockdown and no proactive testing. Considering the total number of
spreaders, this would be the most successful entry policy to the pandemic.(See Figure 4)

Policy 6: Early lockdown; Late pro-active testing

This scenario is also likely to happen in practice, given that we one develops a pro-active testing
scenario relatively later, which is more likely. The peak for this policy is around day 45 with
around 1300 (1050+250) spreaders. Note that number of identified spreaders show a smaller peak,
around the time when the testing starts. Considering the total number of spreaders, this would be
a fairly successful entry policy to the pandemic. (See Figure 4)

Policy 7: Late lockdown; Early pro-active testing

The situation described by this policy is hypothetical and very unlikely to happen. The peak for
this policy is around day 45 with around 1300 (1050+250) spreaders.

Comparing several entry policies for the pandemic

From the comparative plot of the policies in Figure 5, we notice that there is one group of policies
leading to the same peak at aound 40 days and less than 1500 spreaders per million. This includes
the following policies:

• Early lockdown; No pro-active testing
• Early lockdown; Early pro-active testing
• Early lockdown; Late pro-active testing
• Late lockdown; Early pro-active testing

We can thus argue that a late lockdown can only be compensated for with early pro active testing.
Early on in a pandemic it is however unrealistic to have available large scale random testing. For
these simulation studies we consider lockdown strategies that remain implemented. In the next
section we shall investigate the question when it is best to relax a lockdown.

3.3 Analysing exit strategies from lockdown

As we noticed above, ‘Early lockdown and no Pro-active testing’ strategy is the one that was
implemented during the pandemic by numerous countries, from around the middle of March
2020. We shall therefore consider the corresponding peak as a reference and starting point to
discuss the timing of relaxation measures/exit strategies. A major motivation behind studying
exit strategies is to observer whether there is a chance of relapsing of the pandemic depending on
exit strategies. Note that, we have assumed that for each of the exit strategies the entry policy to
the pandemic is an early lockdown (at 40 days). There are several variations of contact reduction
scenarios that we compare:

• Early abrupt exit
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Figure 5: Figure showing for each policy the temporal evolution of spreaders, ie the sum of
identified and unidentified spreaders for several policies.

• Early gradual exit
• Late abrupt exit
• Late gradual exit
• Periodic exit

Moreover, there are two variations of pro-active testing scenarios we compare:

• Minimal pro-active testing
• High pro-active testing

We build each strategy as a combination of these variations of contact reduction scenarios and
pro-active testing scenarios.

Strategy 1: Early abrupt exit; Minimal pro-active testing

Early abrupt exit; Minimal pro-active testing: This corresponds to exiting the lockdown between
days 82-92. It is a sudden lift of the lockdown after a lockdown period of ~ 6 weeks. The
normalcy returns after a time span of about 1 week. There is a minimal amount of pro active
testing considered, which is usually closer to reality. This shows that after achieving a first peak
at around 40-45th day, the pandemic subsides. But it again starts relapsing from around 120th
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Figure 6: Figure showing parameter values (first row) and number of spreaders (second row) for
Strategies 1-3 (represented column-wise)

day. Since we assume that at the time of second relapse there is no contact reduction whatsoever,
the situations turns out to be quite similar to Scenario 2 discussed before. The peak number 80K
(60K+20K) appearing at around day 265 is a bit less than that of Scenario 2 because of the minimal
pro-active testing happening in this case as opposed to Scenario 2. (See Figure 6)

Strategy 2: Early gradual exit; Minimal pro-active testing

Early gradual exit; Minimal pro-active testing: This corresponds to exiting the lockdown between
82-200 days span. It is a gradual lift of the lockdown after a lockdown period of ~ 6 weeks.
The normalcy returns after a time span of around 4 months. This shows that after achieving a
first peak at around 40-45th day similar to Strategy 1, the pandemic subsides. But it again starts
relapsing from around 220th day, much later compared to scenario one, because of the gradual
lockdown exit. Except for the starting point and relative transformation of the peak, the relapse
peak appearing is exactly the same in structure as of Strategy 1. (See Figure 6)

Strategy 3: Late abrupt exit; Minimal pro-active testing

Late abrupt exit; Minimal pro-active testing: This corresponds to exiting the lockdown between
days 124-134. It is a sudden lift of the lockdown after a lockdown period of ~ 12 weeks. The
normalcy returns after a time span of about 1 week. The situation here is also similar that of
Strategy 1, 2. (See Figure 6)

Strategy 4: Late gradual exit; Minimal pro-active testing

Late gradual exit; Minimal pro-active testing: This corresponds to exiting the lockdown between
days 124-240. It is a gradual lift of the lockdown after a lockdown period of ~ 12 weeks. The

15

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 13, 2020. ; https://doi.org/10.1101/2020.05.08.20095596doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.08.20095596


Figure 7: Figure showing parameter values (first row) and number of spreaders (second row) for
Strategies 4-6 (represented column-wise)

normalcy returns after a time span of about 4 months. The situation here is also similar that of
Strategy 1, 2 and 3 except for the fact that the relapse of the pandemic occur later in time due to
implementation and gradual withdrawal. We note here that even exercising a double lockdown
period to that of Strategy 1 and then a gradual exit also might not be enough to prevent future
relapses, if we assume that the virus retains the same spreading potential and there is a low degree
of pro-active testing. We thus conclude that there is a chance that the pandemic might relapse,
within the year after lifting of a short or long lockdown, whether the lockdown is lifted abruptly or
gradually, if we assume that the virus retains the same spreading potential and pro-active testing
is not boosted up. (See Figure 7)

Strategy 5: Early abrupt exit; High pro-active testing

Early abrupt exit; High pro-active testing: From Scenarios 1-4 we noticed that the pandemic
might relapse within a year irrespective of when or how the lockdown is lifted assuming that
the spreading potential of the virus is maintained and there is little pro-active testing. In this case
we see that even if there is short lockdown and an abrupt exit, a high pro-active testing index
of .7 can prevent the pandemic from relapsing. Recall here that pro-active testing should not be
confused with random testing. That is, ρ = 0.7 does not mean randomly testing 70 percent of the
population. Rather it means implementation of testing strategies that can ensure that 70% of the
spreaders are detected. (See Figure 7) This can be done by:

• Rigorous testing of persons in close contact with an identified spreader
• Random testing in identified hotspots

16

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 13, 2020. ; https://doi.org/10.1101/2020.05.08.20095596doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.08.20095596


Strategy 6: Periodic lockdown; High pro-active testing

Periodic lockdown, Pro-active testing: This is a special case we study motivated by the study of
Uri Alon. Here lockdown is implemented on around 40th day. The lockdown is periodic with 1
month of lockdown and 15 days of no lockdown. The lockdown is completely aborted on around
120th day.(See Figure 7)

Comparing several exit strategies for the pandemic

Figure 8: Figure showing for each exit strategy the temporal evolution of spreaders, ie the sum of
identified and unidentified spreaders for several strategy.

From Figure 8 we note that four strategies which lack high pro-active testing all have led to a
second wave of infections. This again points out the role of pro active testing two months down
the time when the lockdown is lifted.

During the initial phase of the SARS-CoV-2 pandemic, the main question asked with mathematical
modelling was about the time and size of the peak of infections.

The peak number of identified spreaders is linked to the number of hospitalisations and ICU
beds required. The number of available ICU beds is known and it would be possible to decide
upon a threshold that should not be exceeded. The relationship between ICU beds and identified
spreaders, can be linked to the case-fatality rate (CFR) - the proportion of diagnosed people who
die. Unfortunately, the estimate can vary widely. During the current SARS-CoV-2 pandemic,
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estimates for the CFR have ranged from 0.1 to 15 percent. The CFR’s denominator - total cases
- depends on testing and pro-active testing in particular. The CFR’s numerator - total deaths
- depends on the age distribution of a population, the prevalence of preexisting illnesses, and
various demographic measures, that vary among countries, states, and cities. This is one example,
of how variability and thus uncertainty enters model-based predictions. The reporting of daily
new numbers is also known to suffer from various artefacts arising from how the data are collected
in different countries.

The second threshold that informs policies is the lower threshold of identified cases, for which
relaxation measures can be considered. Here the reproduction number Rt is most widely used.
There are numerous approaches to estimate the reproduction number. During the corona crisis,
Germany decided on relaxation measures at the end of April, about six weeks after a lockdown
was implemented. The number of new infections in Germany, end of April may thus serve as
a guide for a lower threshold that should be reached for new identified spreaders, to consider
a relaxation of contact restriction measures. Again, estimate of this important parameter induce
uncertainty in model-based predictions.

There is however a second use of models, that are not parametrized from actual data, for a
particular region or country. These models can still be useful in informing policies and decision
making. The focus in then general pattern that emerge from changes to parameters. In this work,
we employ this type of modelling, where we do not aim for accurate predictions of case numbers,
for a particular region or country. Instead, we focus on parameter changes, linked to testing and
contact restriction measures.

More specifically, the SUIR model, presented here, is used to simulate time dependent parameter
changes. This allows to investigate strategies that balance pro-active testing with a lockdown. We
then focus our discussion on the timing of contract restriction measures and testing. Finally, we
study different strategies to exit a lockdown.

4 Conclusions

• Maintaining some degree of contact reduction can make a big difference in case there is a
second wave of the pandemic. In practice this might translate to at least avoiding large
gatherings.

• A delayed lockdown has a considerable impact on the number of infections. A delay of only
20 days can increase the number of spreaders at least twofold. In case there is a second wave
of the pandemic, early lockdown is thus a very effective measures, provided there is no
means of pro-active testing. In our analyses, we assumed an early lockdown to start about
40 days after the first cases.

• If pro-active testing can be employed early, even without any lockdown, the effect of the
pandemic can be considerably reduced. This is an important conclusion considering the
negative socio-economic effects of a total lockdown.

• Ideally early implementation of lockdown and pro-active testing produces the best results
in terms of controlling the number of spreaders. Keeping in mind the possibility of a second
wave, we must also note that a late lockdown and late pro-active testing might be much
less effective than no lockdown and early pro-active testing. This again emphasizes the
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Figure 9: Figure showing parameter values and number of spreaders for selected Observations

importance of developing a pro-active testing strategy before a second wave of the pandemic
hits.

• For strategies that are implemented and maintained indefinitely, there is a chance that the
pandemic will relapse, within the year after lifting of a short or long lockdown.

• Maintaining a high level of pro-active testing, up to two months after the lockdown is lifted,
reduces the risk of the second wave to appear early. This can buy more time to develop a
permanent solution such as a vaccine.

• Considering the socio-economic impact of a total lockdown, a cyclic pattern of lockdown
and release, is a promising strategy. A periodic lockdown, along with a high level of pro-
active testing maintained two months after the lockdown is aborted, is a feasible measure to
control the pandemic, while maintaining a socio-economic balance.

Materials and methods

The mathematical model and simulation studies presented here, were coded using Python. We
used a Jupyter Notebook to to document the derivation of the model in the way it is presented
here. The Juypter notebook is available from our Github page at: Modelling the corona pandemic.
By combining code with text, Jupyter notebooks are making the model and simulation studies
transparent and reproducible. Opening the notebook in Google Colab does not even require
any installation of Python. Little to no experience in Python is required to use the notebook and
explore the SUIR model.
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